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Memory-Efficient Interactive Online Reconstruction
from Depth Image Streams

F. Reichl†, J. Weiss‡, and R. Westermann§

Technische Universität München, Computer Graphics & Visualization Group

Figure 1: Online reconstruction of the underparts of a tramway. The scene is reconstructed at varying levels of resolutions of up
to 1 mm (2.12 mm on average), requiring less than 10% of the memory that is required by alternative approaches.

Abstract
We describe how the pipeline for 3D online reconstruction using commodity depth and image scanning hardware
can be made scalable for large spatial extents and high scanning resolutions. Our modified pipeline requires less
than 10% of the memory that is required by previous approaches at similar speed and resolution. To achieve this
we avoid storing a 3D distance field and weight map during online scene reconstruction. Instead, surface samples
are binned into a high-resolution binary voxel grid. This grid is used in combination with caching and deferred
processing of depth images to reconstruct the scene geometry. For pose estimation, GPU ray-casting is performed
on the binary voxel grid. A one-to-one comparison to level-set ray-casting in a distance volume indicates slightly
lower pose accuracy. To enable unlimited spatial extents and store acquired samples at the appropriate level of
detail, we combine a hash map with a hierarchical tree representation.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Digitizing and Scanning

1. Introduction and Related Work

Recent works in real-time scene reconstruction using active
depth sensors have shown effective scalability in the scanned
spatial extents and resolutions by using adaptive space parti-
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tions on the GPU, either encoded hierarchically [CBI13] or
via spatial hashing [NZIS13]. We see, on the other hand, that
regardless the preferred encoding, scalability is increasingly
limited by the amount of memory that has to be moved—
via read and write operations—and stored during online re-
construction. This becomes especially important in scenar-
ios where the scene data is so large that it cannot be stored
in local GPU or even main memory, which is likely the case
when mobile scanning devices are mounted to moving ve-
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Figure 2: Windowed fusion: Captured sensor images are stored in a cache of fixed size. M is the pose estimation matrix
associated to each image. Every n

2 -th frame, n (= 4) images are processed, by projecting visible voxels into all n images and
computing averaged surface distance values. Subsequently, only a single bit indicating the sign of the final distance is stored in
a binary voxel grid, and distance values are deleted.

hicles and sent out for 3D reconstruction, surveillance, and
monitoring. In many real-world scenarios like disaster man-
agement and damage surveys, construction monitoring, or
vegetation and plant screening, the use of such technologies
will continue to increase in the near future.

Our research is motivated by the widening gap between
data generation throughput and memory capacity, which
will make large-scale and full-resolution online reconstruc-
tion prohibitively expensive. To overcome this limitation, the
question needs to be addressed to what extent the amount of
data required for scene reconstruction can be reduced. Most
current online reconstruction approaches using active depth
sensors like Microsoft Kinect adopt incremental volumetric
fusion of depth samples into a truncated signed distance field
on a regular multi-block grid, accompanied by a cumulative
weight field to average out noise and outliers. This approach
goes back to early work by Hilton [Hil96] and Curless and
Levoy [CL96], which has been extended further and adapted
to online reconstruction. For thorough introductions to the
field, including a consistent collection of related work, let us
refer to [IKH∗11, CBI13, NZIS13]. While these approaches
enable high quality scalable reconstruction, they come at the
additional expense of storing at least two scalar values for
every volumetric sample, resulting in 4-6 bytes per voxel de-
pending on the used internal data representation. Related to
these approaches are those working on the scanned depth
maps, such as Merrell et al. [MAW∗07], who improve the
scanned maps by considering visibility constraints obtained
from neighboring views.

To keep the memory requirements of volumetric fusion
moderate, previous works acquired large scenes with a max-
imum voxel resolution of 4 to 10 mm, thereby undersam-
pling the depth and color resolution of the sensor. When the
sensor resolution is matched, the memory requirements in-
crease considerably and GPU memory becomes occupied
quickly. This problem will be aggravated in the future due
to improvements in sensor hardware and the need to match
the available scanning resolution to support pose estima-

tion at higher accuracy [KSC13], especially on mobile de-
vices equipped with lightweight sensors and limited on-
board memory such as Google’s project Tango.

To avoid the memory overhead of a regular grid even
when it is constraint to a narrow band around the scanned
surface, some previous works made use of explicit sur-
face representations using point samples [RL00,WWLG09].
Keller et al. [KLL∗13] used such a representation for online
reconstruction from depth images, including noise reduc-
tion via geometric averaging and spatial as well as tempo-
ral outlier removal. Explicit surface representations, on the
other hand, must store the 3D positions of acquired surface
points, and require rendering the point set for reconstruc-
tion and pose estimation. Whelan et al. [WKJ∗14] combine
the memory-intensive volumetric fusion with real-time ex-
traction of a compact surface representation for areas that
move out of the field of view, keeping only a smaller vol-
ume of fixed size in GPU memory. Meilland et al. [MC13]
propose a combination of a multi-key-frame approach with
volumetric fusion and GPU surface triangulation. Fuhrmann
et al. [FG11] investigate the use of a hierarchical distance
field to incorporate the varying spatial resolution of depth
samples captured under a perspective projection, targeting
high-quality offline reconstruction.

