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Streamline Variability Plots
for Characterizing the Uncertainty in Vector Field Ensembles

Florian Ferstl, Kai Bürger and Rüdiger Westermann

Fig. 1. From a set of streamlines in an ensemble of vector fields (left), our method generates an abstract visualization of the major
trends in this set (middle). For each trend, a region of high confidence and a representative streamline-median is extracted. The
relative strength of a trend is indicated by the thickness of its median line and by the bar plot on the right. Our method works in 2D
and 3D (right), as well as for particle trajectories in time-dependent fields.

Abstract—We present a new method to visualize from an ensemble of flow fields the statistical properties of streamlines passing
through a selected location. We use principal component analysis to transform the set of streamlines into a low-dimensional Euclidean
space. In this space the streamlines are clustered into major trends, and each cluster is in turn approximated by a multivariate
Gaussian distribution. This yields a probabilistic mixture model for the streamline distribution, from which confidence regions can be
derived in which the streamlines are most likely to reside. This is achieved by transforming the Gaussian random distributions from the
low-dimensional Euclidean space into a streamline distribution that follows the statistical model, and by visualizing confidence regions
in this distribution via iso-contours. We further make use of the principal component representation to introduce a new concept of
streamline-median, based on existing median concepts in multidimensional Euclidean spaces. We demonstrate the potential of our
method in a number of real-world examples, and we compare our results to alternative clustering approaches for particle trajectories
as well as curve boxplots.

Index Terms—Ensemble visualization, uncertainty visualization, flow visualization, streamlines, statistical modeling.

1 INTRODUCTION

Exponentially increasing computing power has led to continuous im-
provements in computational field dynamics over many years, but
nonetheless numerical simulations are sometimes strikingly poor. One
reason is the highly non-linear and often chaotic nature of the gov-
erned physical processes, which makes some situations intrinsically
hard to predict. One great challenge today is to identify the limits of
predictability in different situations and produce the best estimations
that are physically possible, often with only limited knowledge about
the initial conditions and the dynamical laws governing the field’s tem-
poral evolution.

In many scientific fields, the recognition that predictability is lim-
ited has led to a paradigm shift in how predictions of dynamic pro-
cesses are created. Instead of making a single deterministic computa-
tion of the future field state, ensembles of many numerical simulations
are computed—based on a set of possible initial states and random
variations to account for model uncertainty—and predictions take the
form of probabilities of occurrence of specific features derived from
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the simulated fields. For instance, the North American Ensemble Fore-
cast System and the ensemble prediction systems of the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) routinely gener-
ate between 25 and 51 forecast runs.

To analyze the uncertainty that is represented by an ensemble, the
variability of the ensemble members need to be characterized, and the
major trends and outliers in the shape and spatial location of relevant
features need to be determined. A well-known visual analysis tech-
nique for ensembles of features are so-called spaghetti plots, overlaid
plots—typically in 2D—of features like particle trajectories or iso-
contours in individual members of an ensemble field. Especially in
the atmospheric domain, spaghetti plots are one of the most popular
means for variability analysis. Spaghetti plots, on the other hand, can
produce visual clutter when many features overlap, and they cannot
easily convey major trends, outliers, and statistical properties of the
feature distribution. To overcome some of these limitations, Whitaker
et al. [45] and Mirzargar et al. [23] have recently introduced contour
and curve box-plots, respectively, for the visualization of curve-like
features based on the concept of statistical data depth.

Our contribution: Our work extends on previous approaches in
that it introduces a new method to statistically model the variability of
specific features among the ensemble members, so that the probability
of a particular feature situation can be estimated from the ensemble.
We concentrate on the visual analysis of streamlines in 2D and 3D
flow fields, and visualize the statistical properties of streamlines pass-
ing through a selected location. We first transform the feature repre-
sentation into a low-dimensional Euclidean space, in which a distance
metric as well as an ordering of the features along each dimension is
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given. We employ this to derive a statistical model of the distributions
of clusters of similar streamlines in the Euclidean space, and we pro-
pose a method to transform the resulting distributions into confidence
regions—so called lobes—of the streamlines in the spatial domain.
We call the resulting visualizations streamline variability plots. Our
particular contributions are

• the use of principal component analysis (PCA) to convert stream-
lines into a structure preserving Euclidean space (PCA-space),
and the clustering in this space to detect trends and outliers in
the set of streamlines,

• a new concept of streamline-median, which is based on the ex-
isting concept of the (multidimensional) geometric median,

• a non-parametric probabilistic model of the clustered streamline
distributions in PCA-space, and a new approach to transform the
probabilistic model in this space into a streamline distribution in
the spatial domain,

• a visualization method for confidence lobes in 2D and 3D to in-
dicate an estimated range of locations which includes all stream-
lines within a prescribed standard deviation.

In particular we will demonstrate, that this new approach adheres to
the requirements on uncertainty visualization techniques proposed by
Whitaker et al. [45], as it conveys statistical properties of the shapes of
streamlines, provides a qualitative abstract and quantitative statistical
interpretations of streamlines, and reveals major trends and outliers in
the initial data.

We demonstrate the potential of our method in a number of real-
world examples, and we compare our results to alternative line clus-
tering approaches as well as curve boxplots [23]. Moreover, we show
that all involved operations can be computed fast enough to allow for
an interactive exploration of even 3D vector-valued ensembles to iden-
tify the sources and evolution of uncertainty in streamlines.

