
EUROGRAPHICS 2014/ S. Lefebvre and M. Spagnuolo STAR – State of The Art Report

Physically-based Simulation of Cuts in Deformable Bodies:
A Survey †

Jun Wu‡, Rüdiger Westermann§, Christian Dick¶

Computer Graphics & Visualization Group, Technische Universität München, Germany

Abstract
Virtual cutting of deformable bodies has been an important and active research topic in physically-based simula-
tion for more than a decade. A particular challenge in virtual cutting is the robust and efficient incorporation of
cuts into an accurate computational model that is used for the simulation of the deformable body.
This report presents a coherent summary of the state-of-the-art in virtual cutting of deformable bodies, focusing on
the distinct geometrical and topological representations of the deformable body, as well as the specific numerical
discretizations of the governing equations of motion. In particular, we discuss virtual cutting based on tetrahedral,
hexahedral, and polyhedral meshes, in combination with standard, polyhedral, composite, and extended finite
element discretizations. A separate section is devoted to meshfree methods. The report is complemented with an
application study to assess the performance of virtual cutting simulators.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically based modeling I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation I.3.8 [Computer Graphics]: Applications—

1. Introduction

Physically-based, yet efficient and robust simulation of cut-
ting of deformable bodies (also referred to as virtual cut-
ting) has been an important and active research topic in the
computer graphics community for more than a decade. It is
at the core of virtual surgery simulators, and it is also fre-
quently used in computer animation. A survey of early cut-
ting techniques has been given 10 years ago by Bruyns et
al. [BSM∗02], and since then a number of significant im-
provements with respect to physical accuracy, robustness,
and speed have been proposed. Our intention in the current
state-of-the-art report is to review the basic concepts and
principles underlying these techniques.

Virtual cutting involves three major tasks: First, the in-
corporation of cuts into the computational model of the de-
formable body, i.e., the update of the geometrical and topo-
logical representation of the simulation domain as well as

† This is the authors’ version of the paper. The final version is pub-
lished by the Eurographics Association.
‡ jun.wu@tum.de
§ westermann@tum.de
¶ dick@tum.de

the numerical discretization of the governing equations. Sec-
ond, the simulation of the deformable body based on this
computational model. Third, the detection and handling of
collisions. Since techniques for collision detection in virtual
cutting are not different to those used in deformable body
simulation, their review will not be in the scope of this re-
port. However, for a good overview of the state-of-the-art
in this field, including many technical and implementation-
specific details, let us refer to the survey by Teschner et
al. [TKH∗05] and more recent works that consider cutting
(e.g., [TMY∗11, WDW13]). Physically-based collision han-
dling in virtual cutting applications, on the other hand, is
still an open research question, requiring to consider differ-
ent material properties to predict tissue responses, friction
and sliding contacts, as well as accurate force transmission.
For a good introduction to the specific problems that have
to be addressed to resolve collisions between insertion tools
and deformable bodies let us refer to the work by Chentanez
et al. [CAR∗09].

This report presents a coherent summary of the state-of-
the-art in virtual cutting of deformable bodies, focusing on
the distinct geometrical and topological representations and
the numerical discretizations that have been proposed. The
report discusses the different approaches with respect to

c© The Eurographics Association 2014.

2 J. Wu, R. Westermann, C. Dick / Physically-based Simulation of Cuts in Deformable Bodies: A Survey

• (physical) accuracy, referring to the ability to represent
arbitrarily-shaped cuts both in the geometrical and topo-
logical representation as well as in the numerical dis-
cretization, and to use physically-based simulation to pre-
dict the behavior of the cut object;

• robustness, relating to the numerical stability of the in-
volved algorithms in complicated cutting scenarios, such
as thin slicing or repeated cutting at the same location;
and

• computational efficiency, which is particularly important
in real-time applications such as surgery training and
planning, where the update of the computational model as
well as the deformation computation must be performed
within a very limited time budget.

