
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, X 201X 1

Solving the Fluid Pressure Poisson Equation
Using Multigrid—Evaluation and Improvements

Christian Dick, Marcus Rogowsky, and Rüdiger Westermann

Abstract—In many numerical simulations of fluids governed by the incompressible Navier-Stokes equations, the pressure Poisson
equation needs to be solved to enforce mass conservation. Multigrid solvers show excellent convergence in simple scenarios, yet they
can converge slowly in domains where physically separated regions are combined at coarser scales. Moreover, existing multigrid
solvers are tailored to specific discretizations of the pressure Poisson equation, and they cannot easily be adapted to other
discretizations.
In this paper we analyze the convergence properties of existing multigrid solvers for the pressure Poisson equation in different
simulation domains, and we show how to further improve the multigrid convergence rate by using a graph-based extension to
determine the coarse grid hierarchy. The proposed multigrid solver is generic in that it can be applied to different kinds of
discretizations of the pressure Poisson equation, by using solely the specification of the simulation domain and pre-assembled
computational stencils. We analyze the proposed solver in combination with finite difference and finite volume discretizations of the
pressure Poisson equation. Our evaluations show that, despite the common assumption, multigrid schemes can exploit their potential
even in the most complicated simulation scenarios, yet this behavior is obtained at the price of higher memory consumption.

Index Terms—Fluid simulation, multigrid, convergence analysis.

F

1 INTRODUCTION

NUMERICAL simulation is widely adopted in films and
computer games to enrich recorded imagery and vir-

tual environments with realistic fluid effects. Yet ever higher
resolutions and ever more complicated scenarios perma-
nently increase the time required to compute these effects.

In the simulation of fluids governed by the incompress-
ible Navier-Stokes equations—to our best knowledge the
most widely used type of fluid simulation in computer
graphics—a significant portion of simulation time is de-
voted to enforce mass conservation via solving the pres-
sure Poisson equation (PPE). Common discretizations of
the Navier-Stokes equations consider the partial differential
equations at the points of a Cartesian grid and approximate
the differential operators by finite differences, or subdivide
the simulation domain into a finite set of subdomains (finite
volumes), and reformulate the partial differential equations
by considering the flows over the subdomain boundaries.
The discretization of the PPE leads to a linear system of
equations, which is often solved via the conjugate gra-
dient (CG) method using simple preconditioners such as
incomplete Cholesky factorization [1], and now more and
more often via geometric multigrid methods (used as direct
solvers or as CG preconditioners) [2], [3], [4].

In many cases (see, for instance, the scenario in
Fig. 1(left)), geometric multigrid methods converge ex-
tremely well at significantly better rates than the CG method
with simple preconditioners. However, multigrid methods
can converge slowly in complicated domains where phys-
ically separated regions are combined on coarser grids,

• Christian Dick, Marcus Rogowsky, and Rüdiger Westermann are with
the Computer Graphics and Visualization Group, Technische Universität
München, Germany.
E-mail: {dick, m.rogowsky, westermann}@tum.de

such as shown in Fig. 1(right). In such cases, the correction
term that is computed on a coarse grid refers to a domain
topology that is inconsistent with the initial topology. As a
consequence the coarse grid correction becomes ineffective.

In this work we perform an exhaustive convergence
study of existing geometric multigrid solvers for the PPE.
This study indicates that in simple scenarios most exist-
ing multigrid solvers converge more or less equally well,
yet in complicated scenarios a significant decrease of the
convergence rate can be perceived. We demonstrate that in
such scenarios the simulation time can be vastly dominated
by the time required by the pressure solve, and that the
convergence of geometric multigrid solvers can even be
slower than the convergence of the CG method with simple
preconditioners.

To improve multigrid convergence for a finite volume
discretization of the Euler equations in a complicated do-
main, Aftosmis et al. [5] introduced the concept of split-
cells. The key idea is to duplicate cells at coarser scales to
effectively keep physically disconnected fluid parts distinct
at these scales. Cell duplication is controlled by using a
graph representation of the domain topology. Ferstl et al. [6]
adopted this concept for solving the PPE in the context of a
finite element discretization of the Navier-Stokes equations.

Our second contribution is a generalization of the con-
cept of split-cells to common discretizations of the PPE on
uniform grids: A standard finite difference discretization
with the fluid boundaries being aligned along cell faces [7],
and embedded boundary discretizations to handle curved
free-surface and solid-wall boundaries [8], [9]. To achieve
this we adapt the topology-aware approach by Aftosmis et
al. and Ferstl et al. to obtain trilinear interpolation in the
multigrid hierarchy when applied to discretizations with
cell-centered pressure DOFs. Our approach achieves very

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, X 201X 2

Fig. 1. The convergence rate of geometric multigrid methods for solving the pressure equation in fluid simulations can deteriorate significantly when
going from a simple (left) to a more complicated domain (right). The colors of the particle trajectories encode increasing velocity values on a green
to red color scale.

fast convergence independent of the geometry and topology
of the simulation domain, yet it increases memory consump-
tion. This renders the approach suitable for time-critical
applications on well-equipped computing architectures that
need to consider complicated domains. We also demon-
strate, however, that for simple scenarios the additional
investment can hardly be amortized.

For a discretization at hand, the proposed approach takes
as input the computational stencils on the initial grid, and
builds the hierarchy of coarse grids and the interpolation
operators from the given domain geometry and topology
(connectivity). The coarse grid and restriction operators
are obtained algebraically using variational principles. This
(primarily geometric) approach thus is related to algebraic
multigrid schemes, which obtain the coarse grid and restric-
tion operators in the same way, but in contrast use solely the
information contained in the system matrix to determine
the sets of coarse grid unknowns and the interpolation
operators, neither explicitly taking into account the under-
lying differential equation nor the domain geometry and
topology. We further analyze a purely algebraic multigrid
approach for solving the PPE, and we compare its con-
vergence behavior and performance to geometric multigrid
approaches.

2 RELATED WORK

We consider single-phase fluid simulation on Cartesian
grids using discretizations of the incompressible Navier-
Stokes equations. We cannot attempt here to survey the vast
body of literature related to grid-based fluid simulation, for
which our solver is designed. Yet for a thorough introduc-
tion to the field let us refer to the book by Bridson [10],
where the principles and algorithms used in such simula-
tions are discussed.

Following the work by Stam [11], we solve for the fluid
velocity u in two passes. First, by ignoring the pressure
term, we compute an intermediate velocity u∗ by applying
body forces, diffusion, and semi-Lagrangian advection. The
latter uses trilinear or higher order velocity interpolation,
or FLIP [12] to better compensate dissipation. Due to mass
conservation, the final velocity field u = u∗− dt

ρ ∇p must be
divergence free. This is achieved by interpreting the pres-
sure p as a correction term, which is determined by solving

the pressure Poisson equation (PPE) −∆p = − ρ
dt∇ · u

∗.
Here, dt is the length of the current time step, and ρ is the
fluid density.

For the discretization of the incompressible Navier-
Stokes equations on uniform grids different schemes can be
employed. Due to its simplicity and resulting computational
efficiency, a finite difference discretization on a staggered
grid is often used [7], [13]. In its standard form, however,
it models fluid boundaries that are aligned along the faces
of the grid cells. Embedded boundary discretizations also
handle curved (i.e., non-aligned to cell faces) free-surface
and solid-wall boundaries corresponding to Dirichlet and
Neumann boundary conditions in the PPE. In our work
we consider the standard finite difference discretization,
and the embedded boundary discretizations proposed by
Batty et al. [8] and Ng et al. [9]. The former accounts
for the fluid/solid coupling by using a variational (energy
minimization) formulation of the pressure projection, which
considers the fluid fractions within cells centered around
the staggered locations of the velocity samples. The latter
obtains a second-order accurate finite volume discretization
of fluid/solid boundaries by considering the fractions of the
cell faces occupied by the fluid. Both methods are combined
with the ghost fluid method [14] to also handle curved
fluid/air boundaries. The ghost fluid method introduces
additional (‘ghost’) cell-centered pressure DOFs adjacent to
these boundaries on the air side, and prescribes the pressure
values obtained by linear interpolation between ghost and
real pressure DOFs at the actual boundary locations.

