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1 INTRODUCTION

A1. MODELLING DIRECTIONAL DATA

We model directional data, i.e., we estimate a pdf, using parametric
mixture models. Another approach to approximate densities is non-
parametric, where a pdf is estimated directly from the observations.
The histogram is the most prevalent density estimator, while a more
accurate method is the kernel density estimate [1]. A histogram is
simple to construct, but suffers from major drawbacks: It involves
an arbitrary choice for the starting point and group boundaries,
which can potentially distort the presented information. Moreover,
just like the smoother nonparametric density estimators, it requires
the amount of smoothing of the estimate – the bin width – as input.
Depending on the smoothing parameter, the shape of the density
estimate can vary significantly. A very small amount can exhibit
spurious fine structures, the number of “bumps” decreasing as the
amount of smoothing increases, to the extent that the multimodality
of a pdf can be obscured (cf. Fig. 1(a) and (b)). Furthermore, de-
riving additional quantitative information automatically, such as the
modes of the pdf, is not trivial. Even if the modes can be assessed
visually by the number of “bumps” or the local peaks of the density,
the number of significant peaks, their locations and sizes still need
to be determined. Because we use the modes not only to visualize
the modality, but also to find the degree to which ensemble mem-
bers agree in their behavior, we preferred a parametric model to a
non-parametric one; parametric mixture models provide not only
the approximated pdfs, but also the modes and their characteristics
(cf. Fig. 1(c)).
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Figure 1: Density approximations (and rose diagrams - a type of an-
gular histograms) for a bimodal set of directions [2]: (a)-(b) kernel
density estimates with different amounts of smoothing, where (a) un-
dersmoothing leads to the appearance of several minor modes, while
(b) oversmoothing obscures relevant structures; (c) Gaussian mix-
ture model.

Popular parametric models for circular data are the Wrapped
Normal (WN) and the von Mises (vM) distributions [2]. Initially
we fitted mixtures of both vM and Normal distributions, and ver-
ified the extent to which the modalities of the mixtures repeated
at the grid points. For the vM mixtures, we followed a stepwise
procedure (testing for n components against more than n) [2] to de-
termine the number of components in the mixture and used a recent
Expectation-Maximization (EM) algorithm [3] to estimate their pa-
rameters. For the Gaussian mixtures, we used the fact that WNs can
be obtained by wrapping Normal distributions around the circle,
which enabled us to apply for Gaussian Mixture Models (GMMs)
an EM algorithm that has been shown to perform well at finding the

correct number of spherical Gaussian mixture components (see the
next section for details).

Mixture models suffer the disadvantage that, depending on the
initial values of the parameters, the solution may converge to a local
optimum and yield different structures. To alleviate this problem,
we repeat the fitting process several times with different starting
values and choose the best solution. The solutions are assessed via
silhouettes [4] – a validation technique suitable for algorithms that
have random initial guesses, where the performed analysis depends
only on the resulting partitions and not on the algorithm that gener-
ated them. As the best solution, we select the one with the highest
average silhouette from those whose modalities are obtained most
often during the repeated fittings.

We tested the two mixture models on the data sets presented in
Section 7 (Results) of the paper, applying the algorithms (includ-
ing the repetitions) ten times at every grid point of the domain. For
each of the runs we derived a scalar field containing the modali-
ties (number of components) of the fitted mixtures and analyzed
for both procedures the standard deviations of these fields. While
a detailed comparison of the two algorithms is beyond the scope
of this appendix, we noticed that, for the data sets under test, the
GMM yielded much more consistent results. Namely, the number
of modes repeated consistently at approximately 98% of the total
number of grid points, as opposed to 50% for the vM mixtures.
Given the small number of non-repetitive modality instances and
that users can also use the spatial neighborhood of a grid point to
infer on a possible under- or overestimated number of modes, we
decided to use, without loss of generality, the Gaussian mixtures in
the rest of our analyses.

Modelling Data using GMMs

Circular data consists of observations that can be regarded either as
unit vectors in the plane or as points on the unit circle. Choosing
an initial direction (the x-axis) and an orientation (counterclock-
wise) allows specifying the observations by the angle from the axis
to the point on the unit circle. We model the angular data using
GMMs [5]. For a sample θ1, ...,θn, the pdf is

f (θ) =
N

∑
i=1

αiN
(

µi,σ
2
i

)
(θ), αi > 0,

N

∑
i=1

αi = 1, (1)

where N is the number of Gaussian components parameterized by
the mean vectors µi and variances σ2

i , and αi are the weights of
the components. For a given N, the 3N parameters {αi,µi,σ

2
i } can

be estimated using the EM algorithm. The true number of mixture
components is, however, unknown and must be inferred. Despite a
large number of publications on the topic, there is no optimal so-
lution to this problem. Typical methods start with a large number
of components and merge similar components (cf. Hennig [6] for
a survey), or perform fittings with an increasing number of com-
ponents up to a certain threshold and then use different criteria to
select an optimal number (cf. Oliveira-Brochado and Martins [7]
for an overview).

