
Vision, Modeling, and Visualization (2015)
D. Bommes, T. Ritschel and T. Schultz (Eds.)

Vector-to-Closest-Point Octree for Surface Ray-Casting

I. Demir1 and R. Westermann1

1Computer Graphics & Visualization Group, Technische Universität München, Germany

Figure 1: Rendering from a hierarchical Vector-to-Closest-Point (VCP) grid at different zoom steps. Left: The Thai statue

(10 million polygons) renders in less than 10ms per frame at a maximum grid resolution of 2048× 1024× 1024. Right: For

the Sponza model the hierarchy is 3 levels shallower than for a sparse voxel hierarchy in order to achieve roughly the same

rendering quality (for the Thai statue the gain is between 1 (left) and 5 levels (right)).

Abstract

GPU voxel-based surface ray-casting has positioned as an interesting alternative to rasterization-based rendering

approaches, because it allows using many processing units simultaneously, can effectively exploit thread level

parallelism, and enables fine-granularity occlusion culling on the pixel level. Yet voxel-based techniques face the

problem that an extremely high resolution is necessary to avoid block artifacts at high zoom levels. In this work,

we propose a novel improvement of voxel-based ray-casting to overcome this limitation. By using a hierarchical

Vector-to-Closest-Point (VCP) representation, we can inherit the advantages of a voxel-based approach at a much

smoother approximation of the surface. We demonstrate that, although the VCP grid consumes more memory per

cell, it requires less memory overall, because it builds upon a significantly shallower tree hierarchy. In a number

of examples we demonstrate the use of our approach for high-quality rendering of high resolution surface models.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing

1. Introduction and Related Work

Voxel-based surface ray-casting on the GPU [GMIG08,
CNLE09,LK10a] has been introduced as an interesting alter-
native to rasterization-based polygon rendering and triangle
ray-tracing. It inherits the benefits of ray-based GPU render-
ing techniques [PBMH02,CHH02,EVG04,FS05,CHCH06,
GPSS07,PGSS07,HSHH07,AL09] to effectively exploit the
GPU’s massively parallel design and use many processing

units simultaneously. In addition it can effectively perform
fine-granularity occlusion culling on the ray level. More-
over, the regular voxel grid gives rise to efficient ray traversal
schemes, and it allows generating levels of detail with pre-
scribed (screen-space) error in a very simple and efficient
way.

A limitation of voxel-based techniques is that they pro-
duce visual artifacts when the size of the voxels exceeds

c© The Eurographics Association 2015.

I. Demir & R. Westermann / Vector-to-Closest-Point Octree

the pixel size in screen space. In this case, the underlying
voxel grid becomes visible as block structures. As a conse-
quence, classical voxel-based techniques need to build very
deep trees so that even for extreme zoom-ins the voxel size
can still match the pixel size. It is worth noting that the high-
resolution representation is also required in areas where the
initial surface is smooth.

Different solutions have been proposed to remedy this
problem. “Far Voxels” have been introduced as an efficient
LOD structure for polygonal models by Gobbetti and Mar-
ton [GM05]. They render the polygon structure where the
details are high, and render a voxel-based approximation
of polygon clusters at coarser resolution levels. Laine et
al. [LK10b] introduce a sparse voxel octree (SVO), where
the voxels are supplemented by piecewise linear contour rep-
resentations, which are then used during rendering to avoid
block artifacts and generate smooth object silhouettes. Their
method was later enhanced by Kämpe et al. [KSA13] us-
ing directed acyclic graphs (DAG) instead of octrees to re-
duce the memory consumption when encoding identical re-
gions. Similar to “Far Voxels”, Reichl et al. [RCBW12] em-
ploy a hybrid rendering method which combines rasteriza-
tion and ray-casting. “Sphere Tracing” is a rendering tech-
nique proposed by Hart for implicit surfaces defined by
signed distance functions [Har96], which was later improved
upon by Keinert et al. [KSK∗14]. Bastos et al. presented a
method built on Sphere Tracing to efficiently render Adap-
tively Sampled Distance Fields (ADFs) on the GPU [BC08].
While their method is restricted to signed distance isosur-
faces, our method is able to handle arbitrary surfaces.

