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A System for High-Resolution
Topology Optimization

Jun Wu, Christian Dick, and Rüdiger Westermann

Abstract—A key requirement in 3D fabrication is to generate objects with individual exterior shapes and their interior being optimized
to application-specific force constraints and low material consumption. Accomplishing this task is challenging on desktop computers,
due to the extreme model resolutions that are required to accurately predict the physical shape properties, requiring memory and
computational capacities going beyond what is currently available. Moreover, fabrication-specific constraints need to be considered to
enable printability. To address these challenges, we present a scalable system for generating 3D objects using topology optimization,
which allows to efficiently evolve the topology of high-resolution solids towards printable and light-weight-high-resistance structures.
To achieve this, the system is equipped with a high-performance GPU solver which can efficiently handle models comprising several
millions of elements. A minimum thickness constraint is built into the optimization process to automatically enforce printability of the
resulting shapes. We further shed light on the question how to incorporate geometric shape constraints, such as symmetry and pattern
repetition, in the optimization process. We analyze the performance of the system and demonstrate its potential by a variety of different
shapes such as interior structures within closed surfaces, exposed support structures, and surface models.

Index Terms—Topology optimization, 3D printing, finite element analysis, multigrid.
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1 INTRODUCTION

With the advent of the 3D printing era, optimizing shapes so
that their printed replicas can resist specific external forces
in their practical use becomes increasingly relevant. Shape
optimization originates from the requirement in engineering
to manufacture shapes which meet the structural needs of
a part while reducing manufacturing or operating costs
associated with volume or weight [1]. With the availabil-
ity of high-resolution low-cost 3D printing devices, even
consumer products like candlesticks, cloth hangers, racks,
multi-leg pots or amulets will be manufactured using indi-
vidual exterior shapes with optimized interior, respecting
arbitrary and often non-local force distributions due to
touch, load, or contact. Some items with a design supporting
specific force conditions are shown in Fig. 1.

The most general approach to perform shape optimiza-
tion is topology optimization [2]. It iteratively simulates the
removal and redistribution of material from a part such
that a given volume reduction is achieved and mechanical
interior loads due to prescribed external forces are mini-
mized. In topology optimization the interior loads are com-
monly measured by the object’s global compliance, yielding
a topology that minimizes the deformation of the structure
when the external forces are applied. Topology optimization
doesn’t impose constraints on the resulting shapes—apart
from optimizing the total internal strain energy—yet it
requires to recompute a strain response in every iteration
of the optimization. Because high-resolution models must
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be used to guarantee stable solutions this causes extremely
long optimization cycles of several hours, strongly limiting
the use of topology optimization for 3D model generation
and printing [3].

In computer graphics shape optimization has also been
performed by assembling the shape from predefined struc-
tures such as trusses [4], deformable solid blocks [5], skin-
frames [6], or honeycomb-like Voronoi cells [7]. It has been
demonstrated by Wang et al. [6] and Lu et al. [7] that the
layout and geometry of such composites can be optimized
with respect to the occurring local stresses, so that under
applied forces a prescribed threshold at which the object
would break is not exceeded. These methods can achieve
expressive interior shapes, yet since they limit the space
of possible shapes they have to release volume constraints
for arbitrary external force settings. Notably, shape opti-
mization under the constraint of maximum stress yields an
optimization problem for which a general solution using
volumetric element-wise parameterizations is still consid-
ered a challenge [8], [9].

1.1 Contribution
We present the design and realization of a scalable computer
system for shape optimization. In response to the mentioned
properties of existing approaches, our first design decision
was to use topology optimization as the underlying method-
ology and, thus, to keep the constraints on the resulting
shapes as low as possible. Yet to be of practical use, this
decision required a new computational approach to enable
the efficient numerical simulation of the interior strain
distribution of extremely high-resolution models, such as
621× 488× 1000 voxel models processed in this work.

Since numerical strain solvers for large problems can
converge slowly and are memory bound, our second de-
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Fig. 1: Shapes generated by optimizing mechanical properties with respect to prescribed loads (blue arrows). The
optimization process is applied to interior structures within closed surfaces (left), exposed support structures (middle),
and surface models (right). The examples are obtained from an initial solid design domain, targeting a prescribed volume
reduction and highest possible stiffness.

sign decision was to develop a high-performance multigrid
solver with deep integration of GPU computing to achieve
good convergence, and to restructure this solver towards
low memory consumption and reduced bandwidth require-
ments. Due to these modifications, the solver can compute
the compliance of models comprising several millions of
elements in a few minutes on a desktop computer. Until
today this performance could only be achieved on high
performance computer systems [10].

Our third design decision was to ensure the printability
of the shapes. To account for this (the printed versions of
some of the shapes we discuss in this work are shown in
Fig. 2), we have integrated an additional fabrication-specific
constraint into the optimization process, i.e., the minimum
thickness of the generated structures. This constraint is
respected simultaneously to the minimization of compliance
in the material update procedure in every iteration of the
optimization process.

In addition to the fabrication-specific and structural op-
timization constraints required to generate printable and
light-weight-high-resistance structures, our fourth design
decision was to integrate additional geometric constraints
enforcing pattern repetition and symmetry into the opti-
mization process. Underlying our decision is the interest to
explore the feasibility of control over the emerging shapes.
Geometric constraints, in general, counteract the shape
evolution towards mechanically optimized structures and
tend to result in less resistant shapes, yet we believe it is
nevertheless interesting to explore which compromises can
be achieved.

By using computational efficiency in combination with
additional constraints on the optimized shapes, our system
allows for the generation of printable and mechanically
optimized shapes at high resolution in a short period of
time. We demonstrate this for a variety of shapes such as
interior structures within closed surfaces, exposed support
structures, and surface models.

2 RELATED WORK

Modeling 3D shapes that can be printed and whose printed
replicas satisfy certain requirements arising from their real-

world use is now a central research area in computer graph-
ics. For a survey of some of the techniques falling into this
area let us refer to the work by Bickel and Alexa [11], the
Siggraph Asia course on 3D printing oriented design by Liu
et al. [12], the Siggraph course on computational tools for
3D printing by Umetani et al. [13], and the Dagstuhl report
on computational fabrication by Alexa and co-workers [14].