The linear system of equations arising from the PPE dis-
cretization is often solved via the CG method using simple
preconditioners, for instance, an incomplete Cholesky pre-
conditioner [1], [10]. Although such black box solvers can be
easily implemented and readily applied to any linear system
of equations with symmetric positive definite system matrix,
more sophisticated solvers such as multigrid methods can
considerably reduce computing times (see, for instance, the
recent tests performed by Setaluri and co-workers [15]). In
particular, multigrid methods scale optimally in that they
reach a certain residual tolerance in a number of operations
that is linear in the number of unknowns (i.e., the number
of required solver cycles is independent of the grid spac-
ing). For thorough introductions to multigrid methods we
recommend the books by Brandt and Livne [16], Briggs

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, X 201X 3

et al. [17], and Trottenberg and co-workers [18]. For fluid
simulations in computer graphics, multigrid methods were
used as direct solvers [2], [4], [19], [20], or as preconditioners
for the CG method [3], [6], [15].

Underlying geometric multigrid methods is the dis-
cretization of the governing equations on a hierarchy of
successively coarser grids, and the prolongation and restric-
tion of the quantities computed on these grid via specific
inter-grid transfer operators. For discretizing the partial
differential equation on the coarse grids, different strategies
to handle the fluid boundaries were proposed.

McAdams et al. [3] treated obstacles at coarser scales
via object coarsening, and performed boundary sweeps to
explicitly smooth the system in the Dirichlet and Neumann
boundary regions. Boundary sweeps in combination with
a virtual node algorithm were later used by Hellrung et
al. [21] to efficiently solve elliptic interface problems.

Johansen and Colella [22] used volume-weighted aver-
aging of fine grid cells to handle embedded boundaries in
coarse grid cells. Chentanez and Müller [4] employed the
variational formulation by Batty et al. [8] combined with the
ghost fluid method [14] to consider embedded boundaries
on the coarse grids.

Instead of directly discretizing the partial differential
equation on the coarse grids, an alternative approach is to
follow a variational principle, according to which the coarse
grid operators are obtained via Galerkin-based coarsening,
and the restriction operators as transposes of the inter-
polation operators [17]. Note that in this case no explicit
treatment of the boundary conditions is required on the
coarse grids.

Weber et al. [23] proposed the embedding of the finite
volume cut-cell formulation of Ng et al. [9] into a geometric
multigrid scheme. By using piecewise constant interpolation
instead of trilinear interpolation, in their approach Galerkin-
based coarsening coincides with the direct discretization
of the PPE on the coarse grids. We demonstrate in this
paper the importance of trilinear interpolation for achieving
improved convergence.

A distinct challenge is to handle complicated domain
topologies on the coarse grids. Aftosmis et al. [5] duplicated
cells at coarser scales by using a graph-based representa-
tion of the domain topology, in order to avoid merging
physically disconnected domain parts. This strategy was
later also employed by Ferstl et al. [6] to achieve improved
convergence for a hexahedral finite element discretization of
the PPE. To leverage multigrid for solving the Poisson equa-
tion on a mesh, Chuang and Kazhdan [24] used a nested
hierarchy of regular Cartesian grids into each of which
the mesh is embedded. They obtained a topology-aware
finite element discretization on each level by enriching the
FEM function spaces, which is mathematically equivalent to
element duplication.

The paper is organized as follows: In the next section we
describe how to make multigrid convergence independent
of the complexity of the simulation domain for different
kinds of PPE discretizations. We then perform an exhaus-
tive convergence study using different solvers and PPE
discretizations. We conclude the paper with some remarks
on future work, and we give details on our specific imple-
mentation of the topology-aware multigrid approach.

3 ROBUST GEOMETRIC MULTIGRID

A geometric multigrid method combines a hierarchy of suc-
cessively coarser grids, coarse grid and transfer operators,
and a relaxation scheme (smoother). The idea behind multi-
grid is to accelerate a basic relaxation scheme by restricting
the residual after a few relaxation steps to a coarser grid,
computing the error on this grid, and interpolating the error
back to the fine grid. Applying this principle recursively
on a hierarchy of grids to determine the error leads to a
basic grid traversal scheme referred to as V-cycle, which is
outlined in Algorithm 1.

Algorithm 1
procedure V-CYCLE

for ` = 0, . . . , L− 1 do . Go down in the V-cycle
if ` > 0 then x` ← 0 end if
Relax A`x` ≈ b` . Apply smoother
r` ← b` −A`x` . Compute residual
b`+1 ← R`+1

` r` . Restrict residual
end for
Solve ALxL = bL directly . Solve on coarsest level
for ` = L− 1, . . . , 0 do . Go up in the V-cycle

x` ← x` + I``+1x
`+1 . Interpolate error & correct

Relax A`x` ≈ b` . Apply smoother
end for

end procedure

We propose a geometric multigrid method, which con-
structs a structured geometric hierarchy from a given uni-
form simulation grid, with the pressure DOFs being located
at the centers of the grid cells. The method takes as input
the information which cells carry a pressure DOF, as well as
the 7-point stencils for these cells.

Whether a certain grid cell carries a pressure DOF
depends on the discretization that is employed, and is
determined as follows: In the standard finite difference
discretization, obstacles are rasterized into the grid at the
finest level, using the cells’ midpoints for classification into
solid and empty. In the simulation we distinguish between
smoke simulation, where all empty cells are set to fluid
cells, and liquid simulation, where an empty cell becomes
a fluid cell when its midpoint is inside a tracked level-
set boundary surface. Every fluid cell carries a pressure
DOF. For curved boundaries according to Batty et al. [8]
in combination with the ghost-fluid method [14], a cell is
considered as solid if it is contained entirely in an obstacle.
Non-solid fractions ∈ [0, 1] are computed for every pair of
face-adjacent cells. The conversion of empty cells into fluid
cells is equal to the standard finite difference scheme, yet in
addition to one pressure DOF for every fluid cell, we also
assign a DOF to a solid cell if it is face-adjacent to a fluid
cell and their associated non-solid fraction is non-zero. For
curved boundaries according to Ng et al. [9] in combination
with the ghost fluid method [14], a cell carries a DOF iff
the intersection between the cell boundary with the interior
of the fluid domain is non-empty. For simplicity we do not
consider cells simultaneously filled with air, fluid, and solid,
however, this can be achieved, for instance, by following the
methods discussed in the book by Bridson [10].

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, X 201X 4

Level 0

Level 1

1 1 1 1

(a) FD/FV, merging cells

Piecewise constant
interpolation

1

4 3

4

3

4

1

4

1

4 3

4

(b) FD/FV, merging cells

Linear
interpolation

1
1

2

1

2 1
1

2

1

2 1

(c) FD/FV, merging vertices

Linear
interpolation

1
1

2

1

2 1
1

2

1

2 1

(d) Linear FEM, merging elements

Linear
interpolation

Cell

Element

Level 0

Level 1

Cell

Cell

3

4

1

4

Fig. 2. Illustration of different multigrid hierarchies and accompanying
interpolation operators. For simplicity, the 1D case is shown.

3.1 Multigrid Hierarchy—Principles
In general, the multigrid hierarchy is constructed by increas-
ing the grid spacing by a factor of 2 in each dimension
with each coarser level. The hierarchy construction can be
described in terms of merging cells or merging vertices. For
the considered finite difference/volume discretizations of
the PPE, the unknowns (the pressure DOFs) are located at
the cell centers of the simulation grid (referred to as a cell-
centered discretization). Merging cells on a basis of adjacent
23-blocks, followed by introducing unknowns at the cell
centers leads to a grid hierarchy where the unknowns at
a certain level are located at distinct positions than the
unknowns on the previous finer level (see Figure 2). Con-
sidering the multigrid interpolation operators, piecewise
constant interpolation (case (a), used e.g. in [23]), or trilinear
interpolation (case (b), used e.g. in [3], [4]) can be used on
this hierarchy.

After introducing vertices at the cell centers of the simu-
lation grid, a different hierarchy can be obtained by merging
vertices on a basis of overlapping 33-blocks, followed by
introducing unknowns at the vertices. For this hierarchy,
the locations of the unknowns on a certain level are a subset
of the locations of the unknowns on the previous finer level
(case (c)). This naturally lends itself to trilinear interpolation.

Unfortunately, piecewise constant interpolation leads to
reduced convergence rates in comparison to trilinear inter-
polation. In particular, multigrid theory suggests that the
sum of the order of the restriction operator and the order
of the interpolation operator (which both are 1 when using
piecewise constant interpolation and the transpose of the
interpolation operator as the restriction operator) should
be greater than the order of the differential operator in
the partial differential equation (which is 2 for the Pois-
son equation), in order to achieve good convergence [18,
page 60]. The superior convergence resulting from trilinear
interpolation over piecewise constant interpolation is also
demonstrated in the convergence study presented in Section
4.