A different approach has been proposed already 17 years
ago by Gibson [Gib98], and used for voxel-based surface
rendering on fixed-function graphics hardware by Wester-
mann et al. [WSE99]. Gibson proposed to make use of a dis-
tance field to obtain a higher order interpolant of a level-set
surface in an intensity volume. Westermann et al. employed
this idea to voxelize a polygon surface into a 3D scalar dis-
tance field and render the implicit surface via slice-based
volume rendering. For a thorough overview of algorithms for
computing signed distance transforms from polygon models
as well as a number of applications of such transforms, let
us refer to [JBS06, FPRJ00]. In the context of fluid simula-
tion, Auer et al proposed a rendering method for a uniform
low-resolution closest-point simulation grid [AMT∗12].

Contribution. In this work we extend on previous works
and present a novel approach to overcome the limitations
of voxel-based surface rendering. Inspired by the distance-
to-closest-surface representation by Gibson [Gib98], we in-
troduce the hierarchical Vector-to-Closest-Point representa-
tion (VCP) to improve the surface approximation quality of
a grid-based representation. As demonstrated in Fig. 1, com-
pared to a “standard” voxel hierarchy, the VCP representa-
tion results in a significantly shallower tree, and it reduces
the memory consumption and tree traversal costs during ren-

dering. The surface can be determined as the 0-level-set of
the VCP function, and smooth normals can be computed by
interpolating VCP vectors. Our rendering specific novel con-
tributions are:

• The use of a hierarchical VCP grid for parallel ray-casting
on the GPU.

• An efficient high-quality technique for intersecting a ray
with the surface encoded in a VCP grid.

• A significantly shorter model hierarchy compared to a
“classical” voxel representation.

• The option to render a smooth surface at arbitrary zoom-
ins from a VCP grid.

2. VCP Representation

Figure 2: Illustration of the VCP representation in 2D. At

each grid point, a vector to the point closest to the original

geometry (blue) is stored; this is visualized by a few such

vectors (black). The grid is adaptively refined in the vicinity

of the object.

To begin with, let us consider a geometric object, repre-
sented by a polygonal surface, which is embedded in three-
dimensional Cartesian space. The space is discretized via a
uniform Cartesian grid. This is illustrated in Fig. 2 in two
dimensions. Now we can compute for each grid point the
VCP vector wrt. the given geometry, i.e., the vector point-
ing to the closest surface point. An algorithm to efficiently
compute a VCP grid for very large polygon meshes is pre-
sented below. Note that storing the full grid at a high res-
olution would waste a significant amount of memory, since
during rendering the VCP data is only required in a narrow
ε-band around the object’s surface. Therefore our approach
uses an additional regular grid, which comprises blocks of
23 cubical cells. A VCP representation is computed only for
those (non-empty) blocks which overlap the narrow band,
while for all other (empty) blocks we store one single scalar
value indicating the minimum distance of all vertices of
this block to the surface. These values are used during ray-
casting to adaptively vary the step-size, i.e., a step as large as
the stored minimum distance can never cross the surface. We
will later describe how to employ a hierarchical representa-
tion to adaptively prune empty space comprising multiple
empty blocks.

c© The Eurographics Association 2015.

I. Demir & R. Westermann / Vector-to-Closest-Point Octree

1

2

3
4

Figure 3: Left: If only distance information is stored at the

grid points, the feature (blue) is blurred or lost during linear

interpolation since it is located within one grid cell. Our in-

terpolation scheme based on the VCP representation (black

arrows), however, conserves the feature to a better degree as

illustrated by the red lines. Hence we can choose a smaller ε-

band leading to more precise rendering results. Right: Ray-

casting through the VCP grid. At each step (marks 1, 2, 3)

along the ray (red) the VCP distance to the object (blue) is

obtained. Once it is less than ε, i.e., the distance from the

dotted blue curve to the feature, this is considered as a hit

(mark 3). Interpolating between the current and the previ-

ous step results in a point on the ray with VCP distance of

about ε (mark 4).

In principle, to implicitly encode the surface one could
also use a scalar distance field, which stores at every grid
point the shortest distance to the surface. Such a represen-
tation, however, requires the use of signed distance values
in order to accurately determine the distance-0 isosurface.
Computing signed distances, on the other hand, is non-trivial
and generally speaking not even possible, for instance if the
surface is non-orientable or not closed. By contrast, our tech-
nique can be applied to arbitrary geometry. In addition, the
distance values in a discrete grid approximate the surface
with an error that is linear in the grid spacing, while each
closest point defines the exact position of a surface point.
Hence, a better approximation quality is achieved with a
VCP representation, as illustrated in Fig. 3 (left).