Stava et al. [3] proposed a system to automatically detect
and correct possible structural deficiencies of 3D printable
objects. Their work is related to ours, because they make
use of a finite-element-based elasticity analysis to compute
a stress field for a given shape under predicted loads.
Following the stress analysis is a set of correction operations
like hollowing, thickening, and strut insertions to prepare
the object for fabrication. Our research is partly motivated
by their insight that post-analysis and -correction could
be alleviated by embedding automatic shape optimization
techniques into the construction process. We also draw
inspiration from the observation that extremely high model
resolutions are required to accurately represent the detail
that can be produced by modern printing devices, raising
the computational requirements so high that the practical
use of shape optimization becomes very cumbersome.

One possible approach to generate optimized shapes
is topology optimization [2]. It iteratively removes and
redistributes material from a part while obtaining minimum
compliance and keeping it lightweight. For an introduction
to the basic principles underlying topology optimization
and the shapes it generates let us refer to the TopOpt App
by Aage et al. [15]. Previous and current developments in
the field are reviewed in [9], [8]. In particular the density-
based solid isotropic material with penalization approach
(SIMP) [16] and the (bidirectional) evolutionary structural
optimization approach (ESO) [17], [18] have widespread
use in engineering. Both methods employ an element-wise
parametrization over a regular voxel domain, enabling ef-
ficient material simulation and update routines. We have
integrated both approaches into our system to exploit their
individual characteristics, i.e., superior convergence of SIMP
and stable handling of distributed external forces of BESO.
A different approach to topology optimization uses level-set
parameterizations to simulate the evolution of the structure
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Fig. 2: The printed replicas of some objects that were generated by our system.

boundary by transport of a level set function [19], [20].
This approach is flexible in handling arbitrary domains and
smooth material boundaries, yet it requires to connect the
evolution of the material function with the boundary of the
topology contours.

To tackle the computational complexity of topology opti-
mization, a multi-scale embedding of high-resolution design
domains into coarse finite element domains was suggested
in [21]. Furthermore, a number of parallelization strategies
using high-performance GPU and CPU architectures been
proposed [22], [10], [23]. Despite these efforts, however,
it was recently observed that the performance and user
friendliness of topology optimization need to be improved
considerably for graphics applications [24]. This also reflects
in the most recent simulation results, where high-resolution
models (1008 × 336 × 336) were demonstrated on a 1800-
core computer, taking 4.5 hours [10]. Our approach, in
comparison, requires 12 minutes on a single GPU for a
1000 × 621 × 488 model with 14.2 million finite elements,
based on non-trivial optimizations of the numerical simula-
tion process.

Another approach to shape optimization is to use an ob-
jective function so that local material stresses do not exceed
a given threshold. Currently, however, it is still considered
a challenge to directly optimize the maximum stress in
the general volumetric element-wise parameterization. To
obtain approximate solutions, a number of techniques resort
to predefined support structures and try to assemble such
structures in a way that the occurring local stresses do not
exceed the given limit. Such techniques, in general, limit the
space of possible shapes and make it difficult to generate
a layout that is optimal with respect to given physical
constraints. In early work by Smith et al. [4], the mass
and layout of truss structures is optimized for designing
bridges and towers. Whiting et al. [5] analyzed the optimal
arrangement and shape deformation of solid soft blocks for
designing special families of buildings. Wang et al. [6] used
skin-frame structures to reduce the interior volume of a
given shape while maintaining its visual appearance. Given
an input model, an initial frame representation consisting
of nodes connected by struts is generated, and this config-
uration is successively optimized to reduce the radii and
number of struts. Lu et al. [7] introduced honeycomb-like
Voronoi structures to hollow the interior volume of solid

objects while maintaining a high strength-to-weight ratio.
From an initial distribution of Voronoi cells that is guided
by a stress analysis, an adaptive centroidal Voronoi diagram
is computed to partition the interior volume.

In the context of 3D printing, Zhou et al. [25] have
used structural analysis and optimization to determine the
”worst” possible load distribution that will cause high lo-
cal stresses in the object. Chen et al [26] addressed the
design of shapes that deform to a desired pose under a
given force distribution. Skouras et al. [27] introduced a
method for designing actuated deformable characters by
optimizing their internal material composition. Umetani
and Schmidt [28] optimized the orientation of the 3D printed
shapes to further increase stability. Panetta et al. [29] and
Schumacher et al. [30] optimized microstructures for desired
elastic behaviors. Pérez et al. [31] optimized rod meshes to
match prescribed poses under specific boundary conditions.
Dumas et al. [32] optimized shapes resulting from texture
synthesis by using stress analysis and including additional
support structures to release high stresses potentially caus-
ing fracture. Hu et al. [33] proposed to optimize surface
meshes by deformation to create self-supporting shapes
with improved stability. Internal material layout has been
investigated for the design of self-balancing shapes [34]
and spinnable objects [35]. Musialski et al. [36] proposed
to control mass properties by optimizing the offset surface.
Physics-based analysis and optimization has also been stud-
ied in computer graphics for shape design in the context of
other types of computational fabrication [37], [38], [39].

3 SYSTEM OVERVIEW

The basic operations performed by our system during topol-
ogy optimization, as well as the intermediate shapes it
generates, are illustrated in Fig. 3.

Our system takes as input any closed polygonal surface.
Via an interactive interface, the user can specify the concrete
boundary conditions to be considered in the optimization
process, i.e., the location, direction, and strength of the
external forces acting on the object. Therefore, the user
picks a surface point, orients a vector glyph according to
the direction from which the force should be acting on
this point, and specifies a fall-off radius indicating how
the point force is spread (via a Gaussian kernel) across
the surface. Then, the user specifies the force strength in
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Fig. 3: Overview of the basic system functions and the intermediate shapes the system generates.

units of Newton, and a global force field is reconstructed
by a linear interpolation of all local force contributions.
The user also specifies the locations where the object is
fixed, by selecting the respective surface vertices. Some
typical boundary conditions are automatically generated,
for instance, a uniformly distributed force field acting on
each surface patch along its inward-pointing normal, and
the fixation of the bottom zone of an object.

Then, the system computes a conservative surface
voxelization—with a user-selected resolution—to determine
all voxels lying in the interior of the surface. Voxelization is
performed on the GPU via the CUDA parallel programming
API using the method proposed by Schwarz et al [40], [41].
The voxelized model is employed as a discretization of the
elasticity problem. Following previous works [3], [7], we
consider a linear elastic model and assume the material
is isotropic and homogeneous. To this end, all voxels are
initialized with the same Young’s modulus and Poisson’s
ratio.