Our work builds upon previous approaches and aims at
reducing the memory requirements to enable scalability in
both the scanned spatial extents and scanning resolutions.
The basic idea is to perform the scene reconstruction via
volumetric fusion, yet to encode the required weight and dis-
tance information in only two bits per voxel. The binary rep-
resentation significantly reduces the memory requirements
of an explicitly stored point-set surface or an implicit repre-
sentation using a signed distance field. At the same time it al-
lows using GPU voxel ray-casting for image-based pose es-
timation. However, to exploit the potential of a binary voxel
representation for online scene reconstruction, a number of
novel changes have to be incorporated into the existing fu-
sion pipeline:
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• We propose windowed fusion of image streams to avoid
storing distances and weights. Deferred processing of
small sets of cached depth and color images is performed
in regular scanning intervals. We demonstrate memory
savings of over 90% compared to previous approaches.
• We use the smoothed (depth) image of the ray-traced bi-

nary voxel surface for ICP-based pose estimation. This
introduces a certain loss in pose accuracy, making our
pipeline more prone to tracking drifts. A comparative
study using multiple benchmark data sets analyzes accu-
racy and robustness compared to level-set rendering in a
distance volume.
• We organize the scene data hierarchically in a hash map

of adaptive octrees to support scenes of unlimited spatial
extent without affecting voxel ray-casting performance.

Figure 2 illustrates the basic concept underlying win-
dowed fusion. One important observation motivating our ap-
proach is that the deferred distance and weight computa-
tion using a fixed number of acquired depth and color im-
ages can bypass the need to store a volumetric distance and
weight field. As a consequence, the memory requirements
are low and constant over the entire reconstruction process.
Furthermore, even at the resolution of the sensor hardware,
the memory consumption of the binary voxel grid is consid-
erably below that of a distance and/or weight volume.

Once the scene has been scanned, a smooth surface can be
reconstructed from the binary representation using different
approaches. One possibility is to replace the binary field with
a continuous-valued field in which the zero-isosurface repre-
sents a smoothed version of the original binary surface. This
can be achieved by solving a convex optimization problem
as proposed by Lempitsky [Lem10]. Another approach is to
extract a jagged surface mesh from the binary field via the
Marching Cubes algorithm [LC87], and apply mesh-based
smoothing afterwards. Due to the high computational com-
plexity of the first approach, we chose to use mesh-based
smoothing as presented by Taubin [Tau95], yet we make use
of an efficient GPU implementation proposed by Moench et
al. [MLK∗13]. Since mesh extraction from a binary voxel
field is significantly faster than from a signed-distance field,
mesh smoothing can be performed in roughly the time it
needs to extract the Marching Cubes surface from a signed-
distance field.

In the remainder of the paper we first describe the win-
dowed fusion strategy including a detailed description of
how the binary scene representation is constructed. We then
shed light on the particular GPU data structures we use, and
we discuss implementation specific issues. Next, we demon-
strate how to extend our data structure to handle sparsely
allocated colors, out-of-core data streaming, and color com-
pression. We conclude the paper with an analysis of the
memory consumption and speed our approach can achieve,
as well as a comparison to alternative approaches.

2. Volumetric Fusion

To reconstruct a surface from potentially uncertain measure-
ments of surface points, volumetric fusion uses a truncated
signed distance field (TSDF). At a discrete set of points, lo-
cated on a regular grid restricted to the narrow band around
the surface, the signed distances to the next measured sur-
face points are computed, and these distances are averaged
over a sequence of measurements [CL96]. This process is
referred to as integration. In the distance field the surface is
the zero level-set, and it can be reconstructed efficiently us-
ing surface fitting techniques like Marching Cubes [LC87]
or GPU volume ray-casting [KW03].

When a depth image from a certain camera position is
available, distance field computation is performed by sweep-
ing through the voxel grid, projecting each voxel center into
the depth image, and computing the distance between the
voxel center and the acquired sample depth. A running aver-
age of all distances of a voxel is computed via a weight value
which counts how often a voxel distance was updated. The
weights compensate for the measuring inaccuracy in the cap-
tured depth data by averaging out these inaccuracies as well
as outliers. The use of a truncation region determined by the
noise characteristics of the sensor restricts the influence of
each depth sample to its uncertainty region. It thus confines
all calculations to a narrow band around the surface, reduc-
ing effectively the memory requirement and computational
cost for updating distances and weights.

Our evaluations are based on a Microsoft Kinect 1, which
captures depth and color data at a resolution of 640 × 480
pixels. It can be assumed that the uncertainty of each depth
sample grows quadratically with increasing distance from
the sensor [NIL12], whereas its size on the image plane
grows linearly. To deal with a moving camera—which is typ-
ically the case—the current camera pose is estimated using
the iterative closest point (ICP) method [BM92,CM92], and
the new depth image is aligned with the rendered output of
the fused surface.

In addition to the uncertainty in the measured depth val-
ues, due to perspective area foreshortening each depth and
color sample in the sensor’s xy-plane represents a scene sam-
ple of a size depending on the measured depth. The more
distant the sample is from the camera, the larger is its extent
in world space. Thus, using depth samples to compute the
distance field on a fixed resolution grid—as it is typically
done—usually over- or under-samples the sensor data, intro-
ducing loss of information or increasing memory usage. To
avoid this, we locally adapt the resolution of the voxel grid
into which the measured samples are fused.