The standard approach for constructing the multigrid
hierarchy is to take into account only the geometric locations

of the cells (respectively vertices), i.e., a coarse grid cell
(vertex) is created if at least one of the cells (vertices)
of the respective 23-block (33-block) on the previous finer
level exists, and all cells (vertices) of this block restrict
to/interpolate from the considered coarse grid cell (vertex).
Note that this approach does not take into account that cells
(vertices) might belong to physically distinct parts of the
simulation domain, for instance fluid regions separated by
a wall. To address this issue, Aftosmis et al. [5] proposed
a topology-aware coarsening strategy based on merging
cells, which potentially creates multiple cells at the same
location in order to represent separated domain parts on
the coarser grids. This approach is limited to piecewise
constant interpolation when used in the context of cell-
centered finite difference/volume discretizations (case (a)),
as in the original work. Note that it is not clear how to adapt
the approach in order to enable trilinear interpolation as
depicted in case (b). Ferstl et al. [6] adopted the strategy to
enable topology-aware coarsening in the context of a finite
element discretization. Using trilinear hexahedral elements
automatically leads to trilinear interpolation operators (case
(d)).

In the following, we present a novel topology-
aware multigrid hierarchy for cell-centered finite differ-
ence/volume discretizations that leads to trilinear interpo-
lation operators, and thus avoids the reduction of conver-
gence rate resulting from piecewise constant interpolation.
In contrast to the approach by Aftosmis et al. [5] which is
based on merging cells (case (a)), our approach is based on
merging vertices (case (c)).

3.2 Topology-Aware Multigrid Hierarchy Construction

We construct the geometric multigrid hierarchy successively
from the finest to the coarsest level (level numbers 0, . . . , L).
On the finest level, the grid vertices exactly correspond to
the pressure DOFs, which are located at the cell centers of
the simulation grid and assigned as described above. By
choosing the coordinate system appropriately, these vertices
lie on the lattice Z3. With each coarser level, we double the
grid spacing, such that the vertices on level ` lie on the lattice
2`Z3 (in particular, the vertices are aligned with the vertices
on the previous levels).

To represent the domain topology on each level, we
employ an undirected graph G` = (V `, E`), where V `

denotes the set of grid vertices on level `, and E` ⊂
(V `

2

)
is a set of edges modeling the domain connectivity between
26-adjacent vertices. On the finest level, V 0 is given by the
pressure DOFs, and two vertices are connected by an edge
iff the cells containing the respective pressure DOFs are face-
adjacent (see Figure 3).

To construct the respectively next coarser level ` from
the previous level ` − 1, we proceed as follows. For each
potential coarse grid vertex position x ∈ 2`Z3, we consider
the subgraph of G`−1 that is induced by the set of vertices
that lie in the 33-block around x with respect to the lattice
2`−1Z3. We determine the connected components of this
subgraph, and for each connected component, we create
a distinct coarse grid vertex v at position x. Interpolation
and restriction will later occur exactly between the vertices
of a connected component, and its associated coarse grid

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, X 201X 5

4

1

2

3

0

5

6

7

8

9

10

0 1 2 3 4

Level 0 Level 1 Level 2

0 2 4

4

2

0

6

8

10

12

0 4

4

0

8

12

-1 5
-1

11

-2 6
-2

14

Fig. 3. Construction of the topology-aware multigrid hierarchy. For sim-
plicity, the 2D case is shown. Red dots and lines denote the vertices
and edges of the graphs used to represent the topology on each level.
The blue dashed lattices indicate the possible vertex locations on each
level. The black squares on level 0 depict the simulation cells carrying
a pressure DOF. The overlapping 33-blocks of vertices (corresponding
to 23-blocks of lattice cells) in which graph connected components are
determined are indicated by the checkerboard pattern. For example, the
33-block centered around the vertex at position (4, 4) on level 0 contains
two connected components (indicated in green). For each connected
component, a separate vertex at position (4, 4) is created on level 1. The
other 33-blocks on level 0 contain at most one connected component,
thus there are no further duplicated vertices on level 1.

vertex (see Section 3.3). Since by construction no further
vertex restricts to v, the connected component thus consti-
tutes the entire set of vertices that restrict to v. This set is
denoted by Rv (see Figure 4(a)). It is important to note that
according to this construction principle, multiple vertices
might reside at the same position, but each belongs to a
topologically separated part of the simulation domain that
is covered by the considered 33-block. After constructing
the coarse grid vertices V `, we build E` by creating an edge
{v1, v2} between two coarse grid vertices v1, v2 ∈ V ` iff
Rv1 ∩ Rv2 6= ∅, i.e., the subgraphs associated with the two
coarse grid vertices share at least one vertex. For complete-
ness, let us here also introduce the set Iv of vertices a certain
vertex v interpolates from (see Figure 4(a)). Since a vertex
interpolates from exactly those vertices it restricts to, it is
Iv = {vc ∈ V `+1; v ∈ Rvc} and Rv = {vf ∈ V `−1; v ∈ Ivf }
for v ∈ V `. Moreover, the statement that the subgraphs as-
sociated with the two coarse grid vertices share at least one
vertex is equivalent to that there is a vertex on level `−1 that
interpolates from both coarse grid vertices v1 and v2, i.e.,
{v1, v2} ∈ E` ⇔ Rv1∩Rv2 6= ∅ ⇔ ∃vf ∈ V `−1 : v1, v2 ∈ Ivf
(see Figure 4(b)). As a consequence, the edges of the graph
are implicitly given by the sets of interpolation vertices, and
do not have do be determined and stored explicitly (see
remarks on the implementation in the Appendix).

A different view of the constructed hierarchy considers
the vertex associations successively over multiple levels,
to explain the structure of the hierarchy in relation to the
fluid domain topology. It can be shown that the sets of
vertices on level ` that are associated with the (duplicated)
coarse grid vertices on level `c (`c > `) at a certain position
constitute the connected components of the subgraph on

Level ℓ − 1

Level ℓ

Level ℓ + 1

𝑣

𝑅𝑣

𝐼𝑣1

2

1

2

1

2 1
1

2

𝑣1 𝑣2

𝑅𝑣1 𝑅𝑣2𝑣𝑓

𝐼𝑣𝑓

(a) (b)

Fig. 4. (a) Illustration of the set Rv of vertices that restrict to a certain
vertex v, and the set Iv of vertices from which v interpolates. (b)
Illustration of Rv1 ∩ Rv2 6= ∅ ⇔ ∃vf ∈ V `−1 : v1, v2 ∈ Ivf . Both
illustrations show the 1D case for simplicity.

level ` induced by the vertices in the (2`c−`+1 − 1)3-block
of the lattice 2`Z3 centered around the considered position.
With respect to the finest level ` = 0, this means that
physically disconnected fluid parts remain disconnected on
coarser scales, yet locally separated but globally connected
parts are merged on one of the coarser levels. This merging
seems counter-constructive at first glance, since it merges
fluid parts across the boundaries of obstacles in the domain,
yet it only happens on a level `c if these parts become
connected in one of the (2`c+1 − 1)3-blocks of the lattice Z3

centered around the potential coarse grid vertex positions
2`cZ3.

3.3 Coarse Grid and Transfer Operators
We use trilinear interpolation operators I``+1. The restriction
and coarse grid operators are chosen according to the vari-
ational properties of multigrid [17], which are also used in
the context of algebraic multigrid methods [18]. Considering
the linear equation system A`x` = b` on level ` with current
approximate solution x̃`, the coarse grid correction I``+1x

`+1

is determined such that the error is minimized with respect
to the A-energy norm ‖x‖A =

√
xTAx (A symmetric,

positive definite), corresponding to solving

∂

∂x`+1

∥∥∥x` − (x̃` + I``+1x
`+1)

∥∥∥2
A`

= 0,

which is equivalent to solving

(I``+1)TA`I``+1︸ ︷︷ ︸
=: A`+1

x`+1 = (I``+1)T︸ ︷︷ ︸
=: R`+1

`

(b` −A`x̃`)︸ ︷︷ ︸
= r`

,

where r` is the current residual. From this we can di-
rectly obtain the coarse grid operators by Galerkin-based
coarsening according to A`+1 = R`+1

` A`I``+1, and the
restriction operators by transposition of the interpolation
operators, i.e., R`+1

` = (I``+1)T. The latter equation means
that interpolation and restriction occur between the same
pairs of vertices and using the same weights. Using this
approach automatically leads to fully consistent coarse grid
and transfer operators over the entire multigrid hierarchy.
Note in particular that no explicit handling of boundary
conditions on the coarse grids is necessary.