2 RELATED WORK

Our technique uses streamline clustering and probabilistic streamline
estimation for ensemble visualization, taking into account the similar-
ity and frequency of occurrence of streamlines over multidimensional
intervals. The technique has overlap with techniques in uncertainty
and ensemble visualization, and curve clustering:

Uncertainty and Ensemble Visualization: The visualization of
uncertainty belongs to the top challenges in scientific visualization.
For the most recent survey on the topic let us refer to the book by
Bonneau et al. [3]. In uncertainty visualization one usually assumes a
stochastic uncertainty model, instead of a set of possible data occur-
rences as in ensemble visualization.

To visualize the effect of uncertainty on the position and structure of
relevant features such as iso-contours, previous works have used con-
fidence envelopes [29, 48], surface displacements [14], and made use
of the concept of animation [5, 20]. The concept of numerical con-
dition was introduced to extract level-set features in uncertain scalar
fields [32], and it was further extended to account for correlations in
the data [34, 31], as well as to also consider non-parametric models
for uncertainty [33].

The concepts of stream lines and critical points has been general-
ized to uncertain (Gaussian) vector field topology, in order to segment
the topology by integrating particle density functions [28]. Probabilis-
tic local features, such as critical points, have been extracted from
Gaussian distributed vector fields using Monte Carlo sampling [30].
In a fuzzy topology, the topological decomposition is performed by
growing streamwaves, based on a representation for vector fields
called edge maps [2].

Obermaier and Joy [26] have classified ensemble visualization tech-
niques into feature-based and location-based approaches. The lat-
ter analyze and compare data properties at fixed locations in the do-
main using descriptive statistics. Feature-based approaches analyze

domain-specific features which are first extracted from the individ-
ual ensemble members. The visualization of feature variability in en-
semble fields is often performed via spaghetti plots of selected con-
tour lines or threshold probabilities of 2D fields such as surface wind
speed [35, 46]. Glyphs and confidence ribbons were introduced to
emphasize the Euclidean spread of contour ensembles [40]. Recently,
Whitaker et al. [45] and Mirzargar et al. [23] built upon the ordering
of multivariate data using the concept of statistical band depth to en-
able an improved visualization of the uncertainty in spaghetti plots of
ensembles of curves. Locations in 3D flow fields were clustered based
on the divergence of transport patterns to analyze trends in flow en-
sembles [16].

Curve Clustering: Our work is related to clustering approaches
for curves in 2D and 3D space, which group a set of curves into similar
sub-sets based on a given similarity measure. For a general overview
of clustering techniques let us refer to the overview article by Jain [18].
For the clustering of curves, most often geometric similarity measures
have been employed, for instance, based on Euclidean distances [9,
36], curvature and torsion signatures [47, 21], predicates for stream-
and pathlines based on flow properties along these lines [4], or user-
selected streamline predicates [39]. For a good overview of similarity
measures using geometric distances between curves let us refer to the
comparative study by Zhang et al. [50].

Integral curves in flow fields have been clustered using a two-stage
approach, by first performing a geometry-based coarse grouping of
streamlines, and then clustering in a low-dimensional Euclidean space
comprising streamline properties based on shape and velocity [8]. The
pairwise Hausdorff metric between streamlines has been employed to
project streamlines into an Euclidean space and perform spectral graph
clustering in this space [36]. For curves, Agglomerative Hierarchi-
cal Clustering (AHC) with different cluster proximity measures has
shown to be effective [21, 47]. Different clustering approaches and
similarity measures for fiber tracts in Diffusion Tensor Imaging (DTI)
data have been evaluated [24], among them shared nearest neighbor
clustering and AHC. A geometry-based similarity metric considering
partial intervals for fiber tracts in DTI data has been used in AHC to
cluster such tracts [49]. A reduction technique called Laplacian eigen-
maps has been applied to transform fiber tracks to a low dimensional
Euclidean space [6]. Recently, an evaluation of different clustering
approaches for streamlines using geometry-based similarity measures
has been performed [27].

In some of the previous works, curves have been reduced to low-
dimensional representations, for instance by using single measures of
geometric similarity. This can result in a significant amount of infor-
mation that is lost, and usually the initial data can no longer be recon-
structed from the reduced representation. It is worth noting that our
approach overcomes both of these limitations.

Related to the clustering of integral lines in flow fields are ap-
proaches performing clustering of vector fields based on local coher-
ent regions, e.g., by merging locations which are similar in position
and orientation of the vectors [43], by splitting regions where the dif-
ferences between streamlines in these regions and streamlines in an
approximated flow field are large [15], by using anisotropic diffu-
sion to automatically cluster regions of strong correlation in the flow
data [13], and by clustering trajectories into sets of vector fields [12].
For an overview of approaches for vector field clustering let us also
refer to the survey by Salzbrunn et al. [38].

Mostly related to our approach is the method initially proposed by
Bashir et al. [1], and later evaluated in the report by Zhang et al. [50],
where PCA was used in combination with Euclidean k-means cluster-
ing to group pedestrian trajectories which were extracted from surveil-
lance videos. Our work builds upon this approach, yet we propose a
number of modifications and extensions to better reveal trends and en-
able the construction of probabilities of occurrence of streamlines.