The techniques we discuss in this report are also em-
ployed in fracture simulations. While cutting is the con-
trolled separation of a physical object as a result of an
acutely directed force, exerted through sharp-edged tools,
fracturing refers to the cracking or breaking of hard objects,
under the action of stress. Fracture simulations build on a
fracture model, which determines when and where a crack
appears, as well as how the crack propagates through the
model. To actually realize the crack, the geometrical and
topological representation of the object as well as the nu-
merical discretization of the governing equations have to be
updated accordingly, and the dynamics simulation of the cut
body has to be performed. In this report we focus on re-
viewing techniques for realizing an actual cut, rather than
how the position and shape of a cut is determined. For a
thorough introduction to fracture simulation let us refer to
[OH99, OBH02].

When comparing the individual approaches used for vir-
tual cutting, one of the most apparent classification criteria
is the geometrical and topological representation of the sim-
ulation domain. In general, this representation is a spatial
discretization, as a spatial discretization of the simulation
domain—continuously updated according to the introduced
cuts—is required for the numerical discretization of the gov-
erning equations.

Most approaches are based on a volumetric mesh rep-
resentation of the object. Early works in the field [OH99,
BMG99, CDA00, NFvdS00, MK00, OBH02] mainly em-
ploy tetrahedral meshes, which offer a high degree of flex-
ibility considering the modeling of cuts by splitting ele-
ments or/and snapping element vertices onto the cutting
surfaces. Unfortunately, these procedures are prone to pro-
ducing ill-shaped elements, which are numerically unstable.
Recent works address this issue by using regular or semi-
regular meshes consisting of hexahedral elements [JBB∗10,
DGW11a,WDW11,SSSH11]. Some works also consider the
use of polyhedral meshes [WBG07,MKB∗08]. In addition to
mesh-based approaches, meshfree approaches based on par-
ticles [MKN∗04,PKA∗05,SOG06,PGCS09] were proposed.

In order to obtain a physically accurate simulation of

the deformable body, the large majority of mesh-based ap-
proaches employ the finite element method for the numeri-
cal discretization of the governing equations. The straight-
forward approach is to maintain a 1:1 correspondence be-
tween computational elements (finite elements) and geomet-
rical elements (cells) of the underlying mesh. The numerical
simulation then is mathematically identical to the simulation
of an object without cuts. In particular for interactive appli-
cations, however, it is highly desirable to decouple the spatial
discretization used for the geometrical and topological mod-
eling of cuts from the spatial discretization employed in the
numerical simulation, in order to thoroughly balance speed
and accuracy. Approaches that are based on this principle are
the extended finite element method [JK09,KMB∗09] and the
composite finite element method [JBB∗10, WDW11].

Using implicit time integration schemes, the numerical
discretization leads to a large, sparse linear system of equa-
tions in each simulation time step. This system can be solved
by using standard black box solvers, such as a conjugate
gradient solver. A significantly higher computational effi-
ciency can be achieved by means of problem-specific ge-
ometric multigrid solvers [GW06], when these solvers are
particularly designed for the efficient treatment of the ma-
terial discontinuities arising in the context of virtual cut-
ting [DGW11a, WDW11].

The remainder of this report is organized as follows: The
different mesh representations and the respective adaptation
strategies used in virtual cutting are discussed in Section 2.
Finite element methods and numerical solvers are discussed
in Section 3. Meshfree approaches are reviewed in Section 4.
A summary of the surveyed techniques and representative
simulation scenarios are presented in Section 5. To demon-
strate the performance that can be achieved for virtual cut-
ting on desktop PC hardware, we have performed an appli-
cation study. The results of this study are presented in Sec-
tion 6. The report is concluded in Section 7 with a discussion
of future research challenges.

2. Mesh-based Modeling of Cuts

Virtual cutting of a deformable body is modeled by manipu-
lating the geometrical and topological representation of the
simulation domain. In this section, after briefly discussing
the modeling of the cutting process, we focus on mesh-
based representations, including tetrahedral, hexahedral, and
polyhedral meshes, and we discuss the adaptation of these
meshes to cuts.