2.1. Ray-Casting

The VCP grid is rendered via parallel GPU ray-casting. For
each ray, we simultaneously compute the first and last inter-
section point with the object’s bounding box, and we let the
rays march through the VCP grid using varying step-sizes.
This process is illustrated in Fig. 3 (right). At each sampling
point, the allowed size of the next step is computed, either by
reading the scalar distance value from the hit (empty) block,
or by using the length of the interpolated VCP vector in case
a non-empty block is hit. If this distance is less than ε, a ray-
surface intersection point is assumed, otherwise the value is
used as the step size for the next sampling point.

To determine the exact intersection point, the location be-
tween the current and the previous sampling point at which

the distance is exactly ε is interpolated. By doing this for
every ray, a smooth surface being a constant distance away
from the exact surface is rendered. It is clear that by decreas-
ing ε we can come arbitrarily close to this surface. Once a
ray-surface intersection is found, a local lighting model us-
ing the surface normal vector at the intersection point is eval-
uated. The normal vector is given by the normalized VCP
vector, since it is always perpendicular to the surface.

At this point, the procedure could be extended to com-
pute shadows by sending another ray from the hit position to
the light source. Likewise, additional non-camera rays could
be sent from the hit point to render reflection and refraction
effects. This can be implemented in a straightforward way,
since our grid structure is independent of the camera posi-
tion.

2.2. VCP Interpolation

a) b) c)

Figure 4: Comparison of three interpolation schemes. a)

Trilinear interpolation produces artifacts since adjacent

VCP vectors pointing in opposite directions are canceled

out. b) Our intermediary scheme also leads to artifacts since

triangles are substituted by planes which have no boundary.

c) Combining both methods avoids artifacts of either case

and is computationally cheap.

To obtain the VCP at an arbitrary location, we interpo-
late between the 8 given vectors at the vertices of the re-
spective cell. For this, it is crucial to have an interpola-
tion scheme which is consistent with the VCP geometry. A
straight forward way would be to simply use trilinear inter-
polation. However, as shown in Fig. 4a, this method pro-
duces artifacts: Suppose we have VCP vectors (−ε,0,0)
and (ε,0,0) at two adjacent grid points, meaning that they
are pointing to regions that are close in space but distant
wrt. the surface. Now linearly interpolating in the middle
of these two points would yield the vector (0,0,0) and
hence result in an intersection point during ray-casting. To
remedy this problem, we propose a specially designed in-
terpolation scheme which fits the purpose of interpolating
VCP data consistently. This method is illustrated in Fig. 3

c© The Eurographics Association 2015.

I. Demir & R. Westermann / Vector-to-Closest-Point Octree

(left). When interpolating at p′ we iterate over all 8 grid
points pi and think of each VCP as describing a plane.
More precisely, each vector vcpi describes a (unique) plane
Pi such that vcpi starting from pi is a perpendicular on Pi,
i.e., vcpi ⊥ Pi and pi + vcpi ∈ Pi. We now obtain the in-
terpolated VCP wrt. pi as the perpendicular from p′ to Pi,
i.e., vcp⋆i =

((

vcpi ·
(

pi + vcpi− p′
))

/(vcpi · vcpi)
)

· vcpi.
Finally, the shortest vector is returned as the result, i.e.,
vcp⋆ = argminvcp⋆i

{‖vcp⋆i ‖}. However this approach also
leads to rendering artifacts as can be seen in Fig. 4b. This
comes from the fact that by substituting planes for a mesh
which originally consisted of triangles the boundaries of the
triangles are lost. As a costly solution to this problem, one
could not only store VCP vectors but additionally the trian-
gles to which they refer. A much more feasible solution is to
combine our method with the trilinear interpolation scheme
such that the VCP with the greater length is returned as the
final result. In this case artifacts of either case are avoided
leading to a smooth rendering result. This is depicted in
Fig. 4c.