When using these coarse grid and transfer operators, it is
required that the transfer operators have full rank, to make

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, X 201X 6

0 1 2

0

1

2

1

4

1

4

1

4

1

4

Fig. 5. 2D example showing an interpolation operator not having full
rank. Here, the grid on level 0 consists of a single vertex, which is
indicated by the small black dot. The vertices on level 1 are depicted
by the black circles.

the resulting coarse grid operators symmetric positive def-
inite. In combination with a converging smoothing scheme
(such as Gauss-Seidel relaxation), it can then be shown
that the convergence of the constructed multigrid solver
is guaranteed [18]. Due to the particular construction of
the coarse grid hierarchy we employ, the resulting transfer
operators do not necessarily have full rank yet. A simple
example is shown in Figure 5. To address this issue, we
carefully remove some vertices on the coarse grids.

The transfer operators have full rank, iff the kernel of
I`−1` contains only the zero vector. This is achieved by
means of the following algorithm, which ensures that the
values at the vertices on level `−1 obtained by interpolation
from given values at the vertices on level ` are zero, only if
the latter are zero.

We process the levels successively, starting with level
` = 1 and continuing with higher level numbers. Con-
sider the processing of level `. We employ a flag at each
vertex on level `, which can take the values ‘free’, ‘zero’,
or ‘removed’. The flags are initialized with ‘free’. We then
iterate over the vertices on level ` − 1 in an order given by
always choosing one of the remaining vertices for which
the number of associated interpolation vertices (on level
`) that in the current iteration carry the ‘free’ flag is min-
imal. This order is obtained efficiently by using buckets
and assigning the vertices according to this number. If the
currently considered vertex has a ‘free’ interpolation vertex,
we set one arbitrary ‘free’ interpolation vertex to ‘zero’,
and the other ‘free’ interpolation vertices to ‘removed’. By
choosing this particular visitation order of the vertices, we
seek to heuristically minimize the number of vertices that
are removed, and thus to avoid a potential negative effect on
the approximation quality of the coarse grids. In particular
it is worth noting that for each vertex on level `− 1 that lies
on the underlying lattice 2`Z3 of the next coarser level, its
single interpolation vertex on this level is always preserved.
Vertex removal thus can only occur at the fluid boundaries.
After the iteration over the vertices is completed, the non-
‘zero’ coarse grid vertices are removed (or masked), and
the next level is processed. The interpolation weights are
normalized, such that they sum up to 1 at each vertex.

It is important to note that although the coarse grid
and transfer operators are written as matrices in the math-
ematical formulation, they are never explicitly built in our
matrix-free implementation. In particular, the hierarchy is
represented by means of sets of interpolation, restriction,
and stencil vertices (the latter denoting the sets of vertices

induced by the footprints of the numerical stencils). The
interpolation and restriction operators are represented as
scalar interpolation and restriction weights, associated with
the interpolation and restriction vertices. Finally, the coarse
grid operators are represented as scalar stencil coefficients,
associated with the stencil vertices. Further details on our
implementation are given in the Appendix.

3.4 Smoother and Grid Traversal
For smoothing, we use red-black Gauss-Seidel relaxation
on the finest level (corresponding to 7-point stencils), and
8-color Gauss-Seidel relaxation on all other levels (corre-
sponding to 27-point stencils). We employ standard V-cycles
with one pre- and one post-smoothing Gauss-Seidel relax-
ation step. The colors during post-smoothing are traversed
in reverse order than during pre-smoothing, which allows
us to use the V-cycle as a preconditioner for the conjugate
gradient method. Note that if the V-cycle is used as a
CG preconditioner, x0 must be initialized with 0 before
performing the V-cycle. On the coarsest level, a conjugate
gradient solver is used. The number of levels is chosen such
that there are ≤ 1024 vertices on the coarsest level.

3.5 Memory Requirements
By using a topology-aware multigrid hierarchy and
Galerkin-based coarsening instead of directly discretizing
the partial differential equation on the individual levels,
additional memory requirements arise. Specifically, using
Galerkin-based coarsening, it is required to store the coef-
ficients of the numerical stencils on levels ` ≥ 1, whereas
for a direct discretization, the stencils can be assembled on-
the-fly on all levels from the respective cell classification.

Moreover, since in the topology-aware hierarchy on lev-
els ` ≥ 1 multiple vertices can reside at the same location,
an indexed-based representation is required on these levels.
Therefore, we enumerate the vertices and store for each
vertex the indices of the stencil vertices, the indices of
the restriction vertices, the respective restriction weights,
as well as two offsets into the two arrays storing the in-
dices (linearized over all vertices). To reduce the additional
memory requirements, the sets of interpolation vertices are
disposed after assembling the numerical stencils on the
coarse grids, i.e., the respective memory can be shared by
other data. In the multigrid V-cycle, interpolation therefore
is realized by scattering the values from the coarse grid
vertices on a certain level to the vertices on the next finer
level, using the sets of restriction vertices. In contrast, for
a standard hierarchy (without vertex duplication) an index-
free representation can be used on all levels, since the stencil
vertices, the restriction vertices, and the restriction weights
are given implicitly by the regular Cartesian grid.

Considering the additional memory requirements, it is
important to note that the number of vertices is reduced by a
factor of 1/8 with each coarser level. Therefore, storing the 27
coefficients per stencil on the coarse grids creates additional
memory requirements of (1

8 + (1
8)2 + . . .) · 27 ≈ 3.9 floating

point values per pressure DOF. Storing the 27 indices of the
stencil vertices, the 27 indices of the restriction vertices, the
27 restriction weights, and the 2 array offsets costs another
(1
8 + (1

8)2 + . . .) · (27 · 4 + 27 · (4 + 1) + 2 · 4) ≈ 36 bytes

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, X 201X 7

Fig. 6. Setup of the different scenarios used in the convergence tests
(from top to bottom: ‘sphere’, ‘city’, ‘maze’ scenario). The figure shows
the center horizontal cross section through the 3D wind tunnel. Light
blue, dark gray, and red color denotes fluid, solids, and empty space,
respectively. For the last two scenarios, the obstacles range over the
entire vertical extent of the wind tunnel.

per pressure DOF, when using 32-bit indices, 8-bit weights
(stored as fractions using 4 bits each for the numerator and
the denominator), and 32-bit offsets. Since each vertex on
average has 1+3·2+3·4+8

8 associated interpolation vertices,
storing the indices of the interpolation vertices, the inter-
polation weights, and 1 additional array offset would cost
another (1+ 1

8 +(1
8)2 + . . .) · (27

8 · (4+1)+4) ≈ 24 bytes per
pressure DOF. Note that all numbers are approximate, since
duplicated vertices have not been counted. (Their number
is typically rather small compared to the overall number of
vertices.)

4 CONVERGENCE STUDY

In the following, we compare and analyze the convergence
of different multigrid solvers in a number of experiments.
Our tests have been run on a desktop PC, equipped with an
Intel Xeon E5-1650 v2 six-core processor running at 3.5 GHz
(because all compared multigrid solvers can be parallelized
equally well, only a single core has been used) and 32 GB
RAM (DDR3 1866 MHz). Double floating point precision has
been used for all experiments. In all of our experiments, the
7-point stencils at the pressure DOFs have been precom-
puted and stored in main memory. As an alternative, for all
solvers the stencils could also be assembled on-the-fly from
a given cell classification.

4.1 Setup

The basic setup for our experiments is shown in Figure 6.
We consider a virtual wind tunnel of size 16 m× 4 m× 4 m,
with inflow conditions on the left side (velocity uin =
(30, 0, 0)T m

s), outflow conditions on the right side (p =
0 Pa), and slip conditions on all other sides. For the obstacles
inside the wind tunnel, no-slip conditions are applied. The
fluid density is set to ρ = 1.2 kg

m3 . For the convergence exper-
iments, the intermediate velocity before pressure projection
has been set to u∗ = (−10, 0, 0)T m

s over the entire domain,
the time step length to dt = 20 ms, and the pressure has
been initialized with p = 0 Pa.

To analyze the impact of the domain complexity on
the solvers’ performance, we use three different simulation
scenarios (see Figure 6): In the first scenario, a single sphere-
shaped obstacle is placed into the wind tunnel, a setup
which is very often used in the literature. In the second
scenario, the wind tunnel is populated by 10 box-shaped
obstacles (which are rotated against the grid), resembling
a city model. In addition, 50 sphere-shaped empty regions
are inserted. While in the other two scenarios a Dirichlet
boundary is present only on the right side (the outflow) of
the wind tunnel, this scenario thus demonstrates the solvers’
performance in the context of more complicated Dirichlet
boundaries. In the third scenario, a maze-like obstacle is
placed into the wind tunnel. Fluid simulations based on
very similar scenarios are shown in Figures 1 and 9.