For rendering and collision handling, a surface repre-
sentation of the object is required. This representation can
be directly obtained from a tetrahedral or polyhedral mesh
by determining the element faces lying on the surface. For
hexahedral meshes, however, a separate surface representa-
tion is mandatory to compensate the jagged simulation do-
main boundary (staircases) resulting from the hexahedral

c© The Eurographics Association 2014.

J. Wu, R. Westermann, C. Dick / Physically-based Simulation of Cuts in Deformable Bodies: A Survey 3

discretization. To this end, cube-based or dual contouring
algorithms that reconstruct a smooth surface from the hexa-
hedral mesh were proposed. Sifakis et al. [SDF07] demon-
strated how a lower-resolution tetrahedral mesh representing
the simulation domain can be combined with a set of given
high-resolution surface meshes (original object surfaces and
cutting surfaces) for rendering and collision handling.

2.1. Modeling of the Cutting Process

The cutting process is modeled in simulation practice by
detecting intersections between the volumetric mesh that
represents the deformable object, and a triangulated sur-
face mesh that represents a cutting surface. The cutting sur-
face is generated from the movement of the cutting tool
(scalpel). Specifically, element edges, or links between face-
adjacent elements are tested against the cutting surface mesh
[BMG99, NFvdS00, WDW13]. To generate sub-mesh cut-
ting effects such as in polyhedral modeling, element faces
are also tested against the cutting mesh [WBG07]. Based on
these intersections, elements are split and detached accord-
ingly, as described in the following sections. Since cutting
only happens locally, a large region of the deformable ob-
ject can be pruned before elementary intersection tests are
performed using bounding volume hierarchies. In progres-
sive cutting, a breadth-first traversal of the volumetric mesh
starting from previous intersection points is also useful.

The cutting surface normally is the surface swept by the
scalpel’s cutting edge between two successive simulation
frames. Together with 3D spatial interfaces such as a hap-
tic device, this approach enables a natural interaction with
the virtual environment. The scalpel may have a complex
geometry for visual rendering, comprising a set of triangles.
For simplicity, however, the blade that actually cuts the ob-
ject is usually represented by a single line segment. For non-
interactive applications, the cutting surface can also be pre-
defined in the reference configuration [MBF04, KMB∗09].
For example, the cutting surface can be constructed from
a contour defined on the surface of the deformable object,
which is similar to the guide contours defined during pre-
operative surgery planning [WBWD12]. This allows for full
control over the cutting surface, simplifies the intersection
tests, and avoids the possible problems with temporally dis-
crete intersection testing.

Compared to the physical world, where cuts are induced
by the internal stresses resulting from the force interaction
between the deformable object and the scalpel, the described
approach so far is purely geometry-based. It can be inter-
preted as modeling an infinitely sharp scalpel, which can in-
duce arbitrary stresses and thus immediately penetrates the
object. In contrast, in the physical world, the object would
deform under the influence of the increasing force exerted by
the scalpel, before the scalpel eventually penetrates. Model-
ing a more realistic interaction between the object and the
scalpel is part of ongoing research, for example in biomed-

ical engineering [CDL07]. Using penalty-force-based col-
lision handling, an initial attempt to simulate this effect is
to employ a virtually extended scalpel shape [JBB∗10]. The
enlarged scalpel penetrates into the deformable object be-
fore the real scalpel penetrates, thus leading to a deforma-
tion before the object is cut. The enlargement of virtual tools
is similarly used in bone drilling simulation [WWWZ10].
Another open problem is how time-continuous intersection
testing between the deformable body and the cutting tool
can be realized. In current approaches, the deformable body
and the scalpel are moved sequentially within each simula-
tion frame, rather than simultaneously. As a consequence,
edges/links might be missed by the cutting tool, especially if
the object is moving rapidly.