3. VCP Octree

The concept underlying our construction of a hierarchical
octree structure is illustrated in Fig. 5. The octree is built
bottom-up from the VCP grid outlined before. Each block
is initially considered as a leaf. For each block, we compute
the minimum distance dmin, as either the minimum of all
scalar per-vertex distances of empty blocks or the minimum
of all VCP distances of the vertices of non-empty blocks.
Whenever the minimum distance is greater than a certain
threshold, i.e. dmin > t, we mark the corresponding block
as empty. In this way we ensure that VCP information is
only stored in the close vicinity of the surface, thus lowering
the memory requirement. To maximize the number of empty
cells we minimize t such that ray-casting produces no visual
artifacts. For this we set t equal to 2 times the distance of
two diagonally neighboring grid points wrt. the finest res-
olution. This ensures that an intersection with the object is
never lost during the hierarchy construction. The octree is
then constructed according to the following merging princi-
ples, where we consider groups of 23 blocks:

a) b)

Figure 5: a) In this 2D-illustration, each cell is surrounded

by 4 neighboring grid points, where a VCP is given at each

grid point. Green cells correspond to empty leaves. Blue /

red cells correspond to non-empty leaves that can / cannot be

merged at the next level. b) The resulting octree after elimi-

nating all nodes that can be combined.

• If all blocks are marked as empty, they are merged into an
empty node in the next octree level (Fig. 5b, nodes with
only green child nodes). The merged leaf nodes are re-
moved, the new node becomes a leaf node representing a
grid cell at the next coarser level, and it is assigned dmin

as the minimum distance to the surface.
• If all nodes are leaves but some of them are non-empty,

we check whether it is possible to simplify the block to
one single cell. For this, we test how well the VCP at the
vertices of the non-empty blocks can be interpolated from
the 23 vertices of the single cell. We do so by comput-
ing the Euclidean distances di between the interpolated
and the exact VCP vectors. If the maximum of these dis-
tance is below a given threshold, the nodes are merged to
a non-empty leaf node at the next level, storing the min-
imum distance of all merged nodes. If the nodes cannot
be merged, an internal node is inserted at the next level
pointing to corresponding leaves (Fig. 5b, nodes with only
green and blue child nodes).

• Otherwise, an internal node is inserted at the next level
pointing to corresponding nodes (Fig. 5b, nodes with red
child nodes).

3.1. Mesh-based Generation

In this section we describe how a full VCP grid is con-
structed from a given triangle mesh. To begin with, let us
consider the simplified case of computing the VCP from
an arbitrary point p in space to a single triangle given by
points p1, p2, p3. This can be done efficiently by calculat-
ing the barycentric coordinates of the (perpendicular) pro-
jection p′ from p onto the triangle as proposed by Hei-
drich [Hei05]. Let u = p2− p1,v = p3− p1,n = u× v,c =
n ·n,w = p− p1. Then we obtain the barycentric coordinates
as γ = ((u×w) ·n)/c,β = ((w× v) ·n)/c,α = 1− β− γ.
If we have 0 ≤ α,β,γ ≤ 1 then p′ lies inside the trian-
gle and equals also the VCP, i.e., vcp = p′. This holds be-
cause the VCP vector to a plane is necessarily perpendicu-
lar. If p′ is outside of the triangle the VCP must coincide
with an edge (or a vertex). For this we compute the closest
point vector to each edge and return the vector such that its
length minimal. To compute the closest point vector from
p to a line segment given by p1, p2, let u = p2 − p1 and
λ = ((p− p1) ·d)/(d ·d). Let λ⋆ = clamp(λ,0,1). We fi-
nally obtain the VCP as vcp = p1 + λ⋆ · d. Note that it is
also possible to store other attributes such as color or texture
coordinates at this point.

We now extend our approach to arbitrary meshes consist-
ing of multiple triangles. Starting with an empty grid we
insert each triangle into the grid in the following manner.
First, we compute the bounding box for the current triangle
and then update each grid point within this box. More pre-
cisely, each grid point is updated if it is currently empty or it
is pointing to another triangle with a greater VCP distance.
Next, to expand the VCP data computed so far, we utilize

c© The Eurographics Association 2015.

I. Demir & R. Westermann / Vector-to-Closest-Point Octree

a region growing algorithm. We iterate k times over all grid
points and compare the current grid point p with each sur-
rounding grid point q in the following way. If p is empty,
i.e., points to no triangle, let p point to the same triangle as
q. Otherwise, if p,q point to triangles Tp,Tq, update p such
that it points to Tq if the VCP distance from p to Tq is less
than the current distance, i.e., to Tp. The number k depends
linearly on the aforementioned value ε.