To demonstrate the generic adaptation of our approach,
we use three different discretizations of the pressure Poisson
equation: A standard finite difference discretization with
grid-aligned fluid boundaries [7], and the embedded bound-
ary discretizations according to Batty et al. [8] and Ng et
al. [9] to handle curved solid-wall boundaries. The latter
two are used in combination with the ghost-fluid method
to support curved free-surface boundaries. To examine the
solvers’ scalability, we further employ two different grid
resolutions: 300 × 75 × 75 and 600 × 150 × 150. Since
our topology-aware multigrid hierarchy is tailored for cell-
centered finite difference/volume discretizations, we do not
consider finite element discretizations in our study. Note
that a meaningful comparison of solver performances with
respect to different discretizations would require to also take
the accuracy of the respective discretizations into account.

4.2 Solvers

In our analysis, we consider the topology-aware, Galerkin-
based multigrid solver presented in Section 3 as a direct
solver (MG+) or as a preconditioner for the conjugate
gradient method (MGPCG+). To analyze the impact of the
topology-aware hierarchy (with vertex duplication, super-
script +), we have also included corresponding variants
with a standard hierarchy (without vertex duplication, su-
perscript −) (see Section 3.1). To highlight the improved
convergence behavior obtained via trilinear instead of piece-
wise constant interpolation operators, we have further in-
cluded corresponding solver variants with piecewise con-
stant interpolation operators (suffix pc). For these solvers,
the hierarchy is built by merging cells (case (a) in Figure 2)
rather than merging vertices (case (c) in Figure 2), and using
cell duplication according to Aftosmis et al. [5] and Ferstl et
al. [6] for the topology-aware variant.

For comparison, we have re-implemented and included
the multigrid solvers proposed by McAdams et al. [3] and
Chentanez and Müller [4]. Note that these solvers are con-
ceptually limited to grid-aligned boundaries and the curved
boundaries by Batty et al., respectively. To guarantee that
all solvers use similar data structures and code optimiza-
tions, we have decided to use our own implementations.
The solver implementation by McAdams et al. [25] has
been extended to avoid padding—and performance losses
thereof—in non-power-of-two cases. Yet we have carefully
verified that the original and our implementation show

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, X 201X 8

the same convergence behavior with respect to the num-
ber of performed V-cycles. The solver has been configured
as described in the original work and the accompanying
source code. The solver by Chentanez and Müller has been
configured as described in the original work, yet only full
multigrid cycles have been used for the convergence mea-
surements (in the original work, a fixed number of 3 full
multigrid cycles plus 4 V-cycles were used per simulation
frame).

Moreover, we have included a conjugate gradient solver
with incomplete Cholesky IC(0) preconditioner (ICPCG)
and modified incomplete Cholesky MIC(0) preconditioner
(MICPCG), implemented according to the book by Bridson
[10].

Overall we feel confident that a fair comparison of all im-
plementations with respect to convergence rate is possible.
In particular, our implementations of the different solvers
are based on the same code wherever possible (e.g., the
surrounding CG solver, into which the respective multigrid
cycle is embedded as a preconditioner).

The topology-aware multigrid solvers use Galerkin-
based coarsening and restriction operators that are the
transpose of the interpolation operators, both of which are
also used in algebraic multigrid (AMG) methods. Therefore,
we have also included an AMG solver in our study for
comparison. Specifically, we have chosen the BoomerAMG
solver from the Hypre library [26]. For this solver, the
original implementation has been used. The solver has been
configured as proposed in the supplied example for solving
a Poisson equation (file ex5.c). We have used Falgout coars-
ening, hybrid symmetric Gauss-Seidel/SSOR smoothing,
one pre- and one post-smoothing step on each level, and
the multigrid cycle has been used as a CG preconditioner.

4.3 Results

The results of our experiments are given in the form of
convergence graphs in Figures 7 and 8. Here we analyze
the computing time by which a given residual tolerance
is reached by a solver, rather than the number of cycles
that are required. The reason is that a single cycle can be
made very effective in reducing the residual, yet at the
expense of significantly increasing its computing time. For
example, increasing the number of smoothing steps in a
geometric multigrid method can lead to a significant better
residual reduction with respect to number of V-cycles. How-
ever, performing less expensive but more V-cycles might
possibly lead to a better residual reduction with respect
to computing time. Since computing time is the relevant
factor in practical applications, we plot the ‖.‖∞-norm of
the residual (normalized by the ‖.‖∞-norm of the residual at
the start of the solver) therefore over the elapsed computing
time, rather than over the cycle number. The staircases in
the convergence plots correspond to the individual solver
cycles.

A further important aspect is the solver setup time. For
the geometric multigrid solvers, the setup time consists of
the construction of the multigrid hierarchy, as well as the
assembly of the numerical stencils on the coarse grids. In the
convergence plots, the setup time is explicitly included in
the computing time, and is indicated by a constant residual

before residual reduction starts. The setup time must be
spent in every simulation frame when the fluid domain
and thus the system matrix changes, e.g., due to moving
obstacles or a free liquid surface. For smoke simulation with
fixed obstacles the system matrix does not change, i.e., in
this case the setup time must be spent only in the very first
simulation frame.

When considering the convergence plots in Figure 7, it
can be observed that the MGPCG+ solver achieves by far
the best convergence in all simulation scenarios, and for all
PPE discretizations and grid resolutions. It is particularly
remarkable that its performance is almost independent of
the complexity of the simulation scenario, works equally
well for all three discretizations, and scales linearly in
the number of pressure DOFs. These properties are also
provided by the BoomerAMG solver, which achieves a
convergence rate that is equal to that of the MGPCG+

solver. However, the setup time of the algebraic multigrid
solver is significantly longer than that of the geometric
multigrid solver, and exceeds significantly the computing
time required for performing the multigrid cycles.

Except those two solvers, the convergence behavior of
all other solvers depends on the complexity of the simula-
tion scenario. It can be observed that the ‘sphere’ scenario
and the ‘city’ scenario have a similar complexity from
these solvers’ perspective, whereas the maze scenario has
a significantly higher complexity. The multigrid solver by
McAdams et al. shows only slightly slower convergence
than the MGPCG+ solver in the first two scenarios, yet
the convergence rate is reduced significantly in the maze
scenario. A similar behavior can be observed for the multi-
grid solver by Chentanez and Müller, which in the first two
scenarios shows only a slightly lower convergence rate than
the MGPCG+ solver, and at the beginning is even faster due
to a shorter setup time. However, in the third scenario this
solver converges only very slowly.

While in the first two scenarios the standard hierarchy
(without vertex duplication) and the topology-aware hier-
archy (with vertex duplication) are virtually identical, in
the ‘maze’ scenario the standard hierarchy merges locally
separated fluid domains on the coarser scales, whereas the
topology-aware hierarchy keeps them separated. For the
multigrid solvers by McAdams et al. and Chentanez and
Müller, which both use a standard hierarchy, this leads
to a deterioration of the convergence rate. It is further
important to note that the solver by McAdams et al. is only
applicable to the grid-aligned boundary discretization of
the PPE, and the solver by Chentanez and Müller only to
the curved boundary discretization by Batty et al., whereas
the proposed MGPCG+ solver can be used in combination
with any of the considered discretizations. For the ICPCG
and MICPCG solvers, the computing time roughly doubles
when going from the ‘sphere’ and ‘city’ scenarios to the
‘maze’ scenario.

When the grid resolution is doubled in each dimension,
the solvers’ behavior remains more or less the same. Con-
sidering the scalability of the multigrid solvers, the measure-
ments confirm that the number of multigrid cycles required
to reach a certain residual tolerance is independent of the
grid resolution, resulting in a linear run-time in the number
of unknowns. In contrast, for the ICPCG and MICPCG

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, X 201X 9

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

R
es

id
ua

l |
r|
∞

/

|r
0|
∞

Computing Time [s]

Sphere, 300 x 75 x 75, Grid-Aligned Boundaries

MGPCG+

MG+
ICPCG

MICPCG
McAdams

BoomerAMG

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

R
es

id
ua

l |
r|
∞

/

|r
0|
∞

Computing Time [s]

City, 300 x 75 x 75, Grid-Aligned Boundaries

MGPCG+

MG+
ICPCG

MICPCG
McAdams

BoomerAMG

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

R
es

id
ua

l |
r|
∞

/

|r
0|
∞

Computing Time [s]

Maze, 300 x 75 x 75, Grid-Aligned Boundaries

MGPCG+

MG+
ICPCG

MICPCG
McAdams

BoomerAMG

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

R
es

id
ua

l |
r|
∞

/

|r
0|
∞

Computing Time [s]

Sphere, 300 x 75 x 75, Curved Boundaries [Batty]