The voxel model is then optimized using topology op-
timization as described in Sec. 4. The objective is to find
an optimized shape such that the mechanical stiffness is as
high as possible, under the constraint of a given volume
budget specified by the user. In each iteration of the op-
timization procedure, a linear elasticity solver (see Sec. 5)
is used to compute the internal stress distribution. Using
this distribution, material update, i.e., changing voxels from
solid to void and vice versa, is performed so that the total
strain is reduced. A sequence of shapes generated during
topology optimization is shown in Fig. 3. Additional control
rules can be used to balance between mechanical soundness
and printability on the one hand, and expressiveness on the
other hand.

Once the prescribed volume loss is achieved and the op-
timization has been converged, the final shape—represented
by a voxel model—is output. The voxel model can either be
viewed via direct volume rendering to inspect the interior
structures, or the boundary surface between solid and void
voxels is extracted via the Marching Cube algorithm [42]
and further smoothed via Taubin smoothing [43] to reduce
staircase artifacts resulting from the uniform voxel structure.

In the following, we describe and discuss each system
operation in detail, and we show in a number of examples
the results they produce.

4 TOPOLOGY OPTIMIZATION

4.1 Problem Formulation

Topology optimization is based on a discrete formulation
of an elastic model to minimize the compliance of a shape
under the constraint of an exerting force and a prescribed
material consumption [16]. The incorporation of additional
fabrication- and geometry-specific constraints will be dis-
cussed in Sec. 6.

Given the domain Ω that is covered by an initial part, the
material distribution is represented by a real-valued design
variable ρ(x) ∈ [0, 1], x ∈ Ω, representing material points
continuously varying between solid (ρ(x) = 1) and void
(ρ(x) = 0). The object’s compliance c(ρ) is measured in
terms of the internal strain energy, by summing the energy
over all material points.

To formulate the compliance minimization problem in
terms of a discrete set of design variables ρe, we use a
hexahedral finite element discretization of a linear elastic
material on a uniform Cartesian grid:

minimize
ρ

c(ρ) =
1

2
uTK(ρ)u, (1)

subject to K(ρ)u = f, (2)

V (ρ) =
∑
e

ρe ≤ V ∗, (3)

ρe ∈ [0, 1],∀e. (4)

We assemble the stiffness matrix K from element stiffness
matrices Ke =

∫
Ωe
BTDB dx, where Ωe is the domain

of the finite element, B is the element strain matrix, and
D is the linear material law. The displacement vector u
is calculated from the equilibrium equation Eq. 2, which
describes the static state of the object under the given
external force f . The volume constraint Eq. 3 restricts the
material consumption to a desired threshold V ∗.

To avoid singularities of the global stiffness matrix K ,
Eq. 4 is relaxed by prescribing a non-zero constant ρmin
(e.g., ρmin = 0.001) to represent void material. Material
properties (i.e., Young’s modulus) are expressed using the
power-law relationship, i.e., Ee = (ρe)

pE0, where p is a
penalization parameter (typically p = 3), and E0 is the
Young’s modulus of the solid (ρe = 1) material. This
formulation is known as the Solid Isotropic Material with
Penalization (SIMP) model [16], and the design variable ρ is
analogously viewed as material density.
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(a) Concentrated force (b) Distributed forces (c) Concentrated force + distributed forces

Fig. 4: (a) Optimized structure obtained via topology optimization, i.e., minimizing the compliance of the structure
under the prescribed boundary forces while reducing the volume of the initial solid by 60%. (b) Shape optimization
considering touch/grasp interaction at arbitrary locations via uniformly distributed forces. (c) Optimization with respect
to concentrated work-condition forces and considering arbitrary touch/grasp interaction. In all images, orange and blue
vector icons indicate concentrated and uniformly distributed forces, respectively, while the orange lines indicate the fixation
regions.

4.2 Optimization for Printed Objects

Depending on the use case, external forces from different
sources and with different distributions will be exerting on
the printed object. As illustrated in Fig. 4, our system consid-
ers two different types of forces: Concentrated and distributed
forces. Concentrated forces are typically considered in en-
gineering applications to design shapes which are resistant
to permanent or recurring concentrated loads. Such forces
are applied to a local area on the object’s surface in its work
condition, e.g., forces applied to cloth hangers and brackets.
Distributed forces are applied during object fabrication and
transportation, as well as user interaction with the object in
its real-world use. For instance, the user may touch or grasp
the object at an arbitrary location. Distributed forces are
assumed to act uniformly on the surface along the inward-
pointing normal.

Given the external forces, the solution of the topology
optimization problem is obtained iteratively. In each itera-
tion the following computational steps are performed:

1) Solving the elasticity equation Eq. 2,
2) objective and sensitivity analysis, and
3) design update.

In the following we will briefly review steps (2) and (3),
before we present the new computational approach for
solving the linear system of equations in step (1).

4.2.1 Objective and sensitivity analysis
Once the displacement vector u for the current shape is
computed via a finite element analysis in step (1), the system
evaluates the objective function Eq. 1 under the constraint
Eq. 3. Therefore, the derivatives of the total strain energy c
and the total volume V with respect to the design variable
ρe are computed as

∂c

∂ρe
= −p

2
(ρe)

p−1uTeK
0ue (5)

and
∂V

∂ρe
= 1. (6)

To suggest the density updates in the following design
update procedure, the impact of the allocated per-element
density on the change of the strain energy needs to be

quantified. It is common to measure this impact via the
sensitivity of the strain energy to the change of an element’s
volume as

Ge =
−∂c/∂ρe
∂V /∂ρe

. (7)

A large per-element value indicates that the same amount
of volume (represented by the density) allocated at this
element has a high impact on the change of the strain energy.

4.2.2 Design update
To determine the density updates in every iteration, the
effect of these updates is estimated from the elements’ sensi-
tivities. In particular, if an element’s sensitivity is relatively
small, its density can safely be reduced because this does not
increase the total strain energy significantly. On the other
hand, if the sensitivity is relatively large, a density increase
should be favored because this decreases the total strain
energy remarkably. This leads to the SIMP updating scheme
for the intermediate values:

ρnewe = Clamp(Clamp((Ge/Ḡ)ηρ, ρ−∆ρ, ρ+ ∆ρ), ρmin, 1.0),
(8)

where ∆ρ is a positive move-limit (e.g., ∆ρ = 0.2), η is a
numerical damping coefficient (typically η = 1

2 ), and Ḡ is
the sensitivity threshold such that after updating all densi-
ties the volume constraint at the current iteration is satisfied,
i.e., V (ρ) < V i, where V i denotes the desired volume at the
i-th iteration (see below). Ḡ is found via recursive bi-section
of the sensitivity interval until the selected value leads to
the prescribed volume decrease.