4. GPU Implementation Issues

To reduce the number of memory indirections on the GPU,
the octree is not constructed up to one single root node. In-
stead, the construction process is stopped at a certain level
where the memory requirement falls below a given thresh-
old. The data generated so far constitutes the indirection pool
of the octree. To traverse it efficiently on the GPU the follow-
ing information is encoded at each node as a 32-bit signed
integer. For internal nodes a pointer to the node index of its
first child is stored; all child nodes are then stored at sub-
sequent locations in memory (up to index 0x40000000 -

1). An empty leaf is encoded by an integer greater than or
equal to 0x40000000 = 230 which represents the distance
dmin to the nearest VCP wrt. all grid points on the boundary
of the spatial region referred by that node. We compute this

value by the formula
⌊

min{dmin/D,1} ·
(

230−1
)

+230
⌋

,

where D represents a certain cutoff-value. Finally, non-
empty leaves are stored as negative integers -(leafIdx
+ 1), where leafIdx points to the index in the VCP leaf
data structure which is constructed as given in the next para-
graph.

4.1. VCP Leaf Data

For each non-empty leaf, 23 VCP vectors have to be stored.
Note that leaves can overlap if they belong to adjacent blocks
in space as shown in Fig. 6a. In this case they share 4 VCP
vectors which allows us to reduce the memory requirement.
For this we sort the leaves by using the following algorithm.
First, leaves are ordered by their corresponding octree level.
Second, when leaves are on the same level (only in this case
the possibility of adjacency arises), they are sorted in xyz-
order where without loss of generality the x-axis has the
greatest length. Now we construct the leaf data as a 3D tex-
ture in such a way that cells share their VCP vectors wher-
ever it is possible as illustrated in Fig. 6b. Finally, the leaf in-
dices are assigned to the indirection pool. Another important
aspect in achieving memory efficiency is the data type used
to store VCP vectors. To reduce the memory requirement we
propose a custom data type which consumes only 32 bit per
VCP vector. We begin with transforming the VCP vector into
spherical coordinates (r,θ,ϕ) given as the radius, azimuthal
angle, θ ∈ [−π/2,π/2], and polar angle, ϕ ∈ [0,2π]. We ob-
tain the radius by normalizing the vector length wrt. a fixed
maximum radius, i.e., r = min{‖pcs‖/rmax,1}. To improve

Figure 6: Left: Two adjacent blocks overlap at 4 grid points

(red) meaning that they share the corresponding 4 VCP vec-

tors, which allows us to reduce the required amount of mem-

ory. Right: Cells with overlapping points are placed next to

each other. Between non-overlapping cells there are empty

regions (white background) which remain unused.

the precision for small radii, we apply the square root to the
radius, i.e., r←√r. Now the three components are stored as
normalized unsigned integers into 32 bit where r occupies
the first 13 bits, θ the next 9 bits and ϕ the remaining 10 bits.

4.2. Reducing Run-time Memory Traffic

r

vcp

Figure 7: The step size can be increased when considering

the surface (blue) as locally planar. Given the angle between

the vector vcp (black) and the ray direction r (red), the dis-

tance to surface along the ray can then be computed by ap-

plying the law of cosines.

It is not necessary to traverse the octree at each step along
the ray beginning from the root. Instead, we can simply re-
member the node index directly before the leaf. In many
cases we can reuse this index as starting point, in particu-
lar when the step size is small which is the real bottleneck
of our technique. To further optimize the number of global
memory accesses we store at each non-empty leaf the 8 VCP
values in local memory. This enables us to avoid reaccessing
the same values in global memory as long as we stay in the
same cell while marching along the ray, i.e., when the step
size is very small and would hence require a lot of memory
look-ups. Finally, as illustrated in Fig. 7, we can increase the
step size. Considering the surface locally as planar would
allow us to pick a step size of s = d/

(vcp
d · r

)

, where r de-
notes the normalized ray direction. In practice, however, this
leads to rendering artifacts because the surface is not planar
on a larger scale. Therefore, we restrict the step size opti-
mization by a threshold, in our case 2ε. Fig. 8 shows a com-
parison of the optimized vs. the unoptimized approach that
clearly demonstrates its advantage. A similar algorithm was
employed by Hart in the context of sphere tracing [Har96].

c© The Eurographics Association 2015.

I. Demir & R. Westermann / Vector-to-Closest-Point Octree

a) b)

Figure 8: Comparison of the unoptimized (a) vs. the opti-

mized approach (b). Here the number of accesses to global

memory is encoded by color intensity. Clearly, the optimized

version is much more efficient. Note that this also results in

significantly greater frame rates.

4.3. Dynamic Memory Management

a) b) c)

Figure 9: Rendering was performed a) at a coarser reso-

lution (to demonstrate the effect more clearly), b) at a finer

resolution, c) including further refined subvolumes.