3. Windowed Fusion

Windowed fusion of scanned images is motivated by the way
in which scanning is usually performed: As the camera is
moved through the scene, every voxel receives updates only
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Figure 3: Left: Before processing the first batch, only sub-batches are processed and voxels are classified as non-confident
(green). Middle: After fusion of the first batch of depth maps, many voxels are classified as confident (no color). Orange voxels
have been processed, but are not classified as confident. Right: As scanning progresses, only few new bricks are processed from
sub-batches (green). (Data set from Sturm et al. [SEE∗12].)

over a small time interval. Then the scanned surface is of fi-
nal quality and does not need further updates. We mimic this
by restricting the calculations of exact distances and weights
to a batch of few cached sensor images.

Windowed fusion in general averages fewer frames than
volumetric fusion to determine the surface points. This
means that sensor noise and outliers can be filtered out less
effectively and can affect the point locations more signifi-
cantly. We try to compensate for this by keeping track of
the confidence in the current reconstruction; however, since
the exact measurements are deleted once a batch has been
processed, the final surface exhibits inferior regularization
properties.

To make the fusion process scalable in the spatial scene
extent, the entire domain is partitioned into a set of evenly
sized sub-domains (world chunks) with a side length of 2
meters. Chunks are created on demand and stored in a GPU
hashmap as proposed by Nießner et al. [NZIS13]. Each
chunk stores a sparse octree that discretizes the correspond-
ing part of the domain. A node of this octree consists of a
voxel grid of size 83—which we will refer to as bricks—
at an adaptive spatial resolution. This three-level structure
provides a good trade-off between memory overhead, con-
struction and rendering times, and it simplifies out-of-core
data management. The details of the adaptive scene repre-
sentation will be discussed in section 4.

3.1. Deferred Batch Processing

To maintain a compact scene representation, our goal is to
avoid storing distances and weights. Therefore, we perform
deferred processing of the depth and color images: All dis-
tance and weight calculations are deferred until a batch of n
images has been cached in GPU memory. At this point, we
first determine all bricks that were visible during m of the n
scans, and we fuse the scans into these brick. We call m the
visibility threshold. It helps to avoid using bricks which have
appeared sporadically and would introduce noise to the re-
constructed surface. For each of the determined bricks, every

voxel is projected into all cached images at once by a single
GPU thread, and the distances and weights for each of them
are accumulated in-turn via volumetric fusion. Subsequently,
only a single sign bit is stored for each voxel, indicating the
sign of the computed distance of the voxel center to the sur-
face.

To smooth out errors from tracking drifts, i.e., to ensure
that these drifts do not reflect as hard jumps in the recon-
structed surface, a number of depth maps are shared between
subsequent batches. This is realized via a buffer of size 2n
keeping the last two batches, and a window of size n that is
shifted over this buffer in steps of n

2 . This effectively dou-
bles the time interval at which integration is performed and
greatly improves the reconstruction quality. Along with ev-
ery cached depth and color image we store the current pose
estimation matrix (see Fig. 2).

3.2. Sub-Batch Processing

Deferred processing as described introduces the following
problem: Because the scene representation is updated only
in every n

2 -th frame—with n often being as large as 60—
updates of the fused surface are delayed. Since images of
this surface are used as references in pose estimation, ro-
bust tracking is impeded unless the sensor is moved at low
velocities. To overcome this limitation, in every acquisition
frame an additional processing pass is performed using the
most recent n̂ images from the current batch (with n̂� n).
All bricks that have not received an update in the most recent
deferred processing pass are integrated from these n̂ images.
These bricks are marked as non-confident, and their data will
be replaced as soon as the next batch is processed. We will
subsequently call the last n̂ depth maps the sub-batch.

3.3. Surface Confidence

When voxel weights are not stored explicitly as in volumet-
ric fusion, the uncertainty of a stored sign bit can no longer
be accessed once a batch has been processed. Thus, vox-
els which are visible in only a small portion of the cur-
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rently cached depth images may indicate an event—a pos-
itive or negative distance sign—with less confidence than an
event was indicated at this location before. We counteract
this by storing an additional confidence bit with each voxel.
This bit is set if the voxel has accumulated a prescribed
weight, called the confidence threshold, during processing.
Each brick also stores the average estimated error of all its
confident voxels, which is updated after cache integration. In
successive batches, confident voxels can only be replaced if
they are classified as confident again, and if the average error
of the used depth samples is lower than the brick’s average
error calculated in the last integration pass.

Bricks that are processed in a sub-batch contain only non-
confident voxels. All non-confident voxels are ignored for
high-quality rendering and surface extraction, and they are
only required for pose estimation during runtime. Figure 3
visualizes the classification for several frames. We also refer
to the accompanying video to demonstrate the use of two
batches and voxel confidences over multiple frames.

4. Data Structures and Algorithms

In this section, we discuss the implementation of all stages of
the proposed reconstruction pipeline. The stages are imple-
mented on the GPU using compute shaders. By using indi-
rect dispatching whenever possible, CPU/GPU synchroniza-
tion points are kept at a minimum. In this way, only a single
synchronization is required after windowed fusion to retrieve
the root nodes of created trees for rendering and data stream-
ing.

4.1. Data structures

The three-level data structure is comprised of the following
elements (see Fig. 4 for an illustration):

Chunks. At the first level, the domain is divided into
evenly sized chunks. Each chunk stores its world-space po-
sition and a reference to the root of its associated octree (or
NULL if the tree has not been generated yet):

struct Chunk {
uint position; // Z-Ordered
uint rootPointer;
uint offset;

}

Chunks are stored in a hashmap as proposed by Nießner
et al. [NZIS13]. Positions are hashed to buckets in a buffer
of fixed size, where each bucket comprises a fixed number
of slots. In case of an overflow, the corresponding entry is
placed in the next available slot and a list pointer of the last
entry in the correct bucket is set to this slot. Given a careful
selection of bucket size, overflows rarely ever happen and
insertion and retrieval can be performed with minimal over-
head. Furthermore, as we store comparably large chunks, the
hash map access time is negligible.