MGPCG+

MG+
ICPCG

MICPCG
Chentanez

BoomerAMG

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

R
es

id
ua

l |
r|
∞

/

|r
0|
∞

Computing Time [s]

City, 300 x 75 x 75, Curved Boundaries [Batty]

MGPCG+

MG+
ICPCG

MICPCG
Chentanez

BoomerAMG

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

R
es

id
ua

l |
r|
∞

/

|r
0|
∞

Computing Time [s]

Maze, 300 x 75 x 75, Curved Boundaries [Batty]

MGPCG+

MG+
ICPCG

MICPCG
Chentanez

BoomerAMG

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

R
es

id
ua

l |
r|
∞

/

|r
0|
∞

Computing Time [s]

Sphere, 300 x 75 x 75, Curved Boundaries [Ng]

MGPCG+

MG+
ICPCG

MICPCG
BoomerAMG

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

R
es

id
ua

l |
r|
∞

/

|r
0|
∞

Computing Time [s]

City, 300 x 75 x 75, Curved Boundaries [Ng]

MGPCG+

MG+
ICPCG

MICPCG
BoomerAMG

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

R
es

id
ua

l |
r|
∞

/

|r
0|
∞

Computing Time [s]

Maze, 300 x 75 x 75, Curved Boundaries [Ng]

MGPCG+

MG+
ICPCG

MICPCG
BoomerAMG

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

 0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480

R
es

id
ua

l |
r|
∞

/

|r
0|
∞

Computing Time [s]

Sphere, 600 x 150 x 150, Grid-Aligned Boundaries

MGPCG+

MG+
ICPCG

MICPCG
McAdams

BoomerAMG

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

 0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480

R
es

id
ua

l |
r|
∞

/

|r
0|
∞

Computing Time [s]

City, 600 x 150 x 150, Grid-Aligned Boundaries

MGPCG+

MG+
ICPCG

MICPCG
McAdams

BoomerAMG

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

 0 120 240 360 480 600 720 840 960 1080 1200

R
es

id
ua

l |
r|
∞

/

|r
0|
∞

Computing Time [s]

Maze, 600 x 150 x 150, Grid-Aligned Boundaries

MGPCG+

MG+
ICPCG

MICPCG
McAdams

BoomerAMG

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

 0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480

R
es

id
ua

l |
r|
∞

/

|r
0|
∞

Computing Time [s]

Sphere, 600 x 150 x 150, Curved Boundaries [Batty]

MGPCG+

MG+
ICPCG

MICPCG
Chentanez

BoomerAMG

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

 0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480

R
es

id
ua

l |
r|
∞

/

|r
0|
∞

Computing Time [s]

City, 600 x 150 x 150, Curved Boundaries [Batty]

MGPCG+

MG+
ICPCG

MICPCG
Chentanez

BoomerAMG

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

 0 120 240 360 480 600 720 840 960 1080 1200

R
es

id
ua

l |
r|
∞

/

|r
0|
∞

Computing Time [s]

Maze, 600 x 150 x 150, Curved Boundaries [Batty]

MGPCG+

MG+
ICPCG

MICPCG
Chentanez

BoomerAMG

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

 0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480

R
es

id
ua

l |
r|
∞

/

|r
0|
∞

Computing Time [s]

Sphere, 600 x 150 x 150, Curved Boundaries [Ng]

MGPCG+

MG+
ICPCG

MICPCG
BoomerAMG

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

 0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480

R
es

id
ua

l |
r|
∞

/

|r
0|
∞

Computing Time [s]

City, 600 x 150 x 150, Curved Boundaries [Ng]

MGPCG+

MG+
ICPCG

MICPCG
BoomerAMG

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

 0 120 240 360 480 600 720 840 960 1080 1200

R
es

id
ua

l |
r|
∞

/

|r
0|
∞

Computing Time [s]

Maze, 600 x 150 x 150, Curved Boundaries [Ng]

MGPCG+

MG+
ICPCG

MICPCG
BoomerAMG

Fig. 7. Convergence behavior of different multigrid solvers for the scenarios shown in Figure 6 (columns) and three different discretizations of the
PPE (rows), using two different grid resolutions (upper and lower block of 3 × 3 diagrams). The analysis includes the topology-aware multigrid
solver as a direct solver (MG+) or as a CG preconditioner (MGPCG+), a CG solver with incomplete Cholesky preconditioner (ICPCG) or modified
incomplete Cholesky preconditioner (MICPCG), the multigrid solvers by McAdams et al. and Chentanez and Müller, as well as the BoomerAMG
solver.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, X 201X 10

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

R
es

id
ua

l |
r|
∞

/

|r
0|
∞

Computing Time [s]

Sphere, 600 x 150 x 150, Grid-Aligned Boundaries

MGPCG+

MGPCG-
MG+

MG-
MGPCG+pc
MGPCG-pc

MG+pc
MG-pc

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

R
es

id
ua

l |
r|
∞

/

|r
0|
∞

Computing Time [s]

City, 600 x 150 x 150, Grid-Aligned Boundaries

MGPCG+

MGPCG-
MG+

MG-
MGPCG+pc
MGPCG-pc

MG+pc
MG-pc

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

R
es

id
ua

l |
r|
∞

/

|r
0|
∞

Computing Time [s]

Maze, 600 x 150 x 150, Grid-Aligned Boundaries

MGPCG+

MGPCG-
MG+

MG-
MGPCG+pc
MGPCG-pc

MG+pc
MG-pc

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

R
es

id
ua

l |
r|
∞

/

|r
0|
∞

Computing Time [s]

Sphere, 600 x 150 x 150, Curved Boundaries [Batty]

MGPCG+

MGPCG-
MG+

MG-
MGPCG+pc
MGPCG-pc

MG+pc
MG-pc

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

R
es

id
ua

l |
r|
∞

/

|r
0|
∞

Computing Time [s]

City, 600 x 150 x 150, Curved Boundaries [Batty]

MGPCG+

MGPCG-
MG+

MG-
MGPCG+pc
MGPCG-pc

MG+pc
MG-pc

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

R
es

id
ua

l |
r|
∞

/

|r
0|
∞

Computing Time [s]

Maze, 600 x 150 x 150, Curved Boundaries [Batty]

MGPCG+

MGPCG-
MG+

MG-
MGPCG+pc
MGPCG-pc

MG+pc
MG-pc

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

R
es

id
ua

l |
r|
∞

/

|r
0|
∞

Computing Time [s]

Sphere, 600 x 150 x 150, Curved Boundaries [Ng]

MGPCG+

MGPCG-
MG+

MG-
MGPCG+pc
MGPCG-pc

MG+pc
MG-pc

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

R
es

id
ua

l |
r|
∞

/

|r
0|
∞

Computing Time [s]

City, 600 x 150 x 150, Curved Boundaries [Ng]

MGPCG+

MGPCG-
MG+

MG-
MGPCG+pc
MGPCG-pc

MG+pc
MG-pc

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

R
es

id
ua

l |
r|
∞

/

|r
0|
∞

Computing Time [s]

Maze, 600 x 150 x 150, Curved Boundaries [Ng]

MGPCG+

MGPCG-
MG+

MG-
MGPCG+pc
MGPCG-pc

MG+pc
MG-pc

Fig. 8. Convergence behavior of Galerkin-based multigrid solvers: Usage as a direct solver (MG) vs. as a preconditioner for the CG method
(MGPCG), using a topology-aware (+) vs. a standard hierarchy (−), and using trilinear vs. piecewise constant interpolation operators (suffix pc) as
illustrated in Figure 2, cases (c) and (a).

solvers the required number of solver cycles increases with
increasing grid resolution.

Figure 8 analyzes in detail the convergence rates of
different variants of Galerkin-based multigrid solvers. Note
that the combination of the MG−pc and MGPCG−pc solvers
(using piecewise constant interpolation operators) with the
curved boundary discretization by Ng et al. is mathemat-
ically equivalent to the approach by Weber et al. [23]. (In
contrast to the rather high values for the number of pre-
and post-smoothing steps that were used in this work, we
have not observed an improvement of convergence rate
with respect to computing time when using more than one
pre- and post-smoothing step.) Again it can be observed that
in the ‘sphere’ and the ‘city’ scenarios, the standard and the
topology-aware hierarchy achieve the same performance,
whereas in the ‘maze’ scenario significantly higher conver-
gence rates are achieved by the topology-aware hierarchy.
Note that the use of the topology-aware hierarchy instead
of the standard hierarchy only slightly increases the solver
setup time. This is due to the fact that the setup time is
dominated by the computation of the numerical stencils on
the coarse grids (which occurs for both hierarchies), rather
than by the construction of the grid hierarchy. Using the
multigrid cycle as a preconditioner for CG generally in-
creases the convergence rate of the method. Considering the
interpolation operators, the experiments show that trilinear
interpolation yields significantly better convergence rates
than piecewise constant interpolation.