3 OVERVIEW

Our method takes as input a set of n streamlines of m vertices each,
which were generated by starting a particle integration at the same
location in an ensemble of n vector fields (see Fig. 2(a)). We will
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(a) Input (b) PCA + Clustering (c) Confidence Ellipses + Geom. Medians (d) Variability Plot

Fig. 2. Method overview: (a) The initial set of streamlines. (b) PCA transforms lines into an Euclidean space—PCA-space—in which clustering can
be performed. (c) Multivariate normal distributions—represented by confidence ellipses and geometric (cluster) medians—are fitted to the points
in PCA- space. (d) Medians and ellipses are transformed back to the domain space and yield the variability plot of the streamline ensemble.

also show an example where the streamlines are generated by slightly
varying the start position to indicate the effect of these variations on
the streamline distribution. In all of our examples, we use a fix-step
numerical integration scheme for computing the streamlines, and we
parameterize the streamlines via the integration time along the curves.
Our method performs a number of operations on the initial streamline
set, which are illustrated in Fig. 2.

Each trajectory can be seen as a point in a (d ·m)-dimensional vec-
tor space (d is the dimension of the streamline vertices), and this high
dimensionality makes processing methods such as finding similarities
difficult. Therefore, we first reduce the dimensionality in a statistically
optimal way, by projecting the streamlines onto a low-dimensional or-
thogonal subspace that captures as much of the variation of the initial
streamlines as possible. This is illustrated in Fig. 2(b). In a mean-
square sense, the best way to do the projection is PCA, which trans-
forms the streamlines into a simpler representation in an Euclidean
space. We will subsequently call this space the PCA-space.

To perform a streamline PCA, streamlines are linearized into the
rows of a n× (d ·m) matrix. Therefore, all streamlines should have
the same number of vertices. However, this is not always the case, be-
cause streamlines leave the domain early or might terminate in critical
points. Our approach is to fill the missing positions in the matrix by
repeating the last streamline vertex. This vertex repetition doesn’t in-
troduce new information, because the additional vertices are perfectly
correlated, and exactly this can be handled well by PCA. Even though
more advanced possibilities exist, for instance, to continue the stream-
lines with the speed and direction of the last vertex, we have found
that neither of them has a significant impact on the clustering and,
most importantly, on the appearance of the resulting variability plot.

In the PCA-space the streamlines are clustered into major trends
using an appropriate clustering scheme, and for each cluster a multi-
variate normal distribution—represented by a confidence ellipse and
a geometric cluster median in Fig. 2(c)—is fitted to the points. Here,
a confidence ellipse describes the set of points that are closer to the
mean than a given amount of standard deviations.

Conceptually, the statistical distribution of each cluster is now trans-
formed back into the high-dimensional input space, yielding the cor-
responding set of streamlines. This is illustrated in Fig. 2(d), where
the streamlines correspond to the cluster medians, and the lobes cor-
respond to the streamlines that are within a selected range of standard
deviations. Since the operations in PCA-space are performed for each
cluster separately, one lobe and one line are generated for every clus-
ter, giving the final streamline variability plot.

3.1 PCA
PCA is a powerful technique for extracting structure from possibly
high-dimensional data sets. It is performed by solving an Eigenvalue
problem or, alternatively, by computing a singular value decomposi-
tion. PCA is an orthogonal transformation of the coordinate system in
which the initial data is described. It is often the case that in the new

coordinate system a small subset of coordinates is sufficient to account
for most of the structure in the data.

PCA is a standard technique in statistics and many other fields, and
we will only briefly describe the underlying principles here. We will,
however, put special emphasis on the discussion of how the results
of a streamline PCA can be interpreted, and how these results can be
employed for streamline clustering.

In the following discussion, the i-th streamline is denoted si, and
every streamline comprises m vertices. Let us note that, in common
PCA terminology, each streamline corresponds to an observation, and
each vertex corresponds to (multiple) variables. PCA transforms the
n streamlines into an equivalent (n−1)-dimensional representation by
computing their principal component scores, i.e., the scalar values by
which each principal component is weighted to obtain the streamline
as a linear combination of these components.

PCA starts by subtracting from every vertex the mean value of all
vertices. In our application this has the effect that every streamline is
characterized by its offset from the mean streamline s̄ = 1

n ∑i si. Con-
sequently, this leads to the following representation, which we will
refer to as the PCA-space representation of the streamlines:

si = s̄+
n−1

∑
j=1

ci ju j. (1)

The unit vectors u j are the principal components (PC), and the coeffi-
cients ci j are the principal component scores. The scores are sorted in
descending order of importance, such that u1 is the direction in which
the points si have the largest variance, u2 is the direction in which the
points si have the second largest variance, and so on. Because all si
were zero-centered beforehand, we only need up to n−1 basis vectors
to represent all streamlines. An important property of PCA in our ap-
plication is that the PCs form an orthonormal basis of the streamline
space Rd·m. This means that the PCA-space, in which each stream-
line i is uniquely defined by its PC scores ci j, is an Euclidean space
which is equivalent to the original streamline space. I.e., many opera-
tions like clustering based on Euclidean distances give identical results
in this alternative representation. Let us also note here, that through
Eq. (1) it is possible to transform a point in the PCA-space into the cor-
responding representation in the streamline space. We will make use
of this to generate streamline variability plots from a statistical model
of the scores in the PCA-space.