For optimizing shapes under concentrated forces, the
continuous SIMP updating scheme has good conver-
gence and, via the penalization parameter p, the densi-
ties can be steered towards a binary design, as shown in
Fig. 5 (left). However, when distributed forces are simulated
(Fig. 5 (right)), our experiments show that the continuous
updating scheme does not lead to a stable binary solid-
void design, since the material sensitivities are very simi-
lar throughout the design domain. Thus, we constrain the
design update to enforce a binary design via the BESO
updating scheme:

ρnewe =

{
ρmin if Ge < Ḡ,
1.0 otherwise.

(9)
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Fig. 5: The ratio of the number of solid elements over
the number of total elements in the optimization process.
Under concentrated forces (left) SIMP converges to a binary
design, while under distributed forces (right) SIMP requires
a significantly larger number of iterations. The prescribed
ratio is indicated by the dashed line.

To improve the convergence of the discrete evolution pro-
cess, a stabilization is performed by averaging the sensitiv-
ity values with the values in the previous iteration [18].

In practice, starting from a solid object (i.e., ρe = 1,∀e),
the volume is gradually decreased by a small amount in
every iteration, i.e.,

V i = max((1.0− α)V i−1, V ∗), (10)

where α is the volume reduction rate. The effect of the
volume reduction rate on the rate of change of the volume
and the compliance is shown in Fig. 6. It can be observed
that the optimization process has two phases: First, the
volume (top) is gradually reduced to a prescribed volume,
with the speed depending on α. In this phase, as the volume
is reducing, the compliance (bottom) increases. Once the
target volume is reached, it doesn’t change any further, but
material is redistributed to find the lowest possible compli-
ance. This second phase is possible because both updating
schemes Eq. 8 and Eq. 9 are bi-directional and allow existing
structures to be replaced. With a smaller α, in the first phase
the volume decreases slower and the overshoot above the
final compliance is smaller. In our examples we choose
α between 1% ∼ 5%, and the optimization process was
terminated if a) the targeted volume was reached and b)
the change in compliance compared to the last iteration was
below 0.5%, as indicated by a ’+’ sign in the curves.

Fig. 4 shows some 2D results of topology optimization
using the described process with concentrated and dis-
tributed force constraints, and using both simultaneously.
The structures were generated by prescribing different force
fields on the outer object boundary, and fixing the material
at certain locations. 3D examples are shown in Fig. 15.

5 A MEMORY-EFFICIENT MULTIGRID SOLVER

The performance bottleneck in topology optimization is
solving the static equilibrium equation (Eq. 2) to obtain the
strain energy. It involves assembling and solving a large,
sparse linear system of equations Au = b, which takes up
to 85% of the processing time. Current topology optimiza-
tion approaches mainly resort to conjugate gradient (CG)
schemes to solve this system, yet it is well known that
especially for high model resolutions the convergence of CG
solvers can be very slow.

To achieve improved convergence rates when simulating
linear elastic material, in a number of previous works the
computational efficiency of geometric multigrid solvers was

Fig. 6: The volume (top) and the compliance (bottom)
behavior in the optimization process.

exploited [44], [45], [46]. For a thorough introduction to the
basic principles underlying multigrid methods in elastic-
ity simulations let us refer to the tutorial by Briggs [47].
In our work we use the geometric multigrid solver as
preconditioner for a conjugate gradient solver. Geometric
multigrid methods combine a hierarchy of coarser grids
and relaxation schemes (smoothers) to restrict a fine-grid
residual (which remains after smoothing) to the next coarser
grid and computing a correction term on this grid (which is
then interpolated to the fine grid) by applying this principle
recursively. This leads to a basic grid traversal scheme
referred to as V-cycle, which is outlined in Algorithm 1.
Here, A`x` = b` denotes the respective linear system on
level `, with level number ` = 0 corresponding to the finest
level. r` denotes the residual on level `, and R`+1

` and I``+1

denote the restriction and interpolation operator between
levels ` and `+ 1.

Algorithm 1 V-Cycle

1: for ` = 0, . . . , L− 1 do . Go down in the V-cycle
2: if ` > 0 then x` ← 0 end if
3: Relax A`x` ≈ b` . Apply smoother
4: r` ← b` −A`x` . Compute residual
5: b`+1 ← R`+1

` r` . Restrict residual
6: end for
7: Solve ALxL = bL directly . Solve on coarsest level
8: for ` = L− 1, . . . , 0 do . Go up in the V-cycle
9: x` ← x` + I``+1x

`+1 . Interpolate error & correct
10: Relax A`x` ≈ b` . Apply smoother
11: end for

Linear elasticity multigrid solvers for large problems
are memory bound, meaning that they operate close to
the theoretical memory bandwidth and further performance
increases are difficult to achieve. To address this limitation,
Dick et al. [48] proposed a GPU multigrid implementation
which exploits the fast memory interface on such archi-
tectures. In combination with a dedicated parallelization
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scheme and matrix-free data structures, significant perfor-
mance improvements compared to a CPU implementation
were reported.

However, regardless the simulation performance that
can be achieved on the GPU, large model resolutions cor-
responding to tens of millions of finite elements cannot be
handled on such systems due to the limited GPU memory
capacity. To address this limitation, we build on the GPU
multigrid implementation by Dick et al., yet we exploit the
hexahedral finite element discretization in order to assemble
the numerical stencils on-the-fly and to aggressively coarsen
the geometric domain hierarchy that is used by the multi-
grid solver. This enables us to target model resolutions as
large as 621× 488× 1000 on a single GPU.