Trees. All octrees are stored in a linear node pool and
indexed using a single pointer to index 8 child nodes which
do not necessarily contain data:

struct TreeNode {
uint childPointer;
uint dataPointer;
uint positionAndLevel;
float avgError;

}

Binary volume bricks. At the leaf nodes, dataPoint-
ers reference cubic voxel bricks of fixed size in a brick
pool. It is worth noting that the leaf nodes are at different
spatial resolutions, depending on the uncertainty of the sam-
ples they store. Each voxel stores two bits: the sign and the
confidence bit. In practice, we use two separate pools to store
the sign and the confidence bits, and we store them in 3D tex-
tures with 32 bits per texel. We will refer to groups of 32 bits
as a single bitblock.

Hashmap

World Chunks

Octree

Binary Volume Bricks

Figure 4: Hierarchical scene representation. The domain is
partitioned into world chunks, each storing a sparse octree
representation of a part of the scene. Leaf nodes store the
binary scene encoding at different levels of detail.

4.2. Allocation

Each time a new frame is acquired by the sensor, allocation
of all required data structures is performed instantly. Depth
samples are inserted in parallel using one thread per pixel of
the acquired image. Each sample is projected into 3D space
using the currently estimated pose. We then determine the
index of the chunk containing the sample and find the corre-
sponding entry in the hash map, or we insert it and create the
root node of a new tree. The appropriate tree level is deter-
mined based on the sample’s extent in the image plane, and
the chunk’s tree is traversed top to bottom to reach the leaf
node where the sample is to be inserted. All nodes along the
way are created, and a slot in the brick pool is allocated for
the leaf node if necessary.

To perform slot allocation and deallocation, we keep a list
of available slot pointers in a separate GPU buffer. Upon
allocation, an atomic counter is increased and the slot at
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the previous counter position is used. For deallocation, the
counter is decreased and the slot is added back into the list.

Special care has to be taken to assure that data allocation
for a single pointer is performed by only one thread, even if
multiple threads require allocation. This is done by storing
a lock flag along with all data pointers. Whenever a thread
needs to allocate data, brick nodes or world chunks, it first
atomically locks the pointer and proceeds only if the lock
succeeded. This may result in missing samples if a thread
cannot acquire a lock. We address this problem by perform-
ing multiple insertion passes and storing all samples yet to be
inserted in a temporary buffer, similar to the way proposed
by Crassin et al. [CNS∗11].

4.3. Integration

During scene capture, we store each depth and color map
of the caches in two 2D texture arrays along with the cor-
responding transformation matrices. Prior to integration, we
collect all bricks that have been completely visible in at least
a predefined number of the cached frames. Bricks with a
level difference of more than 1.0 compared to the level dic-
tated by the current viewport are also discarded. This avoids
destruction of regions scanned with low uncertainty by depth
samples of high uncertainty. For each of these bricks, a sin-
gle thread projects all voxels onto all of the depth maps (de-
noted with index i in the following). Computed distances are
weighted by a weight Wi and accumulated in registers. For a
voxel at position p, the distance D(p) is

D(p) =
Ψ(p)Φ0(p)+∑

n
i=0 Wi(p)Di(p)

Ψ(p)+∑
n
i=0 Wi(p)

, (1)

where Di denotes the signed distance from the voxel to the
surface in frame i, which is positive if the voxel is in front
of the surface. With respect to the uncertainty σ of a depth
sample, the weights Wi are set to

Wi =


1 iff 0 < Di(p)< σ

σ+Di(p)
σ

iff −σ < Di(p)<= 0
0 otherwise

(2)

If the according voxel has already been flagged as confi-
dent, we determine the initial distance Φ0(p) by a fast sweep
through the volume of a few voxels along the three principal
axis. If a sign change at a confident voxel is detected along
any of these sweeps, the distance between the voxel centers
is used as Φ0(p) with a fixed weight Ψ(p). After a batch has
been processed, all empty bricks are collected and removed.

As integration needs to be performed in regular intervals
of n

2 frames, processing all bricks at once will lead to peaks
in computation times during scene capture. For reliable pose

estimation, however, it is crucial to maintain a high and sta-
ble frame rate. We therefore distribute the integration of each
batch over the subsequent n

2 frames, with 2
n of the visible

bricks being integrated in each frame.

4.4. Rendering

The resulting surface is rendered using GPU front-to-back
ray-casting. As proposed in [NZIS13], we first generate
two z-Buffers containing the start and end points for ev-
ery ray by rasterizing the bounding boxes of all currently
allocated world chunks. This approach has the problem that
all chunks between the start and end points have to be tra-
versed, prohibiting efficient empty space skipping. In our
three-level data structure, however, chunks are traversed at
a rather coarse spatial subdivision and fine-granular empty-
space skipping is performed at the octree level. We then per-
form DDA ray-marching through the world chunks along
each view ray. In each chunk, if the corresponding entry ex-
ists in the hashmap, the associated octree is traversed with hi-
erarchical DDA down to the finest existing leaf nodes, skip-
ping all nodes that do not contain data.