In many situations where PCA is used for a statistical data analy-
sis, only the PC scores are investigated and visualized. On the other
hand, the PCs themselves are often helpful to analyze specific phys-
ical features in multiple spatially correlated physical fields. For in-
stance, in fluid mechanic, where PCA is known as Proper Orthogonal
Decomposition (POD) [19], periodic patterns can be extracted from
turbulent flows as principal components of the time-varying velocity
field [22, 25]. In meteorology, where PCA is known under the term
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1 PC (0.7468) 2 PCs (0.9564) 3 PCs (0.9801) 4 PCs (0.9915) 6 PCs (0.9984) 8 PCs (0.9997)

Fig. 3. Reconstruction quality: The original streamlines are shown in gray, reconstructions using an increasing numbers r of PCs are shown as
dashed, red lines. The corresponding amount of explained variance ex(r) is given in parenthesis (see Eq. (2)).

Empirical Orthogonal Functions (EOF) [46], PCA is used to extract
atmospheric phenomena as principal components of scalar field en-
sembles like geopotential height and temperature [44].

The mentioned applications exploit the property of PCA to capture
the dominant low-frequency structures in the first PCs, while random
fluctuations are expressed in the remaining modes. This effect can
also be observed when decomposing streamlines into their PCs, since
streamlines can also be considered a type of spatially correlated data.
Once a PCA of streamlines has been computed, the streamline rep-
resentation can be reduced to an optimal low-rank approximation, by
using only the dominant PCs. This is demonstrated in Fig. 4, where
the first three PCs of a set of 2D streamlines are shown. It can be ob-
served that the first PCs correspond to streamlines exhibiting very low
frequency variations. Furthermore, the third PC crosses over the mean
line while the first two PCs do not, which indicates increasing spatial
frequency in the higher modes. If more PCs were shown, ever more
oscillations around the mean line could be observed.

s̄

s̄+ σ1u1

s̄− σ1u1

s̄+ σ2u2

s̄− σ2u2

s̄+ σ3u3

s̄− σ3u3

1st PC2nd PC

Fig. 4. Mean curve s̄ (red) and first three principal components (PC)
u1-u3 of the 2D streamlines in gray. PCs have to be considered as
offsets to the means curve, so s̄±σ ju j are shown instead of u j. Scaling
factors σ j are the standard deviations of the corresponding PC scores
ci j, which emphasize their relative importance. The first PC captures the
general deviation of the streamlines in top-left/bottom-right direction, the
second PC captures the less important deviation in bottom-left/top-right
direction (two-sided arrows). The major trends in the set of streamlines
are well represented by the first two PCs.

To obtain an optimal low-rank approximation, one just has to re-
strict the sum in Eq. (1) to the first r components. It can be shown, that
the resulting approximations are optimal in a least squares sense, i.e.,

they minimize the reconstruction error

n

∑
i=1

∥∥∥∥∥
(

s̄+
r

∑
j=1

ci ju j

)
− si

∥∥∥∥∥
2

.

This leaves the question how to determine the appropriate number of
components. We use one of the most common cutoff-criteria, by look-
ing at the amount of explained variance that is represented by different
choices of r. Let σ2

j = var(c1 j, . . . ,cn j) denote the variance of the j-th
PC (notice that the corresponding mean values are all zero). Then the
amount of explained variance by the first r components is

ex(r) =
r

∑
j=1

σ
2
j

/n−1

∑
j=1

σ
2
j . (2)

For a given explained variance threshold τ , the number of compo-
nents is chosen as the smallest r for which ex(r) is greater or equal
than τ . Since we perform two different tasks in rank-reduced spaces,
which require different degrees of precision, we also use two different
thresholds in our approach. On the one hand, for clustering (see Sec-
tion 3.2), we have found τ1 = 0.99 to be sufficient. For generating the
final plots via splatting of streamlines into a discrete grid (see Section
4), on the other hand, slightly more detail is often required, and we use
τ2 = 0.999. In several of our experiments this leads to only three or
four PCs that had to be considered, and we never used more than eight
PCs in any of our experiments. The resulting approximation errors are
depicted in Fig. 3.

3.2 Clustering
Once the streamlines have been transformed into the reduced PCA-
space of rank r1, each streamline is represented by a tuple ci =
(ci1, . . . ,cir1), i.e., by a (r1)-dimensional point in PCA-space. Our
goal now is to derive a statistical model of the streamline distribution
in this space. We could model our multidimensional data via a single
multivariate normal (MVN) distribution, yet often the data includes
significantly different trends, showing up as multiple distinct clusters
in the PCA-space. A common remedy to this problem is to use a Gaus-
sian mixture model (GMM), which represents the multi-dimensional
Probability Density Function (PDF) by a weighted sum of multiple
MVN distributions. The Gaussian mixture model is parameterized by
the mean vectors, covariance matrices, and mixture weights from all
component densities.

A straight forward approach to find a GMM for our data is to fit a
given number of MVN distributions to the data using the Expectation-
Maximization (EM) algorithm. The EM algorithm can be interpreted
as a more general version of the k-means clustering algorithm, which
can be applied to MVN distributions. In our application, however, the
EM algorithm leads to several problems:

i. Each fitted GMM corresponds to a clustering, yet this clustering
often fails to represent the observed trends. Instead, the clusters
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PCA + AHC MCPD + AHC Hausdorff + AHC PCA + GMM-EM PCA + k-means