Starting from a uniform simulation grid, we construct
a coarse grid hierarchy by doubling the cell size with each
coarser level, and creating a cell on the next level iff it covers
at least one cell on the previous level. We employ trilinear
interpolation operators, the restriction operators are the
transpose of the interpolation operators, and the coarse grid
operators are obtained by Galerkin-based coarsening, i.e.,
the coarse grid operators are assembled automatically from
the stencils on the finest grid using variational principles.
We use V-cycles with one pre- and one post-smoothing 8-
color Gauss-Seidel step. We further adopt the index-based
FEM and multigrid formulation proposed by Dick et al.,
which enumerates and accesses finite elements and vertices
via indices rather than storing them in a matrix structure.
This formulation allows for an efficient GPU parallelization
by spawning one CUDA thread for each finite element or
grid vertex, as well as 3 × 3 threads for simultaneously
computing per element matrix coefficients. For solving the
linear equation system on the coarsest level, we found
that utilizing a CPU solver—specifically, we employ the
Cholesky solver from the TAUCS library [49]—is most ef-
ficient, despite of the introduced communication overhead
between CPU and GPU. The reason is that the number of
vertices on the coarsest level is too small to fully occupy the
GPU.

The numerical stencil Av at each vertex v requires 27
3 × 3 matrices, as well as 3-component vectors for the
displacement uv , the right-hand side bv , and the residual rv .
Storing vertex-adjacency information explicitly (rather than
implicitly using a rectangular-shaped grid with a potentially
large number of void vertices) further requires storing for
each vertex the indices of the 27 adjacent vertices of the
stencil, the 27 fine-level vertices that restrict to the consid-
ered vertex, as well as the up to 8 coarse-level vertices the
considered vertex interpolates from. Using double floating
point precision and 32-bit integer indices, this leads in total
to average storage requirements of 2.4 kB per finite element
(2.3 GB per one million finite elements).

5.0.3 On-the-fly Assembly
Our first contribution to reduce the high memory require-
ments is the assembling of the numerical stencils on the
finest level ` = 0 during Gauss-Seidel relaxation and resid-
ual computation on-the-fly, from the 8 incident elements’
matrices. Since the element matrices scale linearly with the
Young’s modulus value, only a single element matrix K0 is
required, which can be stored in fast on-chip memory. Since

the number of GPU registers per thread is very limited, it
is important to perform the computation in such a way that
the use of temporary variables is minimized. We achieve this
by performing the relaxation step on level 0 at each vertex v
according to

S ←
8∑
k=1

Eek
 8∑

m=1
m 6=8−k

K0
[8−k,m]u

vk,m


 , (11)

M ←
8∑
k=1

EekK
0
[8−k,8−k], (12)

and successively for i ∈ {1, 2, 3}:

uvi ←
1

Mii

bvi − Si − 3∑
j=1
j 6=i

Miju
v
j

 . (13)

Here, K0
[ij] denotes the (i, j)-th 3×3-block of the generic el-

ement matrix K0, ek (k = 1, . . . , 8) are the eight incident el-
ements of the considered vertex v, and vk,m (m = 1, . . . , 8),
are the 8 vertices of element ek (each enumeration in Z-
order, x first, z last). S and M are a temporary 3-component
vector and a 3×3-matrix, respectively. Compared to fetching
the assembled stencils from memory, assembling the stencils
on-the-fly roughly doubles the number of FLOPs per vertex
during relaxation, but is about a factor of two faster because
it reduces the memory bandwidth requirements on the GPU.

For the coarser levels ` = 1, 2, . . . , however, assembling
each vertex’s stencil on-the-fly from 8`+1 finest-level matri-
ces would be too costly and it is thus necessary to store these
stencils in GPU memory. Unfortunately, since the stencils on
level 1 still consume about (27 × 9 × 8)/8 = 240 byte with
respect to each finite element on level 0, for very large model
resolutions the memory requirements are still huge.

5.0.4 Non-dyadic Multigrid
To further reduce the memory requirements, we propose a
slightly different coarsening strategy in the realization of a
multigrid V-cycle. To understand the rationale underlying
this approach, let us mention that the physical simulation is
always performed using the elements on the finest multigrid
level, yet the upper part of the multigrid hierarchy serves to
improve the convergence of the numerical solution process.

A fact that has not been considered so far is that the
particular Galerkin-based coarsening scheme we use is not
restricted to a dyadic decimation of the grid resolution.
Instead, the coarsening can be performed using other deci-
mation factors as well. In particular, since this doesn’t affect
the finest level, still the same solution will be obtained, yet
it might reduce the speed of convergence.

In our realization we thus adapt the multigrid operators
so that the transfer is directly performed between the finest
level (level 0), which is assembled on-the-fly, and level 2,
where the stencils are stored. Thus the stencils on level 1
are not required. Conceptually, this means that we coarsen
the finest level by 4:1, and the remaining levels by 2:1. As
a consequence, 73 level-0 vertices restrict to each level-2
vertex, and each level-0 vertex interpolates from up to 8
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Fig. 7: Comparison of the convergence behavior (computing time vs. norm of residual relative to the norm of the right-
hand side) of a multigrid preconditioned conjugate gradient solver (MGPCG) using 4:1 and 2:1 coarsening on the finest
level (in both cases 2:1 coarsening on the remaining levels), and a Jacobi preconditioned CG solver (JPCG). The diagrams
correspond to the first topology optimization design cycle for the roof, hand, and kitten model consisting of 1.2, 4.4, and 8.0
million finite elements, respectively. In the topological optimization process, the solver is stopped when ‖r‖2 ≤ 10−2‖f‖2,
as indicated by the horizontal dashed line.
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Fig. 8: Solver times required in each optimization cycle to
reach a residual norm of ‖r‖2 ≤ 10−2‖f‖2 for the kitten
and Neptune model consisting of 8.0 and 14.2 million finite
elements, respectively. Note that the scale of the vertical
axis is logarithmic. For the Neptune model, a standard 2:1
coarsened multigrid hierarchy exceeds the capacity of the
GPU memory.

level-2 vertices, using trilinear interpolation weights, and
the same weights for restriction. In particular, the restriction
from level ` to `+ ∆` is given by

bvc ←
∑
vf∈V`

‖xvf−2∆`xvc‖∞<2∆`

wvf↔vcrvf (14)

for each coarse-grid vertex vc ∈ V`+∆`, where V`+∆` de-
notes the set of vertices on level `+∆`, and the interpolation
and coarse-grid correction from level `+ ∆` to ` by

uvf ← uvf +
∑

vc∈V`+∆`

‖xvf−2∆`xvc‖∞<2∆`

wvf↔vcuvc , (15)

for each fine-grid vertex vf ∈ V`, using the trilinear inter-
polation weights

wvf↔vc =

3∏
i=1

2∆` − |xvfi − 2∆`xvci |
2∆`

. (16)

It is ∆` = 2 for the restriction and interpolation between
levels 0 and 2, and ∆` = 1 for the restriction and interpo-
lation between levels ` and ` + 1, ` ≥ 2. xv denotes the 3D
integer position of vertex v on the underlying lattice of the
respective level. Note that xvf = 2∆`xvc for a vertex vf on
level ` and a vertex vc on level ` + ∆`, when these vertices
are located at the same spatial position.