Each leaf node, in turn, is again traversed using DDA until
a change in the contained sign bits is detected. In this case
the ray is intersected with a cube of the size of the voxel.
Since this results in a jaggy surface profile including high
frequent normal variations, we perform a deferred image-
based surface smoothing pass similar to the approaches pro-
posed for rendering smooth fluid surfaces from particle dis-
tributions [CS09,vdLGS09,RCSW14]. The smoothing oper-
ator works on the depth imprint of the rendered voxel repre-
sentation. It performs screen-space surface smoothing using
bilateral filtering of depth values [TM98] and reconstructs
surface normals from the smoothed depth values via finite
differences.

5. Color Storage

In principle, acquired RGB colors can be stored per voxel
in addition to the binary values. However, this increases the
memory consumption considerably, since memory is allo-
cated also for non-occupied voxels. To reduce this consump-
tion, a brick is further subdivided into blocks of 4× 4× 2
voxels, and non-empty blocks are laid out in a linear color
buffer. For each block, a brick stores a 32 bit pointer into the
location of this block in the color buffer, or a void pointer
if the block is empty. This increases the total number of bits
per voxel to 3.

Colors are only stored for voxels that are marked as con-
fident and belong to the scanned surface. A confident voxel
at a 3D position p is classified as surface voxel if

Davg(p)≤ 1√
2
· (1.0 f −θavg(p)) (3)
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where Davg(p) is the weighted average distance, and

θavg(p) = ∑
n
i=0(0,0,1)

T ·Ni(pro ji(p))
n

. (4)

Here, ~Ni is the screen-space normal at a 2D position of the
i-th depth frame in the current cache, and pro ji(p) projects
the point p onto the 2D image plane of this frame.

As colors are only stored for confident voxels, and voxels
that are integrated during sub-batch processing are always
marked as non-confident, some voxels of the reconstructed
scene are not assigned a color until the next batch is pro-
cessed. However, ICP-based pose estimation, which is per-
formed in every acquisition frame, relies on the color infor-
mation to achieve improved accuracy. To account for this,
the colors from the current RGB sensor image are blended
into the blank areas of the image that is used for pose esti-
mation.

5.1. Color Memory Management

The color data is managed in pages of fixed size. In the cur-
rent implementation we use 32 bit virtual addressing, with
a 19 bit page index and 13 bit offset inside the page. We
address blocks of 32 voxels and store each color in 16 bit
RGB565 encoding, which yields a maximum page size of
0.5 MB. In total, 256 GB of virtual address space can be
managed in this way. A one-level page table is maintained
on the GPU, providing space for all possible 219 entries.

Whenever colors are accessed, the virtual address is trans-
lated into a physical address by performing a look-up in the
page table and combining the 13 bit offset of the address
with the physical page base address. Each page is exclu-
sively reserved for a single world chunk (see Fig. 5).

Page allocation is performed via a single atomic counter.
Each world chunk keeps track of a currentPage pointer.
Whenever color allocation is performed during scene recon-
struction, the size of the referenced page is atomically in-
creased by 1.

Allocation of memory at the end of a page is done by
atomically increasing the current page size. Due to parallel
allocations performed by multiple threads, this may increase
the indicated page size to a value above the maximum al-
lowed size. If this is the case, the corresponding thread inter-
prets the returned address as a failed allocation and instead
requests a new page. To avoid multiple threads requesting
new pages for a single world chunk, the current page pointer
is atomically locked by all threads. Only the thread which
successfully acquired the lock is allowed to increment the
page and set the new page pointer. This can result in threads
being unable to obtain a valid address, forcing the triggered
allocations to be executed in subsequent passes. On NVIDIA
GPUs, however, we utilize the fact that color allocation is

Binary Volume 

Page
Table

C
olor B

uffer 

World
Chunk

Binary Volume 

Page
Table

C
olor B

uffer 

+
+

+
+
+
+

currentPage

Figure 5: Color storage. Left: Each bit-block (solid lines)
represents a number of voxels (dotted lines) and stores a vir-
tual pointer into the color buffer. Virtual pointers are trans-
lated into physical addresses using a page table, and com-
bined with the voxel index inside the bit-block to obtain
the final address. Right: When new memory is allocated (⊕
indicates added colors), the currentPage pointer of the
chunk is used and the data is appended to the page.

performed only by a single thread per bit-block during re-
construction. When it is enforced that the size of each bit-
block matches the GPU warp size, threads unable to acquire
the lock can be put into a busy-waiting loop until the allo-
cation has finished. In practice, page allocation occurs only
rarely, and it did not introduce any noticeable performance
impact.

6. Data Streaming

Even with the proposed compact binary scene representa-
tion, when large spatial extents are scanned the acquired data
can quickly become so large that it needs to be streamed
from GPU into CPU memory, or even to external disk space.
Data streaming is performed on the granularity of world
chunks: All allocated chunks outside a spherical safety re-
gion around the camera can be removed from GPU memory.
If the user returns to an already observed region in the scene,
required chunks are streamed back onto the GPU. Detection
of the binary bricks and color pages is performed similar to
the collection of visible bricks by accessing the brick pool
and page table in parallel, and writing out a compact buffer
of corresponding page and brick pointers.