Fig. 5. Comparison of different clustering approaches using different sets of 2D streamlines. From left to right: PCA + AHC, our hierarchical
clustering based on the Euclidean distances in rank-reduced PCA-space. MCPD + AHC, hierarchical clustering using the mean-of-closest-point
distance [10]. Hausdorff + AHC, hierarchical clustering using the Hausdorff distance. PCA + GMM-EM, clustering via the EM algorithm for Gaussian
mixture models using the Euclidean distances in rank-reduced PCA-space. PCA + k-means, k-means clustering using the Euclidean distances
in rank-reduced PCA-space. Average linkage was used in all AHC methods. For the examples in each row, the same number of clusters was
prescribed.

often overlap in PCA-space and do not show the expected degree
of separation. In addition, the multi-dimensional confidence el-
lipses corresponding to the clusters tend to span empty regions in
the PCA-space. If we were to draw new points from the resulting
PDF, some points would correspond to streamlines which have
low similarity to existing ones.

ii. As mentioned earlier, when visualizing ensembles one often only
has few streamlines. This number is very small so that many of
the determined clusters do not fully span the reduced PCA-space.
As a consequence, the EM algorithm becomes numerically un-
stable and requires a large regularization parameter.

iii. The need to specify the number of clusters k beforehand requires
to run the EM algorithm repeatedly and then to choose the num-
ber of clusters based on a score like, e.g., the Akaike informa-
tion criterion (AIC). Moreover, due to the random nature of the
method, it may have to be run several times for each k. Both
properties in combination can quickly let the clustering become
a performance bottleneck.

In account of these reasons we decided to separate the clustering from
the procedure that fits the MVN distributions: We first cluster the
streamlines, and then fit an MVN distribution to each cluster. Note
that, strictly speaking, we are not using a full GMM, because we do
not compute weights for the individual components. Instead, we visu-
alize the MVN distribution of each cluster individually and combine
this with a separate visualization of the cluster sizes, i.e., via the thick-
ness of the median lines and the bar plot.

For the clustering to work in combination with the MVN distri-
butions, we have to ensure that it favors compact, elliptical clusters.
Since the PCA-space is an Euclidean space, we can draw upon many
existing clustering approaches. We have performed several exper-

iments with different standard clustering algorithms, and based on
the results we ultimately favor Agglomerative Hierarchical Clustering
(AHC) in PCA-space.

AHC creates an unbalanced, binary clustering tree in a bottom-up
manner. Starting with each point in a separate cluster (with cardi-
nality one), pairs of clusters are merged successively until all points
are contained in one large cluster. The pair of clusters that is com-
bined in each step is determined by a similarity criterion, the so-called
linkage criterion, as well as a distance metric, which defines the pair-
wise distances between raw data points. As distance metric we use the
Euclidean distances in the reduced PCA-space. Common choices for
the linkage criterion include single-linkage, complete-linkage, average
linking [41] and Ward’s Method [17]. We observed that single-linkage
and complete-linkage, favoring connectedness and sphericalness, re-
spectively, yield clusters which do not reveal the major trends in the
streamline distribution effectively. Instead, we found average linking,
which merges clusters based on their average point-to-point distances,
to work best in our examples. Ward’s method, which tries to minimize
the total within-cluster variance, often delivers similar results. Specifi-
cally, AHC in combination with average-linkage yields clusters which
very well satisfy our compactness requirement.

The clustering tree resulting from AHC can be split easily into the
desired number of clusters (k), and thus allows for an intuitive adaption
of the number of clusters. When the number of clusters is changed,
the resulting new trend distribution changes in a very coherent and
intuitive way: The clusters split and merge recursively according to
the binary clustering tree, instead of re-forming completely every time.
This effect is demonstrated in Fig. 6.

In general, we target a rather small number of less than five clusters,
because we are looking for the major trends in the streamlines and no-
ticed that the visualizations can become populated when more clusters
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Fig. 6. Cluster refinement: For the set of streamlines in the first image, the number of clusters is incrementally increased from 2 to 4. The L-method
initially guesses 3 clusters.

are used. We found that in most of our cases the L-Method [37] pro-
vides a very good initial guess for k, where we let the method choose
k ∈ {2, ...,10}. Unfortunately, due to the very low number of clusters,
no automatic criterion can give perfect guesses in all possible cases.
Therefore, in some cases we have to manually adjust k by ±1 to get
the most intuitive clustering.

In Fig. 5, we compare our clustering results with those obtained by
alternative clustering approaches for streamlines or other types of line
data. The comparison indicates that k-means clustering and the EM
algorithm for GMMs (both performed in the Euclidean PCA-space)
often prefer equally sized clusters over separating trends of diverging
streamline sets. On the other hand, AHC based on mean-of-closest-
point-distances [10] and Hausdorff distances often tends to misclas-
sify individual streamlines. Our clustering seems to best extract the
dominant trends in the data, and it is able to robustly handle complex
situations. This can be seen, for instance, in the top row of Fig. 5,
where our approach is the only one that can separate the small set of
highly curved streamlines colored in green in the left image. It is also
important to note that, irrespectively of the quality of the individual
clustering approaches, most of them are not suited for the construc-
tion of variability plots as proposed in our work. As we will explain
next, these plots are constructed by using the multivariate distribution
of streamlines in some (rank-reduced) space, i.e., the PCA-space, ex-
cluding those clustering approaches not working in such a space.