2.2. Tetrahedral Meshes

After a brief review of some of the approaches for gener-
ating an initial tetrahedral mesh, we introduce and discuss
the following techniques for the incorporation of cuts into
tetrahedral meshes (see Figure 1 for a 2D illustration):

• Element deletion [CDA00],
• Splitting along existing element faces [NFvdS00, MG04,

LT07],
• Element duplication [MBF04, SDF07],
• Snapping of vertices [NFvdS01, LJD07],
• Element refinement [BMG99, BG00, MK00, BS01,

BGTG04, GCMS00],
• Combined snapping of vertices and element refinement

[SHGS06].

One challenge is the accurate representation of arbitrarily-
shaped cuts, while avoiding the creation of ill-shaped ele-
ments [She02], which lead to numerical instabilities during
mesh adaptation and deformation computation. The method
of element deletion and the method of splitting along ex-
isting element faces maintain the well-shaped elements of
the original discretization, but they result in jagged surfaces.
By means of snapping of vertices or element refinement, or
a combination of both, cuts can be accurately represented.
However, since the elements are modified, for these methods
it is necessary to prevent ill-shaped elements. The method of
element duplication provides a good trade-off between accu-
racy and robustness by embedding an accurate surface into
the duplicated elements in their original shapes.

2.2.1. Tetrahedral Mesh Generation

An initial tetrahedral discretization of the simulation domain
can be generated from surface meshes [Si06], medical image
data [ZBS05], or level sets [TMFB05]. Quality tetrahedral
mesh generation itself remains an active research topic. It is
well known that ill-shaped elements (e.g., needle elements,
or almost planar sliver elements) lead to numerical instabili-
ties [She02].

c© The Eurographics Association 2014.

4 J. Wu, R. Westermann, C. Dick / Physically-based Simulation of Cuts in Deformable Bodies: A Survey

Figure 1: Illustration of different methods for incorporating cuts into a tetrahedral mesh (a triangle mesh in 2D). The red cutting
path separates the object into two disconnected parts, which are illustratively displaced to make the discontinuity visible. The
surface of the object (bold black line) is given by the set of surface faces of the tetrahedral elements, except for the approach
that is based on element duplication, where a separate surface mesh is maintained.

2.2.2. Cut Modeling without Creating New Elements

Perhaps the easiest way to incorporate cuts into the de-
formable body is to separate the material by removing el-
ements that are touched by a cutting tool. While this sim-
ple method is widely adopted in real-time simulations (e.g.,
[CDA00]), it puts severe limitations on the mechanical accu-
racy and visual quality. First, the newly exposed surface does
not conform to the smooth swept surface of a cutting tool,
but to the initial discretization of the deformable body, lead-
ing to a rather jagged surface. Second, the removal of ele-
ments causes a loss of volume, and it leaves unrealistic holes
in the object. A remedy to the second problem is to split the
object along existing element faces [NFvdS00]. This works
fine if the cutting surfaces are known a priori to creating the
initial discretization [LT07], i.e., the tetrahedralization takes
the pre-recorded cutting surface into account. However, for
arbitrary cuts, it still results in a jagged surface. To make the
newly created surface conforming to cuts, a simple method is
to snap the vertices onto the cutting surface before splitting
the object along element faces [NFvdS01]. This modifica-
tion, however, may create ill-shaped elements, which need
further treatment afterwards.

2.2.3. Cut Modeling by Element Refinement

To accurately accommodate complex cuts with a reason-
able number of initial elements, it is thus necessary to lo-
cally refine tetrahedra. Bielser et al. presented a 1:17 sub-
division method for tetrahedral decomposition, by generat-
ing a vertex on each edge, and a vertex on each triangle

face [BMG99]. The exact placement of these vertices de-
pends on the intersection between the cutting tool and the el-
ement. Initially, adjacent elements share their vertices. Cut-
ting is modeled by duplicating vertices appropriately. Fig-
ure 2 (left) illustrates the five topologically different config-
urations of a tetrahedron after introduction of a cut. Among
these five configurations, IIIa and IV correspond to complete
cuts through the tetrahedron, while the other three corre-
spond to partial cuts. For each of these configurations, the
information which vertices have to be duplicated in order to
generate the respective topological configuration after per-
forming the 1:17 subdivision, is pre-computed and stored in
a look-up table.