5 CONCLUSION, DISCUSSION AND FUTURE WORK

We have presented a convergence analysis of geometric
multigrid schemes for solving the pressure Poisson equation
in fluid simulation. We have shown that in complicated
domains existing multigrid solvers converge slowly, yet a
topology-aware multigrid solver achieves high convergence
rates and performance gains thereof. Key to this approach
is the accurate representation of the domain topology and
geometry throughout the multigrid hierarchy. In combi-
nation with the blackbox-style construction of the coarse
grid operators from the stencils of the used discretization,
alternative discretizations of the pressure Poisson equation
can be incorporated flexibly and solved at high convergence
rates. For moderately complicated scenarios all compared
multigrid solvers converge equally well, and the additional
memory requirements and coding effort imposed by the
topology-aware approach cannot be amortized.

Since the topology-aware solver introduces a memory
overhead, it might not be well suited for architectures with
low memory capacities such as mobile devices, and it may
reduce the maximum resolution that can be simulated com-
pared to alternative approaches. Due to vertex duplication,
it also cannot directly be incorporated into available libraries
providing hierarchical data structures comprising regular
grids per level, such as OpenVDB [27].

Considering the future parallelization of the solvers,
all multigrid solvers included in this study provide vir-
tually the same amount of parallelism and can take ad-
vantage of many advancements in solver parallelization.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, X 201X 11

Fig. 9. Simulation of smoke in a city. Slight variants of this and the other two scenarios shown in Figure 1 are employed in our convergence study.

Multi-color Gauss-Seidel relaxation, residual computation,
restriction, interpolation (using the existing 8-color multi-
coloring, when realized as scattering), and the matrix-vector
and dot products (requiring a reduce operation) in the
surrounding CG solver and the coarsest-level CG solver can
be parallelized in a straightforward way: All operations can
be performed independently at each vertex, and all data
structures are pre-allocated. However, the parallelization of
the solver setup, including the construction of the topology-
aware hierarchy and the computation of the stencils, is more
complicated. These steps require allocating data structures
that store an irregular amount of data per vertex, necessitat-
ing the use of appropriate parallelization primitives such as
stream compaction.

Considering the multigrid cycles, it can be expected that
the memory overhead of the topology-aware approach on
the coarse levels has a negative effect on multi-core scalability
due to memory bandwidth limitations between CPU and
main memory. However, since the major workload is on
the finest level (7/8 of the total work) where no memory
overhead occurs, we expect that the negative impact on
scalability is rather small.

In the future we will furthermore investigate strategies to
reduce the memory requirements imposed by the topology-
aware approach, such as using an index-based representa-
tion only in regions where vertex duplication occurs (and
a regular grid representation in all other regions), and/or
storing only the irregular coarse grid stencils.

APPENDIX A
IMPLEMENTATION DETAILS

An efficient construction of the topology-aware hierarchy
might seem difficult at first glance, but is possible by us-
ing appropriate algorithms and data structures. Here we
describe our implementation as it has been used in the
convergence experiments. We focus on the construction of
the multigrid hierarchy and the assembly of the numerical
stencils on the coarse grids by means of Galerkin-based
coarsening.

A.1 Hierarchy Construction
We describe the algorithm to efficiently construct the
topology-aware hierarchy without explicitly determining
the set of edges E` (see Section 3.2).

The main idea is to determine the connected components
of a graph by constructing an auxiliary directed graph with
the same vertex set, but with each connected component of
the original graph being replaced by a spanning tree of this
connected component. This spanning forest can be repre-
sented efficiently (for each vertex, only a pointer to its parent
vertex is required, with each root vertex pointing to itself),
and each connected component is uniquely identified by
the root of its corresponding spanning tree. For each vertex
the respective connected component can be determined by
following the parent pointers to the root of the respective
spanning tree.

We generate the individual levels successively from fine
to coarse. Specifically, in pass ` = 1, . . . , L, we create the
vertices V `, the sets of restriction vertices Rv, v ∈ V `, and
the sets of interpolation vertices Iv, v ∈ V `−1. The sets of
interpolation vertices are disposed after the assembly of the
coarse grid stencils.

The creation of a level is further subdivided into 8
passes, one for each ~x0 ∈ {0, 1}3, such that in pass
i = 1, . . . , 8 we create all coarse grid vertices on the lattice
Li = 2`(~x0 + 2Z3), i.e., we skip every second coarse grid
vertex position in each dimension. Note that this directly
yields the subsets of vertices that can be processed in paral-
lel during 8-color Gauss-Seidel relaxation. Conceptually, we
proceed as follows: Let ~xv denote the position of a vertex v,
and Vi = {v ∈ V `−1; ~xv ∈ Li + 2`−1{−1, 0, 1}3} the subset
of vertices on the previous finer level that lie within 33-
blocks around the considered potential coarse grid vertex
positions Li. Note that by skipping every second coarse
grid vertex position in each dimension, the considered 33-
blocks are separated by one layer of lattice vertices in each
dimension. Thus, the connected components of G`−1[Vi]
(denoting the restriction of G`−1 to Vi) correspond to coarse
grid vertices on the lattice Li.

To actually determine the connected components, we
build an auxiliary directed graphGi that is a spanning forest
of G`−1[Vi], as described above.

Identifying the vertices by integer numbers, i.e., V `−1 =
{1, . . . , N `−1}, the forest is represented by an array
parent[1, . . . , N `−1], such that parent[v] specifies the parent
of vertex v. Note that a vertex v is a root of a tree, if
parent[v] = v. The array is initialized with parent[v] ← v
for all v ∈ V `−1, i.e., initially, each vertex is a separated tree.
We then successively merge trees in the forest.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, X 201X 12

Algorithm 2
function ROOT(v)

current← v . Walk from v towards root
next← parent[current]
while next 6= current do . Stop when root reached

current← next; next← parent[current]
end while
return current

end function

procedure MERGETREES(v1, v2)
root1 ← ROOT(v1) . Determine root of v1
root2 ← ROOT(v2) . Determine root of v2
parent[root2]← root1 . Make root2 child of root1

end procedure

For ` = 1, we iterate over the simulation cells and
consider each cell’s face-adjacent neighbors. If both the cell
and a neighbor carry a pressure DOF, these cells correspond
to connected vertices on the finest level, i.e., to an edge
{v1, v2} ∈ E0. If v1, v2 ∈ Vi, we merge the trees in
Gi containing v1 and v2, respectively. This is achieved by
executing MERGETREES(v1, v2) in Algorithm 2.

For ` ≥ 2, recall that {v1, v2} ∈ E`−1 ⇔ ∃vf ∈ V `−2 :
v1, v2 ∈ Ivf (see Section 3.2). We thus iterate over V `−2, and
for each vf ∈ V `−2, we merge all trees in Gi containing one
of the vertices Ivf ∩ Vi into a single tree. After picking an
arbitrary vertex v′ ∈ Ivf ∩ Vi, this is achieved by executing
MERGETREES(v′, v) for each v ∈ (Ivf ∩ Vi) \ {v′}.

The desired information can now be readily determined
from the spanning forest. Since we identify the connected
components of G`−1[Vi] by the root vertices of the corre-
sponding spanning trees, we create a coarse grid vertex
vc ∈ V ` for each v ∈ V `−1 ∩ Vi for which parent[v] = v.
The set of restriction vertices associated with vc is obtained
by Rvc = {vf ∈ V `−1; ROOT(vf) = v}. After all 8 passes
have been performed, the construction of the coarse grid
vertices V ` is completed. Then, the sets of interpolation
vertices Iv, v ∈ V `−1 are derived from the sets of restriction
vertices Rv, v ∈ V ` (see Section 3.2).

A.2 Assembly of Coarse Grid Stencils
After constructing the hierarchy, we assemble the numerical
stencils on the coarse grids, starting with level 1 and pro-
ceeding with higher level numbers. As input we take the
multigrid hierarchy, as well as the stencils on level 0 given
by the respective discretization of the PPE. The stencil at a
vertex v is denoted by

∑
v′∈Sv

Avv′xv′ , where Sv denotes the
set of stencil vertices, Avv′ the stencil coefficients, and xv′ the
unknowns at the stencil vertices.