We determine the modality of a pdf and its structure automati-
cally, without a priori knowledge on the number of modes. To this
purpose, we first perform a statistical test of randomness, so that
we do not attempt to find clusters when the data is distributed uni-
formly. Uniform distributions may occur, for instance, around criti-
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cal points, where the corresponding vectors are zero. While we did
not have any instances of zero vectors emerging exactly at the grid
points in our data sets, since no directions can be defined at such
vectors, these observations should be modelled by components of
their own and not be considered further when fitting mixtures. We
use the omnibus test [2] to test against any non-uniform alternative
model. If the hypothesis of randomness can be rejected at the 5%
significance level, we follow a procedure similar to the one pro-
posed by Hamerly and Elkan [8], which has been shown to work
well to determine the correct number of modes. The k-means algo-
rithm can be applied in a recursive manner until the data assigned
to each of the k centers can be modeled by a single Gaussian com-
ponent. Instead of the k-means, however, we use the less restrictive
EM algorithm, which allows a different full covariance matrix for
every component rather than assume that data points are distributed
spherically around the k-means centers, and fit a GMM to the given
data set.

Specifically, we start with one component and test whether it can
be modeled by a single Gaussian distribution. If this is not the case,
we run the EM algorithm to fit two Gaussians to the data set and
repeat this procedure recursively, until no component needs to be
split anymore (either because it is well approximated by a Gaussian
or its cardinality is too small). Finally, we use the identified com-
ponents as initial conditions to the EM algorithm and run it on the
whole data set to refine the solution.

For splitting, we run a Lilliefors test for smaller samples (cardi-
nality below 25), and the Anderson-Darling test (a very powerful
normality test, also used in [8]) otherwise to test whether the null
hypothesis that the sample comes from a normal distribution can
be rejected at the 1% significance level. To address the problem
of multiple comparisons, which appears when multiple hypotheses
are tested on a single set of data, we use the Bonferroni correction.
Performing n tests on a single set of data increases the likelihood
that the null hypothesis is rejected due to chance even if it is true.
Testing each of the n tests at a significance level 1/n times as low as
that for testing only one hypothesis reduces the chances of obtain-
ing false positives. As the cardinality of our ensembles is around
50 and typically just a few splittings are performed, we use a sig-
nificance level of 0.1%.

Note that GMMs cannot be applied directly to directional data,
since, depending on the location where the circle is cut to unwrap
it to an interval of length 2π on the real line, a mode, e.g., around
0, on the circle may split into two modes, e.g., around 0 and 2π (cf.
Fig. 2(a) and (b)), on the line. To perceive the modality better, in-
stead of cutting the circle, Mardia and Jupp [9] recommend repeat-
ing a complete cycle of the data, yielding an interval of length 4π

on the real line. Wu et al. [10] proceed in this way, padding circular
data to fit mixture models to wave direction data using a standard
variational Bayesian technique and an initial overestimated number
of components. The original data set defined over [0,2π] is padded
at both ends to obtain an extended data set over [−π,3π], by dupli-
cating the observations in the (0,π] interval to (2π,3π] and those in
[π,2π) to [−π,0) (cf. Fig. 2(c)). We follow the same approach of
padding the data, which allows using GMMs with the standard EM
algorithm.

Once a GMM has been fitted to the augmented data set, the
next step is to restrict the interval [−π,3π] to the initial interval
[0,2π] and summarize the final components on the circle. Thus,
for modes like those in Fig. 2(c), where the data values cluster
around 0 and 2π on the line, we want to group the initial obser-
vations into one component. For modes around other values, e.g.,
π/2, we want to discard the mode around 5π/2 and keep only
the one in the original set. To this purpose, we perform a merg-
ing step: For every pair of observations in the initial data set and
their repeated counterparts, we determine the pairs of components
to which both observations can belong to with posterior probabili-
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Figure 2: Cutting a circular distribution with a mode at 0 at the anti-
mode π (a) conveys the mode clearly, whereas cutting it at the mode
(b) creates the impression of bimodality. The ambiguity is resolved
by repeating the complete cycle and padding each half to the left and
right (c).

ties over a given threshold. Then, for each unique pair of compo-
nents (N (µi,σ

2
i ),N (µ j,σ

2
j )), we compute the distance between

their means
d(µi,µ j) = π−

∣∣π−|µi−µ j|
∣∣ (2)

and consider for merging the components with means that are situ-
ated close to each other on the unit circle. Components that are not
merged are kept only if they contain initial observations. All means
are restricted to values in the interval [0,2π].