To reduce the number of elements compared to a full 1:17
subdivision, Bielser and Gross subdivided only those edges
and faces which are part of the cutting surface [BG00]. Mor
and Kanade presented a method for progressive cutting that
minimizes the number of newly created elements [MK00],
and Ganovelli et al. proposed a multi-resolution approach
to reduce the number of elements [GCMS00]. Bielser et
al. further proposed a state machine to track the topologi-
cal configuration of each tetrahedron during progressive cut-
ting [BGTG04].

Considering the decomposition of tetrahedron, if the in-
tersection between an edge and the cutting surface is very
close to one of the edge’s vertices, ill-shaped elements will
occur. Steinemann et al. proposed a combination of snap-
ping of vertices and element refinement to solve this prob-
lem [SHGS06]. The idea is illustrated in Figure 3 for the 2D

c© The Eurographics Association 2014.

J. Wu, R. Westermann, C. Dick / Physically-based Simulation of Cuts in Deformable Bodies: A Survey 5

Figure 2: Left: A cut tetrahedron can have five topologically different configurations. The Roman numeral represents the number
of disconnected edges. The number in parentheses indicates the number of topologically equivalent configurations by rotation
and mirroring operations. Right: In the hybrid cutting approach, three additional topological configurations of a cut tetrahedron
are introduced. The small Roman numeral represents the number of existing vertices which are snapped and duplicated.

case. If a vertex of an intersected edge lies close to the cut-
ting surface (the distance is smaller than a given threshold),
the algorithm moves this vertex onto the cutting surface, and
separates the material by duplicating the vertex. If the cut-
ting surface intersects an edge close to its midpoint, the edge
is split. The method is implemented by extending the set of
five topological configurations of a cut tetrahedron, shown
in Figure 2 (left), by three additional topological configura-
tions, illustrated in Figure 2 (right). The additional configu-
rations correspond to a complete cut that passes through one,
two, or three vertices.

To model a curved cut within a tetrahedral element, given
by a sequence of cutting surface triangles, the individual tri-
angles in principle can be successively incorporated into the
tetrahedral mesh, leading to a sequence of repeated tetrahe-
dral splits. Since this approach leads to a very large number
of tetrahedra along the cut, in practice only a single split
of the initial tetrahedron is performed. A curved cut thus is
approximated by a only a few tetrahedron faces. The result-

Figure 3: A hybrid cutting approach based on both snap-
ping of vertices and element refinement. If the intersection
between an edge and the cutting surface is close to one of
the edge’s vertices (determined by a threshold d), the ver-
tex is moved onto the cutting surface, in order to prevent the
creation of ill-shaped elements. Otherwise the edge is split
at the exact intersection point.

ing sub-tetrahedra in general are only split if they are inter-
sected by another cut. Also for progressive cutting, the ini-
tial tetrahedron is split only once, i.e., when a partial cut is
further progressing through a tetrahedron, the current tetra-
hedral split is undone and replaced by a new split.

2.2.4. Cut Modeling by Element Duplication

Molino et al. proposed the virtual node algorithm to cir-
cumvent subsequent numerical problems resulting from ill-
shaped elements [MBF04]. The basic idea is to create one or
more replicas of the elements that are cut, and to embed each
distinct material connectivity component of an element into
a unique replica. The replicas comprise both original ver-
tices inside the material (referred to as real nodes) and newly
created vertices outside the material (referred to as virtual
nodes). Embedding means that the deformation computation
is performed on the well-shaped replicas of the original ele-
ment, and then the displacements of the element’s fragments
are determined by means of interpolation.