To improve the rendering quality, we have developed a
system that dynamically loads more refined subsets of the
given geometry into GPU memory in places, which are lo-
cated close to the camera and visible in the current viewport.
For this, we divide the bounding box of the entire scene into
subvolumes. Then, we consider each subvolume as a unique
object and construct the VCP hierarchy by restricting the
VCP grid on the respective region. During the rendering pro-
cess, we continually compute the required set of subvolumes
and load them into memory. Loading is done in the back-
ground, which exploits the multithreading capability of Di-
rectX 11 and does not interrupt the rendering process. While
ray-casting, we check at each step whether there is a refined
VCP hierarchy available in GPU memory as long as the dis-
tance to the camera is less than a threshold, in our case 1/4
of the diameter of the object’s bounding box. In this case, we
perform a look-up in the refined structure in the same way as
explained in the previous section. The effect is demonstrated
in Fig. 9. As a minor drawback of this approach, one can
sometimes spot popping artifacts upon switching to differ-
ent subvolume levels. However, we regard this as acceptable,
since our method dramatically reduces the runtime memory

requirement on the GPU, thus enabling a significantly finer
resolution.

4.4. GPU-CPU Upstreaming

To determine which subvolumes are currently needed, we
identify these subvolumes which are hit by rays at early
steps. While ray-casting, we compute at each step which
subvolume is currently hit. Then we increase a counter
associated with that particular subvolume by the number
1/(a+ ε), where a is the accumulated step size. Afterwards,
the counters are ordered decreasingly, which results in a pri-
ority list. Finally, the associated subvolumes are loaded into
GPU memory according to their priority. To minimize the
number of interlocked accesses to global memory (required
for the counter to be consistent), we run a separate render-
ing process for this issue. Here, it is sufficient to use a very
small texture as rendering target, in our implementation of
size 24×16 pixels.

5. Results

a) b) c)

Figure 10: Objects used in our test cases. From left to right:

Thai Statue, David, Sponza Atrium. All images were ren-

dered with the implementation of our method.

In this section, we show several results of our method.
Then, we compare our approach by performance and qual-
ity against ray-casting (1) on signed distance octrees, (2)
on voxel octrees, i.e., binary voxel grids organized as oc-
trees, and (3) the sparse voxel octree (SVO) implementa-
tion by Laine et al. [LK10b]. All measurements were per-
formed on a desktop PC equipped with an Intel Xeon X5675
CPU at 3 GHz and an NVIDIA GeForce GTX 580 graph-
ics adapter with 3 GiB of memory. A viewport of resolution
1920× 1200 was used for all renderings. In Fig. 10 render-
ings of the utilized objects are depicted. Table 1 shows rele-
vant statistical properties about our test scenarios. Note that
the resolution for all techniques is chosen such that roughly
the same amount of memory is consumed.

A comparison of the performance is presented in table 2.
Note that similar frame rates are achieved in all scenarios,

c© The Eurographics Association 2015.

I. Demir & R. Westermann / Vector-to-Closest-Point Octree

Object Tri. VCP Res/Mem Sgn Dist. Res/Mem Voxel Res/Mem SVO Res/Mem

Thai 10M 2K×1K2 1.05 GiB 2K×1K2 1.05 GiB 4K×2K2 1.07 GiB 2K×1K2 860 MiB
David 960M 2K×1K2 980 MiB 2K×1K2 980 MiB 4K×2K2 960 MiB 2K×1K2 770 MiB

Sponza 150K 1K×5122 290 MiB 1K×5122 290 MiB 1K×5122 350 MiB N/A

Table 1: For different objects, the following data is shown: the number of triangles of the original mesh; resolution and memory

consumption for different techniques.

d)c)b)a)

Figure 11: Comparison of rendering quality for different ray-casting techniques: a) VCP b) signed distance field c) voxel grid

d) SVO. To demonstrate the differences, the resolution was deliberately chosen at a lower level, with the constraint that the

memory consumption is roughly equal for each technique.

Scene VCP Sgn. Dist. Voxel SVO

Thai 1 8.6 8.2 8.0 8.1
Thai 2 11.7 11.1 10.6 11.0
Thai 3 20.4 19.8 19.4 18.2
David 9.1 8.7 8.2 8.9
Sponza 18.3 17.7 18.7 N/A
Raptor (Top) 16.7 16.2 15.9 14.2
Raptor (Bottom) 13.2 12.9 12.7 16.8

Table 2: Comparison of rendering times per frame. Each

value is given in milliseconds. The Thai scenes belong

to Fig. 1 (from left to right). David and Sponza are

(monochrome) renderings of the objects shown in Fig. 10.