As our experiments demonstrate (see Fig. 7, Fig. 8 and
Table 1), the modification of the inter-grid transfer only

slightly decreases the convergence rate, but it significantly
reduces the memory requirements. In combination with the
index-based model representation on the GPU, a drastic
memory reduction can be achieved, enabling an accurate
representation of high resolution models with fine geometric
details.

6 OPTIMIZATION CONSTRAINTS

6.1 Minimum Thickness Control
Additive manufacturing requires a minimum thickness of
the printed shapes. To incorporate this constraint into the
optimization process, Guest [50] suggested to perform a
thickness-dependent projection of the density field ρ. The
projection smooths out the design variable, and it effectively
prevents the occurrence of structures smaller than the pre-
scribed minimum thickness dmin. It is performed prior to
the design update step, so that the update of each element
takes into account the design variables of elements in its
neighborhood. This is achieved by using an auxiliary design
variable φ, from which the density ρe is computed as the
weighted average of φ in close proximity as

ρe =

∑
i∈Se

φiω(xi, xe)∑
i∈Se

ω(xi, xe)
. (17)

Here, xe is the centroid of the considered element, and Se
is the set of elements with the distance ‖xi − xe‖ smaller
than one half of the prescribed allowable thickness dmin. As
weight function we choose the compactly supported radial
spline function [51]

ω(xi, xe) = 1− 6r2 + 8r3 − 3r4, (18)

with r = 2 ‖xi−xe‖
dmin

.
The optimization problem with φ as the design variable

is solved in a similar way to the original problem. In
contrast, however, the derivative of the strain energy and
the volume with respect to the new design variable need to
be considered to obtain a solution to the objective function
Eq. 1. The derivatives of both quantities with respect to φ
are obtained by applying the chain rule, i.e.,

∂c

∂φi
=

∑
e∈Si

∂c

∂ρe

∂ρe
∂φi

, (19)

and
∂V

∂φi
=

∑
e∈Si

∂V

∂ρe

∂ρe
∂φi

. (20)
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Fig. 9: Incorporating the minimum thickness constraint into
the optimization process for the setting in Fig. 4 (c). A larger
minimum thickness is enforced on the right.

Fig. 10: From left to right: Interior shape variants with
increasing minimum thickness. The same external forces are
applied, with prescribed volume reduction of 60%.

Note that since the density ρe only depends on the values
of the design variable φ in close proximity to a considered
element, computing the derivatives requires only a small
number of operations and can be performed very efficiently.

Fig. 9 shows the different shapes that occur when dif-
ferent thickness constraints are considered during topology
optimization, i.e., the optimization process always tries to
optimize the structures under consideration of the currently
allowed thickness. As the allowed thickness increases, the
resulting structures become thicker to better accommodate
mechanical loads, and at the same time the topology is
simplified towards a smaller number of cavities. The same
effects are shown in Fig. 10 for a 3D shape.

6.2 Shape Regulation
Letting the topology of a part evolve solely with respect
to equations Eq. 1 to 4 yields maximum resistance under
the given constraints. On the other hand, there are other
situations where one would like to trade the mechanical op-
timality of the generated shape for an improved appearance
of this shape. In what follows we introduce additional geo-
metric constraints to achieve this, yielding a further increase
of flexibility in shape design. While such focus can reduce
the mechanical optimality, it opens up new possibilities for
shape design beyond classical shape optimization.
Symmetries and pattern repetition The beauty of many
designs results from the regularity of the used patterns,
symmetries, and repetitions. To enforce symmetries and
repetitions, we make use of a domain partitioning strategy
and a mapping from an imaginary design domain to the
partitions. The key idea underlying our approach is to
compute the elasticity problem on the initial domain, i.e.,
for all repeated patterns simultaneously, yet to perform the
same sensitivity update for all corresponding elements in
the sub-domains.

To create the same shape in different domain parts, the
design domain Ω is first partitioned into a number of sub-
domains Ωi. The sub-domains need not to be of equal size,
but it is only required that a parametrization exists to ensure
a one-to-one mapping from an imaginary domain Ω∗ to each

Fig. 11: Topology control with pattern repetition and grada-
tion. Left: A curved cylinder shell serves as design domain.
Middle: The optimized shape when geometric constraints
are not considered. Right: The optimized shape when a
constraint on vertical pattern gradation (3 repetitions of the
same pattern are shown) and on rotational symmetry is
enforced. Both shapes retain a volume ratio of 0.4.

Ωi. The elasticity problem required in the shape optimiza-
tion process is solved on the real design domain Ω, while
the design update is performed in the imaginary domain.
The derivative of the objective function with respect to the
density values in the imaginary design domain is calculated
for each element as

∂c

∂ρ∗e
=

1

N

∑
i

∂c

∂ρie
, (21)

where N is the number of sub-domains, and ρie is the den-
sity of the corresponding element in the i-th sub-domain.
In this way, averaged densities from the sub-domains are
used in the sensitivity update. After updating the densi-
ties in Ω∗, the densities in the sub-domains are updated
accordingly, i.e., ρie = ρ∗e . If the sub-domains have different
sizes, the corresponding values are trilinearly interpolated,
so that the designed shapes are scaled according to the size
of the respective sub-domain. This way, the same binary
material distribution is generated in all sub-domains, and
the elasticity simulation works on a global field comprising
multiple identical copies of the shape.

An example showing the effect of this process is shown
in Fig. 11, where a highly asymmetric force is applied
to the design domain. The domain is divided along the
horizontal into three sub-domains of different sizes, and a
rotational symmetric shape is enforced via the accumulation
of sensitivities as described.