4 VARIABILITY PLOTS

Up to this point, the set of streamlines has been partitioned in PCA-
space, and the distribution of each cluster has been approximated with
an MVN distribution. Then, our principle idea is to transform a geo-
metric representation of these distributions in the PCA-space back to
the domain space in which the original streamlines reside, in order to
obtain for each cluster a confidence lobe illustrating the variance and
spread of the respective trend. This transformation is possible through
Eq. (1), which tells us that an arbitrary point in the (rank-reduced)
PCA-space can be transformed to a corresponding streamline. If the
point was taken in agreement with one of the MWN distributions,
then the resulting streamline follows the statistics of the correspond-
ing cluster, even though no such streamline existed in the initial set.
By this, we can, in principle, generate arbitrary many new streamlines
whose shapes follow the statistical properties encoded by the different
clusters in PCA-space.

In the generation of these streamlines a certain approximation error
is introduced, because we truncate the PCs used for reconstruction (c.f.
Fig. 3), yet it is important to recall that this error is bounded through
Eq. (2) and restricted to the high-frequency details that are captured by
the higher PCs. This means that all major trends will be captured if we
use a “sufficient” number of PCs. On the other hand, the restriction to
the first r2 PCs yields new streamlines exhibiting a certain amount of
smoothness, providing a visually appealing cluster representation.

From a statistical point of view, the number of samples that are used
to fit the MVN distributions—i.e., the cardinality of the clusters—is
relatively small compared to the number of dimensions (r2) of the
rank-reduced PCA-space. Therefore, small variations in the samples
can significantly change the geometric representations of the MVN
distributions in PCA-space. On the other hand, all of our experiments
have shown that these changes have only a minor effect on the geom-
etry of the corresponding lobes.

4.1 Confidence Lobes
To represent the MVN distributions in PCA-space, we use confidence
ellipses (or contours). Let µk and Σk denote the mean and covariance
matrix of cluster k, respectively. Then the confidence ellipses are de-
fined as (filled) iso-contours of the so-called Mahalanobis distance

dk =
√

(x−µk)Σ
−1
k (x−µk),

where x denotes an arbitrary point in Rr2 . Intuitively, the Mahalanobis
distance dk indicates for the point x how many standard deviations it is
away from µk. A confidence level, i.e., a level-set in the distance field,
is specified via an iso-value in numbers of standard deviation.

In principle, it would be very appealing to do so by specifying a
quantile, for instance, so that dk ≤α corresponds to the 50% innermost
points. Unfortunately, this leads to a very counter-intuitive behavior of
the generated lobes, because it makes the threshold α sensitive to the
dimension r2 of the reduced PCA-space. In particular, increasing r2 to
make the line approximation more accurate causes the corresponding
confidence regions to grow, since the threshold α has to be increased 1.
Therefore, we threshold dk against a fixed α , which can be chosen and
varied when creating the confidence lobes.

α = 1.0 α = 1.5

α = 2.0 α = 2.5

Fig. 7. Effect of the Mahalanobis threshold α on the confidence lobes:
The larger α, the larger the lobes become. For α >= 2.0 the lobes con-
tain almost all associated lines but also tend to “overshoot”. Orange and
green trends contain single outliers, and hence no lobes are generated.

If we create a lobe with, e.g., α = 1.0, it will cover the range of loca-
tions containing all streamlines that are within one standard deviation
of each trend. While small thresholds like α = 1.0 lead to very tight
confidence lobes, higher thresholds with α ≥ 2.0 lead to convex-hull
like shapes which sometimes “overshoot”. This effect is demonstrated
in Fig. 7, where for a set of streamlines the confidence lobes for dif-
ferent thresholds α are shown. We use a default value of α = 1.5 in
all of our experiments, if not stated otherwise.

1The Mahalanobis distance dk is distributed with a χ2
K -distribution, which

changes depending on the degrees of freedom K. Here, K corresponds to r2.
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Fig. 8. Variability plot of pathlines in a time-varying 3D ensemble comprising 51 members. Left: Spaghetti plot. Middle: Pathlines colored by cluster
membership, and confidence lobes. Right: Variability plot with confidence lobes and pathline-medians.

Fig. 9. Variability plots of 200 streamlines with jittered positions in an ensemble of 50 steady 3D flows around an obstacle. Left: A spaghetti plot of
the streamlines. Middle-Right: Variability plots are shown, where the number of clusters increases incrementally from 2 to 4. The initial guess for
the number of clusters is 3.

To transform a confidence ellipse in PCA-space to its correspond-
ing domain space representation, we must determine the locations in
domain space which are covered by at least one streamline that cor-
responds to a point in the interior of this ellipse in PCA-space. Since
determining this is not directly possible for a given point in domain
space, we follow a different approach using Monte-Carlo sampling
and line drawing.

We draw random points uniformly from the confidence ellipse using
a random number parameterized with the corresponding µk and Σk,
and compute their streamline representations using Eq. (1). Each of
these streamlines is splatted additively into the cells of a uniform grid
discretizing the domain space. Note that the original streamlines are
not used in this process. In this way we build a visitation map as
proposed by Buerger et al. [7], and we then extract the confidence lobe
using the smallest iso-value that still allows for smooth iso-contours.

Building the visitation map is performed via rasterization of the
streamline vertices, which are treated as particles, or splat-kernels, of
a certain diameter. This approach yields sufficient results in our ap-
plication, and it is both faster and easier to implement than accurate
line-splats using point-to-line distances. We use a small bi-/tri-linear
splat-kernel with a support of 4 and 8 texels in 2D and 3D, respec-
tively, and use a second pass after splatting to smooth the visitation
map in order to increase the quality of the resulting iso-contours. We
use visitation maps—realized as 2D and 3D accumulation textures—
with a resolution of roughly 200 texels along the longest dimension. In
2D, we use a fixed number of 1000 streamlines to generate the visita-
tion map for each cluster, and we draw for each lobe the outer contour
and uniquely color its interior. In 3D, we found 5000 streamlines to be
sufficient to obtain representative lobes, and we generate the visitation
map directly on the GPU and render the lobes via iso-surface ray-
casting. If the vertex density along the streamlines is too low, we add
new vertices by linearly interpolating between consecutive vertices.