Whenever a color page is removed, we employ a lossless
compression to further reduce the memory of the already
compressed 16 bit colors for external storage. As color mem-
ory is allocated in blocks of fixed size, a large portion of
each block will correspond to non-surface voxels and, thus,
does not contain any color information. For typical scenes,
this applies to about 60% of the data. Moreover, since colors
are organized in a locally coherent manner, even non-empty
neighboring values may be identical.

Our compression is inspired by the GPU compression
scheme proposed by Treib et al [TRAW12] and builds
upon the accompanying open-source cudaCompress library.
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Empty space in the color data is first removed using run-
length encoding, followed by a lossless compression step us-
ing parallel GPU Huffman encoding. The Huffman symbol
table is computed for each page, allowing for an independent
(de-)compression of pages during data streaming. On aver-
age, this approach compresses the color data by a factor of
about 3.1 : 1, with a throughput of 4 GB/s and 8 GB/s for
compression and decompression, respectively. Since only
comparably small chunks of the volume need to be streamed
in every frame, the compression and decompression times
are usually negligible.

7. Discussion and Results

In this section we discuss the benefits and limitations of our
approach for 3D online reconstruction. We have performed
a number of experiments including live captures of scenes of
various spatial extents to demonstrate the scalability of our
solution and compare its quality to alternative approaches.
The test scenes are shown in Figs. 1 and 12. All tests were
performed with a Microsoft Kinect 1.0, a dual quadcore In-
tel Xeon X5560 with 48 GB RAM, and an NVIDIA GTX
Titan with 6 GB video memory. For comparison we use the
available implementation of voxel hashing [NZIS13] (VH).

7.1. Memory and Performance

In a first experiment we analyze the effective voxel reso-
lutions determined during online reconstruction. Figure 6
shows the number of non-empty bricks for several scans us-
ing a chunk size of 2 meters and a brick size of 83 voxels. A
voxel-to-pixel ratio of 1:1 was used to determine the level at
which samples were inserted. It can be observed that only a
few levels contain data, and that the allocated bricks contain
mostly voxels of side lengths 4 mm, 2 mm and 1 mm. For
all data sets, the vast majority of bricks reside at the 2 mm
resolution level.
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Figure 6: For different data sets, the amount of bricks stor-
ing voxels at a certain resolution is given as a percentage of
all allocated octree leaf nodes. Voxel resolution refers to the
spatial voxel extent in each dimension.

The analysis of the frequency of occurrence of bricks at
different resolution levels serves as a baseline for the fol-
lowing comparison of the memory requirements and recon-
struction speeds of our approach and VH. We perform the
same scans with VH using the resolution required by the

majority of voxels, i.e., 2 mm (termed V HHQ). Since VH
does not allow storing voxels at different resolution levels,
we set a rather aggressive maximum depth cut-off of 2 me-
ters. In addition, we perform a scan of lower quality using
VH (V HLQ) at a resolution of 4 mm and a depth cut-off of 5
meters. Our approach generates voxels adaptively up to the
finest resolution of 1 mm. It uses a depth cut-off of 5 me-
ters. Table 1 compares the memory requirements of VH and
our approach, indicating a considerably lower memory con-
sumption of our pipeline.

When colors are stored in addition to the scene geometry,
our proposed color encoding scheme decreases the required
memory by 45% on average compared to storing the colors
per voxel. An additional factor of 2 is gained when colors are
stored in the lossy RGB565 format. Upon data streaming, an
average reduction factor of 3.13 is achieved via lossless com-
pression. In VH, the storage of colors increases the memory
requirement by a factor of 2.

During the same set of experiments, the overall system
performance was measured. For all data sets, average times
including all steps of online reconstruction are given in the
column Time in Tbl. 1. Our approach is slightly faster than
VH at 4 mm resolution, even though it performs consider-
ably more operations per frame to project voxels into mul-
tiple cached depth images. This indicates the effectiveness
of using a hierarchical representation in reducing the overall
number of bricks, and of the distribution of cache processing
over multiple frames in reducing the workload per frame.
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Figure 7: Performance analysis of the proposed online re-
construction pipeline. Times represented by the violet plot
(Additional) include pose estimation, data streaming, and
shading. Times add up to 31.3 ms on average.

A detailed performance summary for the online recon-
struction shown in Fig. 1 is given by the graphs in Fig. 7. It
can be seen that the integration of batches consumes most
of the GPU time (11.8 ms on average), and significantly
less work is done on the integration of sub-batches (3.1
ms). Color allocation, which is performed only for the larger
batches, has only a subtle effect on the overall performance,
even though we kept warps busy waiting for page creation.
Compared to 5 ms rendering time reported for voxel hash-
ing, volume ray-casting (8.98 ms) turns out to be more ex-
pensive in our approach. We attribute this to the higher level
of thread divergence, which is caused by the increased reso-
lution of our scenes and the additional indirections required
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Table 1: Memory and performance evaluation, and comparison to voxel hashing (VH) storing distances and weights in bricks of
83, including colors. V HHQ indicates the same scene resolution as used by our approach, yet our depth cut-off is more than twice
as large. V HLQ uses the same depth cut-off, but the scene resolution is decreased about a factor of 2. Time gives the average time
required to generate a new image, including fusion, pose estimation, and rendering. Mems gives the memory consumption of
our approach excluding colors (3 bits per voxel and including the pointer into the color array). Memc0 and Memc1 ), respectively,
give the memory required by the compressed and uncompressed color data. The last two columns indicate the GPU memory
reduction compared to V HHQ, excluding (2 bpv) and including colors (3 bpv + uncompressed color data).