The raptor scenes correspond to Fig. 11.

which we attribute to the fact the same geometry is rendered
by a ray-casting technique with roughly the same memory
requirement.

Next, we study the different techniques wrt. the rendering
quality they achieve. The results are shown in Fig. 11 with
close-ups in the bottom row. Our method preserves fine de-
tails better than the signed distances field for the previously
mentioned reasons. Moreover, the use of voxel ray-casting
produces clearly recognizable artifacts due to the underlying
block structure of the voxel grid. The SVO method avoids

such artifacts; however, in generally smoother regions finer
details appear somewhat blurred. It should be noted that the
quality of all techniques can be significantly increased by
using a greater resolution.

6. Conclusion and Future Work

In this work, we have presented a novel rendering technique
built upon a data representation based on Vectors-to-Closest-
Points wrt. the geometry of the scene. By using a regu-
lar grid as the underlying structure, we achieve an efficient
GPU-implementation of ray-casting. Since the grid is orga-
nized in an octree-like fashion, the memory consumption is
minimized. Furthermore, by relying on VCP vectors rather
than employing voxel grids, our technique has the advantage
of avoiding artifacts, which are inherent to all voxel-based
methods. We have also presented an algorithm to generate
VCP hierarchies, i.e., octree-representations of VCP grids,
from polygon meshes in an computationally efficient man-
ner. Our algorithm can be used for arbitrary large meshes
by processing their faces sequentially as we have demon-
strated for the David statue. We have also proposed and im-
plemented several ways to significantly enhance the perfor-
mance of our ray-casting algorithm by exploiting the under-
lying VCP representation. To circumvent the memory re-
strictions on the GPU, we have implemented an algorithm
that dynamically loads only a certain subset of the whole ge-

c© The Eurographics Association 2015.

I. Demir & R. Westermann / Vector-to-Closest-Point Octree

ometry at a finer resolution into GPU memory. This subset is
determined by the analyzing which parts of the scene in the
current viewport lie in close vicinity to the camera. Finally,
we have presented various results that clearly demonstrate
the potential of our approach in the context of interactively
rendering large meshes.

In the future, we plan to implement a DAG structure in-
spired by Sparse Voxel DAGs [KSA13]. By recognizing
identical VCP regions, we expect to significantly lower the
memory requirement, in particular for scenes exhibiting a
high degree of self-similarity. We further aim for rendering
shadows and specular reflections by integrating non-camera
rays into our implementation.

Acknowledgment

This work was supported by the European Union under the
ERC Advanced Grant 291372—SaferVis—Uncertainty Vi-
sualization for Reliable Data Discovery.

References

[AL09] AILA T., LAINE S.: Understanding the efficiency of ray
traversal on gpus. In Proc. High-Performance Graphics 2009

(2009). 1

[AMT∗12] AUER S., MACDONALD C. B., TREIB M., SCHNEI-
DER J., WESTERMANN R.: Real-time fluid effects on surfaces
using the closest point method. Computer Graphics Forum 31, 6
(2012). 2

[BC08] BASTOS T., CELES W.: Gpu-accelerated adaptively
sampled distance fields. In Shape Modeling and Applications,

2008. SMI 2008. IEEE International Conference on (June 2008),
pp. 171–178. 2

[CHCH06] CARR N. A., HOBEROCK J., CRANE K., HART

J. C.: Fast GPU ray tracing of dynamic meshes using geom-
etry images. In Proc. Graphics Interface (2006), pp. 203–209.
1

[CHH02] CARR N. A., HALL J. D., HART J. C.: The
ray engine. In HWWS ’02: Proceedings of the ACM SIG-

GRAPH/EUROGRAPHICS conference on Graphics hardware

(2002), pp. 37–46. 1

[CNLE09] CRASSIN C., NEYRET F., LEFEBVRE S., EISEMANN

E.: Gigavoxels : Ray-guided streaming for efficient and detailed
voxel rendering, feb 2009. to appear. 1

[EVG04] ERNST M., VOGELGSANG C., GREINER G.: Stack
implementation on programmable graphics hardware. In Vision