4.2 Streamline-Median

The abstract shapes of the confidence lobes are further enhanced by a
single streamline representing the corresponding trend as accurate as
possible. We therefore introduce a new concept of streamline-median.

Since the reduced PCA-space is an Euclidean space, we build upon ex-
isting concepts here. Specifically, we use the so-called geometric me-
dian, which is an extension of the one-dimensional median to multiple
dimensions. Given a set of points, the geometric median is defined as
the point in space—not necessarily coinciding with one of the initial
points—which minimizes the sum of Euclidean distances to all initial
points. It can be calculated iteratively using Weiszfeld’s algorithm.

We hence determine the geometric median for every cluster in the
PCA-space and reconstruct a streamline—the streamline-median—
from it. This means that the streamline-medians in our visualizations
are not streamlines from the initial set, but they are artificial stream-
lines being closer to all initial streamlines than any other streamline.
On the other hand, following the same argumentation as for construct-
ing the confidence lobes, we know that this artificial streamline shows
the general trend represented by a cluster and is free of high-frequent
details which are not common to all cluster members. When drawing
the streamline-median, we further use its thickness to give a qualitative
visual cue indicating the relative strength of the trend. I.e., the more
initial streamlines follow the trend, the thicker the streamline-median
is drawn.

We further annotate each streamline variability plot to the right. The
color bar shows the relative number of trajectories represented by each
lobe, further enhancing the plot about qualitative information.

5 RESULTS

In this section, we analyze the performance of our method, show addi-
tional results of our method, and perform a comparison of the proposed
variability plots to curve boxplots.

5.1 Datasets

The 2D streamline examples we use in this paper were created from
wind fields of numerical weather prediction data obtained from the
ECMWF Ensemble Prediction System (ENS), which comprises 51 en-
semble members. We use forecast runs initialized at 00:00 UTC on
October 15th and 17th, 2012, and perform massless particle integra-
tion to obtain streamlines in a single steady forecast at a later time.
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Fig. 10. 2D streamline variability plots and corresponding spaghetti
plots.

Each 2D streamline is comprised of 300 vertices. Additional 2D ex-
amples are shown in Fig. 10. In the 3D examples (see Fig. 8), pathlines
were computed for the first 144 hours of the forecast and for each en-
semble member using the LAGRANTO model [42], which considers
air masses and specific meteorological aspects rather than massless
particles. We perform 200 integration steps to generate these pathlines
in 3D. In addition, we further use an ensemble of 50 steady 3D flows
from a simulation of a fluid flow around a cylindrical obstacle with
varying Reynolds numbers (see Fig. 9). Streamlines are computed us-
ing 500 numerical integration steps.

5.2 Implementation & Performance
All the results in this paper were generated on a standard desktop PC
equipped with an Intel Xeon X5675 processor with 3.0GHz×6 cores,
8GB RAM and a NVIDIA Geforce GTX 680. We use the Matlab im-
plementations of PCA and AHC, and our own CPU implementation to
fit an MVN to the data in PCA-space and generate new random vari-
ables respecting these distributions, including the streamline-median.
In 2D, splatting of streamlines into a 2D grid, extracting iso-contours
in this grid, and drawing the resulting filled confidence lobes are per-
formed on the CPU. In 3D, splatting is performed on the GPU, where
the confidence lobes are directly rendered via iso-surface ray-casting.

In all of our test scenarios, the time required to compute a PCA,
cluster the data, and fit an MVN to this data was below 50ms, even
for a bundle consisting of 200 streamlines with 500 vertices each. The
most time consuming step is splatting the generated lines into the vis-
itation map. On the CPU, roughly 10000 trajectories can be splatted
into the 2D map per second, and splatting into a 3D map on the GPU
can be performed at a rate of roughly 50000 trajectories per second.
This performance gain is mainly due to the fast memory interface on
the GPU and the possibility to process many trajectories in parallel.
Overall, all variability plots shown in this paper were generated in less
than 500ms, given the initial set of trajectories, and were rendered at
interactive rates.

5.3 3D Variability Plots
In the following we further demonstrate the effectiveness of variability
plots to depict the major trends in 3D trajectories. It should be empha-
sized that the generation and visualization of 3D variability plots does
not require any specific algorithmic modifications of our approach,
besides the use of a 3D visitation map into which the trajectories are
splatted and from which the lobes are rendered.

3/28/14 4:19 PM
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Fig. 11. Comparison of a streamline variability plot (bottom) to the curve
boxplot from [23] (top) for an ensemble of 50 simulated hurricane tracks,
generated by the method presented by Cox et al. [11]. The inset shows
a second variability plot, where the number of clusters was manually set
to one. In the boxplot, the light and dark cones are the bands which con-
tain 50% and 100% of the curves, respectively. Red lines show outliers
and the yellow line is the global median line. In both figures the origi-
nal tracks are shown in the background of the plots, where the colors
correspond to band-depth and clusters, respectively.