V HHQ V HLQ Ours

Memory Time Memory Time Mems Memc0 Memc1 Time ∆Surf. ∆Total

train 1496 MB 34 ms 416 MB 32 ms 64 MB 178 MB 57 MB 27 ms 94 % 83 %
tank 887 MB 42 ms 837 MB 40 ms 54 MB 171 MB 55 MB 36 ms 91 % 74 %
gear 1290 MB 41 ms 637 MB 36 ms 56 MB 173 MB 55 MB 32 ms 94 % 82 %
hoist 753 MB 42 ms 644 MB 33 ms 45 MB 137 MB 44 MB 34 ms 92 % 76 %

for virtual color addressing. Surprisingly, the time required
for chunk and tree creation as well as brick data allocation
is negligible (1.2 ms). The remaining time per frame is used
for data streaming, pose estimation, and shading, yielding a
total of 31.3 ms per frame on average. Thus, our approach
is very well able to match the Kinect’s rate of 30 frames
per second in a typical online scenario. During integration
of the first sub-batch a sudden peak in the processing time
is observed, which is due to the large number of newly cre-
ated bricks during the first frames. The frame rate, however,
quickly stabilizes once the cache has been filled.

In most cases, the batch size n was set to 40, with a sub-
batch of size n̂ = 5. Here it is important to note that increas-
ing n does not necessarily decrease performance: Integration
of a batch is distributed over all frames of the next batch by
processing 1

n of the required bricks in each frame. Thus, in-
creasing the batch size reduces the number of threads while
increasing the workload per thread. Performance-wise, the
“optimal” size depends on the combination of brick size,
scanned surface area, and speed of movement. In our ex-
periments, batches between 20 and as much as over 100 per-
formed similarly well on average. Smaller batches are able to
include a larger portion of confident voxels for pose estima-
tion, making it less prone to drifts, but may exhibit a slightly
increased amount of noise in the final reconstruction.

7.2. Reconstruction Quality

Compared to level-set ray-casting in a distance volume, the
use of a binary voxel representation in combination with
DDA ray-marching results in a less smooth surface appear-
ance during online capture. However, due to the voxel-to-
pixel ratio of 1:1, i.e., the rendering resolution matches
the sensor resolution, and in combination with screen-space
smoothing, the appearing block structures can be reduced
and smooth normals can be calculated. Figure 8 compares
the surface quality during online reconstruction using our
approach and the distance field representation.

Figure 8: Screen-space smoothing results in a smooth sur-
face appearance during online reconstruction (left). In the
shown case, the surface appears very similar to the sur-
face that is reconstructed from a distance field represen-
tation (right), yet in some regions screen-space smoothing
slightly blurs out the surface normals (Data set from Sturm
et al. [SEE∗12].)

Pose Estimation. Since ICP-based pose estimation uses
the images of the reconstructed surface to determine refer-
ence points, it must be assured that the accuracy of pose es-
timation is not affected negatively when the images are ren-
dered from the binary voxel representation and smoothed in
a deferred pass. To analyze this effect, we performed several
experiments using data sets from the TUM RGB-D bench-
mark suite [SEE∗12]. We compared the absolute trajectory
error (ATE) as the root mean square error (RMSE) between
the trajectories generated by our approach and voxel hash-
ing, and compared both to the ground truth trajectories pro-
vided by the online tool. The results are shown in table 2.

In all cases where ICP-based pose estimation works for
voxel hashing we could generate accurate trajectories as
well, at a slightly larger error within a few centimeters. The
additional error that is introduced by our approach is mainly
due to the following reasons which affect the quality of ICP:
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Firstly, since normals are computed from the depth imprint
of the voxelized surface, inferior frame-to-frame coherence
in the rendered images can be expected. Secondly, since win-
dowed fusion uses less depth images to determine a voxels
confidence, it is more likely to produce unclassified regions
and resulting holes in the surface.

In the last two cases, both voxel hashing and our approach
suffer from a severe tracking drift. This introduces a large er-
ror regardless the used fusion approach and makes a relative
comparison of the approaches rather meaningless. We have
nevertheless included the two cases for the sake of complete-
ness.

Offline surface extraction. Given the binary voxel repre-
sentation, a polygonal surface representation is extracted via
the Marching Cubes algorithm in an offline process. To re-
duce block artifacts resulting from the binary representation,
we apply mesh smoothing using a curvature-based smooth-
ing filter (Taubin smoothing [Tau95]). Figure 10 shows the
resulting surfaces, as well as the surface extracted from the
corresponding distance field representation.

In Fig. 9 we color the smoothed surface that was re-
constructed from the binary voxel representation according
to the point-wise shortest distances to the surface resulting
from the signed distance field representation. The visualiza-
tion shows that in many areas the two surfaces match each
other with very high fidelity. In some areas, however, the dif-
ferences are significant, especially along some of the silhou-
ettes and wrinkles on the surface. These are the areas where
the measurements typically exhibit a high uncertainty, and
due to the weaker regularization properties of windowed fu-
sion it cannot reduce noise and outliers in these regions as
effective as standard volumetric fusion.

Figure 9: Point-wise shortest distances of the unsmoothed
surface that was extracted in a post-process from the bi-
nary voxel representation to the surface extracted from a dis-
tance field of 4 mm voxel resolution. The shaded surfaces are
shown in Fig. 10.