Modeling and Visualization (2004), pp. 255–262. 1

[FPRJ00] FRISKEN S. F., PERRY R. N., ROCKWOOD A. P.,
JONES T. R.: Adaptively sampled distance fields: A general rep-
resentation of shape for computer graphics. In Proceedings of the

27th Annual Conference on Computer Graphics and Interactive

Techniques (2000), SIGGRAPH ’00, pp. 249–254. 2

[FS05] FOLEY T., SUGERMAN J.: Kd-tree acceleration structures
for a GPU raytracer. In HWWS ’05: Proceedings of the ACM SIG-

GRAPH/EUROGRAPHICS conference on Graphics hardware

(2005), pp. 15–22. 1

[Gib98] GIBSON S. F. F.: Using distance maps for accurate sur-
face representation in sampled volumes. In Proceedings of the

1998 IEEE Symposium on Volume Visualization (1998), VVS
’98, pp. 23–30. 2

[GM05] GOBBETTI E., MARTON F.: Far voxels: a multireso-
lution framework for interactive rendering of huge complex 3d
models on commodity graphics platforms. ACM Transactions on

Graphics 24, 3 (2005), 878–885. 2

[GMIG08] GOBBETTI E., MARTON F., IGLESIAS GUITIÁN

J. A.: A single-pass gpu ray casting framework for interactive
out-of-core rendering of massive volumetric datasets. Vis. Com-

put. 24, 7 (July 2008), 797–806. 1

[GPSS07] GÜNTHER J., POPOV S., SEIDEL H.-P., SLUSALLEK

P.: Realtime ray tracing on GPU with BVH-based packet traver-
sal. In Proceedings of the IEEE/Eurographics Symposium on In-

teractive Ray Tracing 2007 (Sept. 2007), pp. 113–118. 1

[Har96] HART J. C.: Sphere tracing: A geometric method for the
antialiased ray tracing of implicit surfaces. The Visual Computer

12 (1996), 527–545. 2, 5

[Hei05] HEIDRICH W.: Computing the barycentric coordinates
of a projected point. Journal of Graphics, GPU, and Game Tools

10, 3 (2005), 9–12. 4

[HSHH07] HORN D. R., SUGERMAN J., HOUSTON M., HAN-
RAHAN P.: Interactive k-d tree GPU raytracing. In I3D ’07:

Proceedings of the 2007 symposium on Interactive 3D graphics

and games (2007), pp. 167–174. 1

[JBS06] JONES M. W., BAERENTZEN J. A., SRAMEK M.: 3d
distance fields: A survey of techniques and applications. IEEE

Transactions on Visualization and Computer Graphics 12, 4 (July
2006), 581–599. 2

[KSA13] KÄMPE V., SINTORN E., ASSARSSON U.: High reso-
lution sparse voxel dags. ACM Trans. Graph. 32, 4 (July 2013),
101:1–101:13. 2, 8

[KSK∗14] KEINERT B., SCHÄFER H., KORNDÖRFER J.,
GANSE U., STAMMINGER M.: Enhanced Sphere Tracing. pp. 1–
8. 2

[LK10a] LAINE S., KARRAS T.: Efficient sparse voxel octrees.
In Proceedings of the 2010 ACM SIGGRAPH Symposium on In-

teractive 3D Graphics and Games (2010), I3D ’10, pp. 55–63.
1

[LK10b] LAINE S., KARRAS T.: Efficient Sparse Voxel Octrees

– Analysis, Extensions, and Implementation. NVIDIA Technical
Report NVR-2010-001, NVIDIA Corporation, Feb. 2010. 2, 6

[PBMH02] PURCELL T. J., BUCK I., MARK W. R., HANRA-
HAN P.: Ray tracing on programmable graphics hardware. ACM

Transactions on Graphics 21, 3 (July 2002), 703–712. 1

[PGSS07] POPOV S., GÜNTHER J., SEIDEL H.-P., SLUSALLEK

P.: Stackless kd-tree traversal for high performance GPU ray
tracing. Computer Graphics Forum 26, 3 (2007), 415–424. 1

[RCBW12] REICHL F., CHAJDAS M. G., BÜRGER K., WEST-
ERMANN R.: Hybrid Sample-based Surface Rendering. pp. 47–
54. 2

[WSE99] WESTERMANN R., SOMMER O., ERTL T.: Decou-
pling polygon rendering from geometry using rasterization hard-
ware. In Proceedings of the 10th Eurographics Conference on

Rendering (1999), EGWR’99, pp. 45–56. 2

c© The Eurographics Association 2015.