Fig. 8 shows a 3D variability plot for an ensemble of 51 pathlines
in the ECMWF ensemble. It can be seen that the major trends in the
data are very well separated by the variability plot, and that the ab-
stract representation using lobes and streamline-medians provides a
fairly uncluttered view compared to the spaghetti plot. The particular
example demonstrates, that the variability plot can not only convey the
major trends but also give a very good indication of where these trends
start to separate. Especially this property is extremely helpful in mete-
orological applications, where the locations need to be analyzed where
the divergence of predicted forecasts is going to start.

Fig. 9 shows variability plots of 200 streamlines, which were gen-
erated by seeding in each of the 50 ensemble members 4 streamlines
that were randomly jittered around a common seed point. The number
of clusters is adjusted incrementally from 2 to 4, while the initial guess
by the L-Method is 3. Here, it can be seen how an increasing amount
of clusters can lead to an increasing amount of detail in the variability
plot, until a good representation of the trends is reached. The most
representative plot is the last one, which reveals four significantly dif-
ferent trends in the streamlines and effectively conveys the symmetry
in the data well.

5.4 Comparison to Curve Boxplots
Fig. 11 compares a streamline variability plot to a curve boxplot
from [23] for a set of simulated hurricane tracks. The boxplot illus-
trates the distribution of trajectories via two nested bands containing
50% and 100% of the trajectories, respectively. In addition, a repre-
sentative median trajectory, i.e., the deepest trajectory from the initial
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set, and outliers are depicted. The boxplot has been generated using
the entire set of trajectories, and no initial clustering was performed.

The streamline variability plot reveals three trends in the hurricane
trajectories. A small number of trajectories deviates to the west and
north-east—which is captured by two minor trends—while the domi-
nant third trend in the center contains over 75% of the trajectories. The
confidence lobes of the two smaller trends—in relation to the regions
that are covered by the corresponding trajectories—are more wide-
spread than the trend in the center. This means that there is a higher
intra-cluster variance in the smaller trends, whereas the trajectory dis-
tribution of the dominant trend is more focused towards the region that
is indicated by its confidence lobe and median line. A second variabil-
ity plot is also shown, for which the number of clusters was manually
set to one. This results in a single, wider lobe which is similar to the
50% band of the boxplot. The difference is, that the boxplot cone
shows the region that contains 50% of the innermost curves, while our
lobe shows the region that contains all curves that are within the range
of α = 1.5 standard-deviations. Furthermore, the length of the curves
is conveyed differently in the two visualizations. On the one hand, the
“length” of the boxplot cone corresponds to a maximum curve length,
because it is constructed as a hull around all represented curves, and
the yellow global median line shows the length of a single representa-
tive line. On the other hand, in the variability plot, the “length” of a
lobe is typically similar to the length of its streamline-median, which
is approximately equal to the median length of all represented curves.

The comparison of boxplots and variability plots clearly indicates
the different use cases of both approaches. The boxplot intends to visu-
alize the entire spread, or enclosed spatial band, of a set of trajectories,
in addition indicating the percentage of trajectories being contained in
sub-bands as well as outliers. The variability plot intends to detect and
reveal the major trends in the data, and then plots these trends via con-
fidence lobes to depict the probability of occurrence of the trajectories.
Thus, the variability plots support a probabilistic analysis of the shapes
of the major trends, rather than emphasizing the overall spread of the
data. The clustering of the initial trajectories into major trends, on the
other hand, can be used as a preprocess to curve boxplots, so that each
trend could be represented by a separate boxplot. Thus, we could even
combine both approaches, by replacing individual confidence lobes in
our plots with curve boxplots.

6 CONCLUSION

In this work we have presented a new approach for the visual explo-
ration of the major trends in sets of streamlines extracted from ensem-
ble flow fields. Our approach is specifically tailored to the visualiza-
tion of trends in rather small sets of streamlines, as it is typically the
case when dealing with routinely simulated meteorological ensembles.
Even from such sets we can faithfully reconstruct confidence lobes
showing the probability of occurrence of streamlines over the domain.
By using stochastic models of clusters in PCA-space, we can generate
new streamlines exhibiting the statistical properties of the shapes and
positions of the major trends. The method is applicable to 2D and 3D
data, and the abstract visualizations we present allow to communicate
effectively salient characteristics of the data distributions even in 3D.

In the future, we intend to improve our approach in the following
ways: Firstly, we aim at developing improved approaches for detect-
ing outliers in the data. So far, outliers are detected if they show up
in a separate cluster, yet no specific mechanism is used to explicitly
separate them. Secondly, we will investigate the use of our approach
for showing trends in streamlines which have been released at differ-
ent locations. We have shown the use of streamlines which have been
jittered slightly around a seed location, yet for lines seeded at differ-
ent locations some prior operations will be necessary to register the
streamlines to each other. Finally, we will investigate our approach
for clustering vector fields hierarchically, so that local trends can be
separated and hierarchically represented.
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[34] K. Pöthkow, B. Weber, and H.-C. Hege. Probabilistic marching
cubes. Computer Graphics Forum, 30:931–940, 2011. 2

[35] K. Potter, A. Wilson, P.-T. Bremer, D. Williams, C. Doutriaux,
V. Pascucci, and C. R. Johnson. Ensemble-Vis: A framework for
the statistical visualization of ensemble data. In Proc. IEEE Int.
Conference on Data Mining Workshops, pages 233–240, 2009. 2
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