The resulting components can be summarized via sample
trigonometric moments. For a component with m angles, we con-
sider the corresponding unit vectors and compute the mean direc-
tion µ as that of the resultant vector after vector addition [2]. More
specifically,

µ =


tan−1(S/C) if S≥ 0 and C ≥ 0,
tan−1(S/C)+π if C ≤ 0,
tan−1(S/C)+2π if S≤ 0 and C ≥ 0,

(3)

where
C = Σ

m
i=1 cos(θi) and S = Σ

m
i=1 sin(θi). (4)

The mean resultant length ρ associated to the mean direction µ is
computed as the length of the resultant vector, normalized by m,

ρ =

√
C2 +S2

m
. (5)

ρ takes values in the range [0,1], higher values showing increased
concentrations around the mean direction [9]. The two parameters
characterize the Wrapped Normal distribution WN(µ,ρ), the result
of wrapping a Normal distribution N (µ,σ2) (given on the line)
around the circle:

ρ = exp
(
−1

2
σ

2
)
, where σ

2 =−2log(ρ). (6)

These formulae can also be used to switch between the WN and the
corresponding Normal distribution.

A2. LOCAL SIMILARITY MEASURES FOR DIRECTIONAL
DATA

Assume that a sample θ1, ...,θn is modelled using a mixture of K
Gaussian components. The posterior probabilities that each obser-
vation θi belongs to component k can be summarized in a n×K
matrix P with elements pi,k.

Two observations θi and θ j are considered similar according to
the modality measure if both have a posterior probability over a
certain threshold τ of belonging to the same mode k

m(θi,θ j) =

{
1 if pi,k ≥ τ and p j,k ≥ τ ,
0 otherwise.

(7)

If two observations θi and θ j are assessed as similar according
to the modality measure, we compute two other similarity measures
to refine the pairwise characterizations. To this purpose, we first
identify the component k which both observations are most likely
to belong to. Thus, assuming there are one or more components
k1, ...,kq to which the two observations can belong with a poste-
rior probability over the threshold τ , we select the mode k with the



highest sum of posterior probabilities pi,k + p j,k.
The observations are classified as similar according to the scaled

angular measure if the smallest angle between them (computed as
in Eq. 2) is less than or equal to the maximum sample circular stan-
dard deviation (cf. Eq. 6) in the domain

sm(θi,θ j) =

{
1 if m(θi,θ j) = 1 and d(θi,θ j)≤ σmax,
0 otherwise.

(8)

For the locally scaled angular measure, the smallest angle is
compared to the local sample circular standard deviation instead
of to the maximum one

lsm(θi,θ j) =

{
1 if m(θi,θ j) = 1 and d(θi,θ j)≤ σk,
0 otherwise.

(9)

A3. COMPARING MIXTURE MODELS

There is no best measure to assess the degree to which two direc-
tional pdfs are similar. We were looking for a measure that has a
closed form for GMMs and is thus easily computable on the fly.
While the Kullback-Leibler (KL) distance is a popular tool, it is an-
alytically tractable only for two Gaussian distributions, reason for
which in this paper we build upon the concordance coefficient [11],
which fulfills the aforementioned criteria.

For two GMMs f1 = ∑
N1
i=1 α1iN (µ1i,σ

2
1i) and

f2 = ∑
N2
j=1 α2 jN (µ2 j,σ

2
2 j), the concordance coefficient reads

C( f1, f2) =
2
∫

f1(x) f2(x)dx∫
f 2
1 (x)dx+

∫
f 2
2 (x)dx

=
2F( f1, f2)

F( f1, f1)+F( f2, f2)
, (10)

where

F( f ,g) =
Nf

∑
i=1

Ng

∑
j=1

α f iαg j√
σ 2

f i +σ 2
g j

exp

(
− 1

2
(µ f i−µg j)

2

σ 2
f i +σ 2

g j

)
. (11)

For circular data, we compute the variance as in Eq. 6 and the
distance between two means as in Eq. 2. The concordance coef-
ficient takes values between zero – when the two pdfs have com-
pletely dissimilar support sets – and one – when they are iden-
tical. In order to get values on [0,∞), we use the coefficient
D( f1, f2) =− log(C( f1, f2)) instead, so that, for constant variation,
this measure grows instead of decreasing with the distance between
the means. It should be noted that we only use this measure for two
pdfs of the same type, i.e., the similarity coefficient between a uni-
form pdf and a mixture model is infinite, whereas any two uniform
pdfs are considered identical.
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