7 RESULTS

In the following, we evaluate the performance of our sys-
tem and provide timings for the most time-consuming
operations. We further demonstrate the shapes that can be
generated by our system, and we analyze the mechanical
properties of some of them. Our experiments were run
on a standard desktop PC equipped with an Intel Xeon
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Fig. 12: The Neptune model was discretized on a 621 × 488 × 1000 grid, with 14.19 million finite elements. Shape
optimization took 12 minutes. The hand model was discretized on a 401×250×178 grid, with 4.39 million finite elements.
Shape optimization took 7 minutes.

Fig. 13: Left: The principle of lightweight structures as
illustrated by Michell [52]. Right: Shape optimization at a
resolution of 800× 8× 500.

X5560 processor running at 2.80 GHz, 8 GB of RAM, and
an NVIDIA Tesla C2070 graphics card with 6 GB memory.
Examples We have used our system to optimize a va-
riety of shapes including interior structures within closed
surfaces, exposed support structures, and surface models.
A minimum thickness of 6 voxels was used in all of our
experiments. Fig. 2 shows some printed objects which were
optimized by our method. The objects are printed with a
consumer-grade printer (Ultimaker 2, which uses fused-
deposition modeling).

Fig. 12 shows practical hangers with prescribed exterior
shape, and an interior design that was optimized to resist
the load of the keys. While the interior structures do not
seem intuitive at first, from a structural mechanics point of
view they are reasonable. For instance, it can be observed
that the head of the Neptune statue and the upper part of
the trident are completely empty, since the forces are not
transmitted to these areas.

Fig. 13 (left) shows the Michell truss [52], a famous
optimal shape design. It is derived analytically in the simple
setting of a supporting point load with a distant base in the
planar domain. At a high-resolution of 800× 8× 500, shape
optimization using the same setting generates a lightweight
structure which matches extremely well with the analytical
solution. It is worth noting here, that in our simulation we
did not constrain the shape to be composed of trusses, yet
the thin elongated structures along the principal stress direc-
tions evolved automatically from the optimization process.

We further used our system to optimize the shape of a

Fig. 14: Variants of optimized internal structures for the
given exterior bunny shape under various external forces.
From left to right, the volume is reduced by a factor of
40%, 50%, 60%, respectively. The forces applied on the back
increase from top to bottom.

complex vase-shaped model shown in Fig. 1. The optimiza-
tion process was started with a curved cylinder shell with
a thickness of 6 simulation elements, and a target volume
reduction of 90%. The model was fixed at the bottom,
and an external force exerting on the top surrounding was
prescribed so that the shape started to twist. Due to the
high volume reduction, a very sparse, truss-like pattern is
obtained.

The first row of Fig. 14 shows the bunny model under
distributed forces exerting on its boundary. From left to
right, with increasing volume reduction, the number of
cavities becomes smaller. The cavities automatically merge
to accommodate different volume constraints. From top
to down, we show the automatically optimized structures
regarding an increasing concentrated force applied to the
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Fig. 15: The kitten model’s interior under various external forces. In the first example, trusses connect the three loading
locations (supporting each other), and connect to the bottom which is fixed on the ground. On its left, a short truss connects
the tail, and through another long truss to the bottom. The retained boundary layer is considered in the elasticity analysis
and sustains forces as well. Isotropic (middle) or more elongated (right) shapes can be generated by using distributed or
concentrated external forces. In all examples a volume reduction of 50% was prescribed. Let us refer to the accompanying
video for a demonstration of the iterative optimization process.

Fig. 16: Variants of optimized roof support structures with different prescribed fixations.

Fig. 17: Variants of disks (left) and spheres (right) under different boundary forces.

bunny’s back. The visible change in shape is attributed to
the fact that the material tends to allocate to support the
increasing force.

Fig. 15 shows the effect of concentrated and distributed
forces on the interior structures of the same 3D exterior
shape. Interestingly, the distributed forces lead to interior
shapes that are very similar to the honeycomb-like struc-
tures generated by Lu et al. [7]. In contrast, however, while
their structures were generated by the particular construc-
tion principle using a Voronoi-guided hollowing strategy,
the structures in our examples arise automatically in a
mechanically optimized way under the influence of the
given force distributions. Moreover, by changing the force
constraints, we can flexibly steer the optimization process
towards the generation of more elongated structures, very
similar to the skin-frame structures used in the work of

Wang et al. [6].
Fig. 16 shows different variants of optimized roof sup-

port structures. In these examples, only the locations of
the trusses on the ground were prescribed, yet the trusses
themselves evolved from a solid initial part under the load
applied on the roof. Artistic support structures like this are
well-recognized in civil engineering, and some of them have
actually being built. For example, in the Qatar National
Convention Center [53].

Finally, Fig. 17 shows surface-like structures that were
optimized to certain external forces. To design the amulet
on the left, uniformly distributed radial forces fi = k(pi−c)
were prescribed on the outer boundary, where k is a scaling
factor, pi is the position of elements on the circumference,
and c is the amulet center. The element at the center is
fixed. The amulet on the right was designed by moving c
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Fig. 18: Comparison of the compliance between a uniform
support structure and optimized structures computed via
shape optimization (see Fig. 15 (right)). The vertical axis
denotes the compliance of a structure over the compliance
of the initial solid object. The smaller the compliance, the
more resistant the shape is. For different amounts of volume
reduction, the optimized structure show stronger resistance.

upwards by the length of one element, slightly enlarging the
downward forces. The sphere design on the left is obtained
by fixing two poles, while tangential forces are applied
at two opposite points on the equator. On the right, the
sphere domain is divided by mutually perpendicular cuts
into eight pieces of the same size. Forces are applied on the
boundary of one piece, and then symmetry constraints are
employed to guarantee the shape repetition in each piece.
Symmetry is explicitly enforced using the method presented
in Sec. 6.2, since otherwise the symmetry breaks due to
numerical errors.
Resistance analysis To evaluate the mechanical properties
of the structures generated by topology optimization, we
compare their compliance to the compliance of a uniform
structure. The uniform structure was obtained from an ini-
tial solid part, by gradually removing material around a set
of uniformly distributed points. The graphs in Fig. 18 com-
pare the compliance of the optimized shape in Fig. 15 (right)
to the uniform support structure for the same kitten model,
and increasing volume reduction. The boundary surface of
a fixed size was maintained in both tests. As can be seen,
the mechanically optimized shape shows a much higher
resistance to the external forces than the uniform support
structure.