Figure 11: Failure cases: High visibility and confidence
thresholds (left) lead to high quality surface, but tend to pro-
duce holes. Low thresholds (right) stabilize pose estimation,
but tend to increase noise in the final surface.

7.3. Drawbacks and Limitations

To emphasize the potential difficulties of pose estimation
when using images rendered from a binary voxel representa-
tion, we have selected a pre-computed scan of a large plush
teddy, consisting of roughly 2’000 images (see Fig. 10(a)).
As can be seen, the pose cannot be tracked accurately, re-
sulting in a noticeable drift shown in images (b) and (c).
Compared to the online reconstruction via VH (d), very fine
details around the arm and the chest are reconstructed due to
the high resolution of the binary representation, yet the sur-
face extracted from the binary voxel representation exhibits
more holes in uncertain regions where the voxels could not
be classified as confident during the scan.

Since in our approach distance values and weight infor-
mation are used only temporarily when processing the cur-
rent batch, voxel and brick replacement must rely on heuris-
tics which depend on a number of parameters. The relevant
parameters in our approach are the initial weight Φ0, the
visibility threshold m for brick integration, the confidence
threshold as well as the batch and sub-batch sizes. The op-
timal settings are scene-specific and, thus, the overall qual-
ity is more susceptible to a user’s experience and before-
hand knowledge of the scanned scene. In addition, the opti-
mal parameters for stable pose estimation often differ from
those required for optimal surface quality. If more weight
gets attributed to new samples and old samples are aggres-
sively replaced—which is the case for small visibility and
confidence thresholds—the system is able to recover more
quickly from tracking failures. On the other hand, higher
thresholds yield superior surface quality in areas of confident
voxels, but this may lead to holes in the extracted surface be-
cause non-confident voxels are discarded for this step. Both
extremes are exemplified in Fig. 11.

We found batch and sub-batch sizes of n = 40 and n̂ =
5 to provide a good balance between reconstruction quality
and pose estimation accuracy in most cases. The sub-batch
was offset by another 5 images to not include bricks that are
visible at the beginning or end of a frame. The visibility and
confidence thresholds vary between 0.5n and 0.75n, and the
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(a) Input (b) Ours (unprocessed) (c) Ours (smoothed) (d) Voxel Hashing
Figure 10: (a) The scanned object. (b) The Marching Cubes surface from the binary voxel representation reconstructed by our
approach. (c) Smoothing applied to the mesh in (b). (d) The Marching Cubes surface from the distance field representation
generated by Voxel Hashing when scanning the object in (a) at 4 mm. The tracking drift due to difficulties in pose estimation is
clearly visible in (b) and (c). The surface in (d) shows less details in the wrinkled surface regions, yet it contains less holes than
the surfaces in (b) and (c).

surface weight Φ0 was set to a rather low value of about
0.1n.

Compared to online reconstruction using a distance field
representation and confidence weights, especially in case of
tracking drifts our approach is more prone to errors such as
the duplication of existing surfaces when scanned surface
parts are revisited. We aim at reducing this drawback in the
future by performing more accurate pose estimation, either
by incorporating visual SLAM methods [KSC13] or addi-
tional sensors [NDF14]. However, when objects are scanned
mostly along one axis—as for the use cases train and
gear—our pipeline achieves quite accurate results.

8. Conclusion and Future Work

In this work we have presented a memory-efficient real-time
variant of volumetric fusion using a commodity depth sen-
sor. We introduced deferred integration to eliminate the need
to explicitly store a distance field and associated weights.
In combination with a compact binary encoding of surface

Table 2: Root mean square error (RMSE) between the tra-
jectories generated via ICP-based pose estimation using ren-
dered images of the binary (Ours) and the distance field
(VH) representation. Several data sets of the TUM RGB-D
benchmark suite are evaluated.

Data Set Images Error (VH) Error (Ours)

fr1_xyz 798 0.014 m 0.016 m
fr1_rpy 722 0.035 m 0.038 m
fr1_desk 595 0.033 m 0.060 m
fr3_long_office 2509 0.070 m 0.086 m
fr1_360 755 0.741 m 0.514 m
fr1_room 1360 1.013 m 0.723 m

samples this reduces significantly the overall memory re-
quirement. Since the smoothed image of the ray-traced bi-
nary voxel surface is used for ICP-based pose estimation, our
approach is more prone to tracking drifts than approaches
working on a signed-distance field scene representation. By
inserting samples into an adaptive octree which is grown dy-
namically at runtime, we are able to represent all parts of the
scanned surface at their adequate resolution, avoiding under-
or over-sampling the sensor’s depth and color data.

In the future we will investigate the following aspects in
more detail. First, we will investigate the integration of sur-
face extraction from the binary field and mesh smoothing
into the online reconstruction process to improve the qual-
ity of ICP-based pose estimation. Therefore it needs to be
analyzed whether the extraction process, including the gen-
eration of a shared vertex mesh representation needed by the
smoothing process, can be performed at sufficient speed on
the GPU and does not interfere with other GPU operations.
Second, we aim to entirely avoid the computation of a dis-
tance field. Therefore, we will try to find means to recon-
struct the surface during ray traversal from the surface bits
in the surrounding of the sampling points along the ray. This
approach will be very similar to the one proposed by Keller
et al. [KLL∗13], yet it will avoid storing point coordinates
explicitly and performing costly search operations on the un-
structured point set.
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Figure 12: The data set train (top row) shows the bottom of a train and is about 15 meters in length. Bottom row: data sets
hoist and tank.
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