The construction of the stencil at a coarse grid vertex
vc ∈ V ` on level ` ≥ 1 is performed in two steps. Firstly,
we compute a weighted sum of the stencils at the restriction
vertices of vc on the previous finer level:

∑
v∈Rvc

wv↔vc ∑
v′∈Sv

Avv′xv′

 =
∑
v∈Rvc

∑
v′∈Sv

(wv↔vcA
v
v′)xv′ ,

where wv↔vc denotes the trilinear interpolation and restric-
tion weight between vertex v and vertex vc. By accumu-

lating the contributions at the vertices V =
⋃
v∈Rvc

Sv , we
obtain an intermediate stencil∑

v′∈V
Bv′xv′ ,

where the unknowns still reside on the previous finer level.
Secondly, we replace these unknowns by means of interpo-
lation from unknowns at coarse grid vertices according to
xv′ =

∑
v′c∈Iv′ wv′↔v′cxv′c , leading to

∑
v′∈V

Bv′

 ∑
v′c∈Iv′

wv′↔v′cxv′c

 =
∑
v′∈V

∑
v′c∈Iv′

(wv′↔v′cBv′)xv′c .

Again, by accumulating the contributions at the vertices
Svc =

⋃
v′∈V Iv′ , we finally obtain the stencil at the coarse

grid vertex vc ∑
v′c∈Svc

Avcv′cxv
′
c
.

To enable the efficient accumulation of the coefficients, we
employ an array that stores for each vertex in V (first step)
or Svc (second step) a pair consisting of the vertex index and
the vertex’s accumulated coefficient, as well as a look-up
table that maps the vertices V `−1 (first step) or V ` (second
step) to array indices. Since the vertex sets V and Svc are
not known a priori, we start with an array of length 0, and
extend the array during the accumulation process. The look-
up table initially maps each vertex to −1 (indicating that an
array index has not (yet) been assigned to a vertex), and is
updated accordingly.

ACKNOWLEDGMENTS

The work was partly funded by the European Union under
the ERC Advanced Grant 291372: Safer-Vis—Uncertainty
Visualization for Reliable Data Discovery.

REFERENCES

[1] R. Fedkiw, J. Stam, and H. W. Jensen, “Visual simulation of
smoke,” in Proc. ACM SIGGRAPH, 2001, pp. 15–22.

[2] J. Molemaker, J. M. Cohen, S. Patel, and J. Noh, “Low viscosity
flow simulations for animation,” in Proc. Eurographics/ACM SIG-
GRAPH Symposium on Computer Animation, 2008, pp. 9–18.

[3] A. McAdams, E. Sifakis, and J. Teran, “A parallel multigrid
Poisson solver for fluids simulation on large grids,” in Proc.
Eurographics/ACM SIGGRAPH Symposium on Computer Animation,
2010, pp. 65–73.

[4] N. Chentanez and M. Müller, “A multigrid fluid pressure solver
handling separating solid boundary conditions,” in Proc. Euro-
graphics/ACM SIGGRAPH Symposium on Computer Animation, 2011,
pp. 83–90.

[5] M. J. Aftosmis, M. J. Berger, and G. Adomavicius, “A parallel
multilevel method for adaptively refined Cartesian grids with
embedded boundaries, AIAA 2000-0808,” in Proc. 38th AIAA
Aerospace Sciences Meeting and Exhibit, 2000.

[6] F. Ferstl, R. Westermann, and C. Dick, “Large-scale liquid simu-
lation on adaptive hexahedral grids,” IEEE TVCG, vol. 20, no. 10,
pp. 1405–1417, 2014.

[7] N. Foster and D. Metaxas, “Realistic animation of liquids,” Graph-
ical Models and Image Processing, vol. 58, no. 5, pp. 471–483, 1996.

[8] C. Batty, F. Bertails, and R. Bridson, “A fast variational framework
for accurate solid-fluid coupling,” ACM TOG, vol. 26, no. 3, pp.
100:1–100:7, 2007.

[9] Y. T. Ng, C. Min, and F. Gibou, “An efficient fluid-solid coupling
algorithm for single-phase flows,” Journal of Computational Physics,
vol. 228, no. 23, pp. 8807–8829, 2009.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, X 201X 13

[10] R. Bridson, Fluid Simulation for Computer Graphics. A K Pe-
ters/CRC Press, 2008.

[11] J. Stam, “Stable fluids,” in Proc. ACM SIGGRAPH, 1999, pp. 121–
128.

[12] Y. Zhu and R. Bridson, “Animating sand as a fluid,” ACM TOG,
vol. 24, no. 3, pp. 965–972, 2005.

[13] F. H. Harlow and J. E. Welch, “Numerical calculation of time-
dependent viscous incompressible flow of fluid with free surface,”
The Physics of Fluids, vol. 8, no. 12, pp. 2182–2189, 1965.

[14] F. Gibou, R. P. Fedkiw, L.-T. Cheng, and M. Kang, “A second-
order-accurate symmetric discretization of the Poisson equation
on irregular domains,” Journal of Computational Physics, vol. 176,
no. 1, pp. 205–227, 2002.

[15] R. Setaluri, M. Aanjaneya, S. Bauer, and E. Sifakis, “SPGrid: A
Sparse Paged Grid structure applied to adaptive smoke simula-
tion,” ACM TOG, vol. 33, no. 6, pp. 205:1–205:12, 2014.

[16] A. Brandt and O. Livne, Multigrid Techniques: 1984 Guide with
Applications to Fluid Dynamics, Revised Edition. SIAM, 2011.

[17] W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid
Tutorial, 2nd ed. SIAM, 2000.

[18] U. Trottenberg, C. W. Oosterlee, and A. Schüller, Multigrid. Else-
vier Academic Press, 2001.

[19] N. Goodnight, C. Woolley, G. Lewin, D. Luebke, and
G. Humphreys, “A multigrid solver for boundary value problems
using programmable graphics hardware,” in Proc. ACM SIG-
GRAPH/EUROGRAPHICS Conference on Graphics Hardware, 2003,
pp. 102–111.

[20] N. Chentanez and M. Müller, “Real-time Eulerian water simula-
tion using a restricted tall cell grid,” ACM TOG, vol. 30, no. 4, pp.
82:1–82:10, 2011.

[21] J. L. Hellrung Jr., L. Wang, E. Sifakis, and J. M. Teran, “A second or-
der virtual node method for elliptic problems with interfaces and
irregular domains in three dimensions,” Journal of Computational
Physics, vol. 231, no. 4, pp. 2015–2048, 2012.

[22] H. Johansen and P. Colella, “A Cartesian grid embedded boundary
method for Poisson’s equation on irregular domains,” Journal of
Computational Physics, vol. 147, no. 1, pp. 60–85, 1998.

[23] D. Weber, J. Mueller-Roemer, A. Stork, and D. Fellner, “A cut-cell
geometric multigrid poisson solver for fluid simulation,” Computer
Graphics Forum, vol. 34, no. 2, pp. 481–491, 2015.

[24] M. Chuang and M. Kazhdan, “A connectivity-aware multi-level
finite-element system for solving Laplace-Beltrami equations,”
ArXiv e-prints, 2015.

[25] A. McAdams, E. Sifakis, and J. Teran, “A parallel multigrid
Poisson solver for fluids simulation on large grids, accompany-
ing source code version 1.0,” http://pages.cs.wisc.edu/∼sifakis/
project pages/MGPCG-1.0.zip, 2010.

[26] Lawrence Livermore National Laboratory, “Hypre 2.10.0b,” http:
//acts.nersc.gov/hypre/, 2015.

[27] K. Museth, “VDB: High-resolution sparse volumes with dynamic
topology,” ACM TOG, vol. 32, no. 3, pp. 27:1–27:22, 2013.

Christian Dick is a PostDoc in the Computer
Graphics and Visualization Group at the Tech-
nische Universität München, Germany. He re-
ceived a diploma in computer science in July
2007 and a PhD in January 2012, both from
Technische Universität München. His research
interests include physics-based simulation of de-
formable objects and fluids, simulation and visu-
alization in the context of medical applications,
as well as the visualization of very large scientific
data sets.

Marcus Rogowsky is a graduate student at the
Technische Universität München. He received a
BSc in computer science in 2014. His research
interests include multigrid methods for physics-
based simulation of deformable bodies and flu-
ids.

Rüdiger Westermann studied computer sci-
ence at the Technical University Darmstadt, Ger-
many. He pursued his Doctoral thesis on mul-
tiresolution techniques in volume rendering, and
he received a PhD in computer science from the
University of Dortmund, Germany. In 2002, he
was appointed the chair of computer graphics
and visualization at the Technical University Mu-
nich. His research interests include scalable sim-
ulation and visualization algorithms, GPU com-
puting, real-time rendering of large data, and

uncertainty visualization.