In Fig. 19, we compare the compliance-optimized
shapes generated by topology optimization with the stress-
constrained honeycomb structures proposed in the work by
Lu et al. [7]. We use the same models and set the same ma-
terial properties and boundary conditions. In the first row,
it can be seen from the stress distribution in the honeycomb
structures (left) that forces are transmitted from the top,
where external forces are applied, to the bottom, which is
fixed, mostly through the neck and also through the tail.
We prescribed the same amount of material volume and let
topology optimization generate the compliance-optimized
shape. The honeycomb structures exhibit a maximum stress
that is about a factor of 2 larger than the maximum stress
occurring at the same load in the compliance-optimized
structures (middle). Topology optimization distributes the
material to connect the top and the bottom via a straight
structure through the neck, and also to create a truss con-

Fig. 19: Comparison between honeycomb structures (left)
and the structures generated by topology optimiza-
tion (middle and upper right), using the same exterior
shapes. The solid shape (bottom right) serves as a reference
in the experiment using the fertility model.

necting the tail. Even with a lower prescribed material
volume (right), the resulting shape exhibits a smaller max-
imum stress than the honeycomb structures. In the second
row, the comparison is performed using a different model,
again showing lower maximum stresses in the compliance-
optimized structures. A solid shape serves as a reference
with maximum resistance.
Performance In Table 1 we analyze the performance of the
system for various optimization tasks. The second group of
columns shows the complexity of the used simulation mod-
els. The number of elements ranges from 1 to 15 millions,
and even the largest model fits well into the memory of a
single GPU.

The third group lists the target volume reduction, the
number of iterations, and the ratio of the final shape’s
compliance over the initial solid shape’s compliance. The
convergence criterion of the optimization process is that
a) the targeted volume was reached, and b) the change in
compliance between the last iterations (‖ci+ci−1−ci−2−ci−3‖

ci+ci−1
)

is smaller than 0.5%. The convergence criterion in each iter-
ation is the residual reduction to 10−2. The compliance ratio
demonstrates that even after a significant volume reduction,
the compliance does not change too much compared to a
completely solid configuration, especially the Michell opti-
mal truss (Fig. 13). The compliance ratios, except those used
in the comparison (Fig. 19), are measured with ρmin = 0.001
representing void elements.

Finally, the last column of Table 1 summarizes timings
for optimizing the topology of all models. Most models
with millions of finite elements can be simulated within
few minutes, indicating the possibility to even position the
system in the consumer marker for designing customized



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, X 20XX 13

Model Resolution # Elements Mem. [MB] Vol. Red. # Iter. c/c0 FEM [s] OPT [s] Total [s]
Roof 200×121×67 1.22 × 106 123.3 0.9 56 6.14 233.35 32.61 265.96

Michell 800×6×500 2.00 × 106 198.4 0.84 100 1.0009 507.15 67.70 574.85
Cantilever 200×100×100 2.00 × 106 198.4 0.8 50 3.06 113.38 32.25 145.63

Hand 401×250×178 4.39 × 106 579.6 0.6 31 1.36 333.43 87.67 421.10
Kittern 262×238×400 8.00 × 106 962.0 0.6 25 1.27 199.38 63.95 263.33
Bunny 390×302×386 11.79 × 106 1 531.0 0.6 28 1.29 308.26 92.10 400.36

Neptune 621×488×1000 14.19 × 106 4 050.5 0.6 23 1.17 569.83 139.33 709.16

TABLE 1: Performance statistics for different models.

shapes. The total computing time depends largely on the
efficiency of the finite element analysis of elasticity.
Limitations The proposed system for topology optimiza-
tion is stable and fast, yet it doesn’t come without limi-
tations. First, to 3D print the models, additional support
structures are necessary during the printing process. The
support structures might be located in the interior of a
closed cavity and cannot be removed. Secondly, the mechan-
ical analysis is based on the linear theory of elasticity, which
is an idealization of printed objects. Thirdly, due to the non-
convex nature of the structural optimization problem, the
solution is likely to converge to a local minimum, and a
mechanically more sound solution might exist. To alleviate
this problem, sophisticated optimization algorithms such as
the method of moving asymptotes [54] or the continuation
method [2] can be employed. For instance, it has been
reported that these methods can achieve a compliance that
is up to 10% smaller than the compliance achieved via the
standard optimization solver, yet they require a significantly
larger number of optimization cycles [18].

8 CONCLUSION

In this work we have presented the design and performance
of a high-performance system for topology optimization
on desktop computer architectures. The system provides
options to optimize shapes at high computational efficiency,
and to give users more control over the shapes of the
optimization results by including mechanical, fabrication-
and user-specific constraints into the simulation process. We
have shown practical results, including interiors that were
optimized for maximum resistance to external loads, as well
as compelling shapes which demonstrate the potential of
topology optimization for shape design. Our approach can
decrease the typical processing times of topology optimiza-
tion from some hours to few minutes.

In the future we plan to extend on the current approach
in the following ways: First, it is interesting to directly
incorporate an additional constraint to avoid overhangs
and support structures at all. Second, the current topol-
ogy optimization minimizes the global compliance with a
constraint on the volume. Possibilities to directly impose a
constraint on the stress and to minimize the volume would
be an interesting alternative we will further consider in an
extension.

ACKNOWLEDGEMENTS

We thank the reviewers for their constructive suggestions,
Lin Lu and Yuan Wei for providing the comparison data,
Niels Aage and Ole Sigmund for helpful discussions, and
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[35] M. Bächer, E. Whiting, B. Bickel, and O. Sorkine-Hornung,
“Spin-it: Optimizing moment of inertia for spinnable objects,”
ACM Trans. Graph., vol. 33, no. 4, pp. 96:1–96:10, Jul. 2014.

[36] P. Musialski, T. Auzinger, M. Birsak, M. Wimmer, and L. Kobbelt,
“Reduced-order shape optimization using offset surfaces,” ACM
Trans. Graph., vol. 34, no. 4, pp. 102:1–102:9, Jul. 2015.
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“Meshless animation of fracturing solids,” in ACM SIGGRAPH
2005 Papers. New York, NY, USA: ACM, 2005, pp. 957–964.

[52] A. Michell, “LVIII. The limits of economy of material in
frame-structures,” Philosophical Magazine Series 6, vol. 8, no. 47,
pp. 589–597, 1904.
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