In the initial version of the algorithm, each replica is re-
quired to have at least one real node. This was extended by
Sifakis et al. to allow for replicas with purely virtual nodes,
and thus to support an arbitrary number of fragments within
a single tetrahedron [SDF07]. Given a set of triangle sur-
face meshes (original object surfaces and cutting surfaces),
enclosed by a tetrahedral mesh that covers the simulation do-
main, the algorithm first generates a set of non-intersecting
polygons from the triangle soup consisting of surface mesh
triangles and tetrahedron faces. From these polygons, a poly-
hedral discretization is determined by examining the connec-
tivity among the polygons. Note that the polyhedra and the
tetrahedra per construction do not intersect. Then, for each
tetrahedron, the material connectivity components are deter-
mined from the polyhedral discretization. For each connec-
tivity component, a duplicate of the tetrahedron is created.

In this way, the algorithm enables to combine a lower-

c© The Eurographics Association 2014.

6 J. Wu, R. Westermann, C. Dick / Physically-based Simulation of Cuts in Deformable Bodies: A Survey

Figure 4: 2D illustration of the modeling of cuts in a linked
volume representation. The object is discretized by means of
an adaptive octree grid (shaded cells). The cells of this grid
are connected by links (green, solid). Cutting is modeled by
disconnecting links (red, dashed). A surface mesh (black line
and dots) is reconstructed from the dual grid of links.

resolution tetrahedral mesh for the representation of the sim-
ulation domain with high-resolution surface meshes for ren-
dering and collision handling. Note that by means of the du-
plication of elements, the volumetric representation and the
surface representation are topologically consistent.

2.3. Hexahedral Meshes

A regular or semi-regular hexahedral discretization, gen-
erated directly from medical image data [ZBS05] or
from polygonal surface meshes by voxelization techniques
[ED08, DGBW08], provides an effective means to repre-
sent cuts without having to worry about ill-shaped ele-
ments [JBB∗10, SSSH11]. We discuss the approach of us-
ing a linked volume representation, where the connectiv-
ity is modeled by links between face-adjacent elements
[FG99, DGW11a], and review surface reconstruction tech-
niques to build a smooth surface mesh from the hexahedral
grid [WDW11].

2.3.1. Volume Representation

To model cuts in the deformable body, Frisken-Gibson pro-
posed a linked volume representation [FG99]. The basic idea
of the linked volume representation is to decompose the ob-
ject into a set of hexahedral elements, using a uniform hexa-
hedral grid. Face-adjacent elements are connected via links,
with six links emanating from each element. Cuts are mod-
eled by marking links as disconnected when they are inter-
sected by the virtual cutting blade. Cuts are thus represented
at the resolution of the hexahedral grid.

Since the resolution of a uniform grid is in practice lim-
ited by simulation time and memory requirements, an adap-
tive octree grid for virtual cutting was proposed by Dick et
al. [DGW11a] (see Figure 4), which adaptively refines along

Figure 5: The Stanford bunny model is discretized into a
linked octree grid (left), which is refined along the surface
and the cuts (right).

cuts, down to a certain finest level. Links are still considered
on the uniform grid corresponding to this finest level, but
are physically stored only for the elements at the finest level.
The adaptive octree grid is constructed by starting from a
coarse uniform grid. Whenever a link on the finest level is
intersected by the surface of the deformable object, the in-
cident elements (possibly only one element, when both end-
points of the link are lying within the same element) are re-
fined using a regular 1:8 split. At the finest level, links are
marked as disconnected when they are intersected by the
object’s surface. Elements that are lying outside of the ob-
ject are removed from the representation. To avoid jumps in
the discretization, additional splits are performed to ensure
that the level difference between elements sharing a vertex,
an edge, or a face is at most one (restricted octree). Cuts
are modeled analogously to the modeling of the object sur-
face, i.e., elements are adaptively refined along a cut down
to the finest level, where links are marked as disconnected
(see Figure 5 for an example). Material properties such as
Young’s modulus and density are assigned on a per-element
basis. To model inhomogeneous materials, the octree mesh
can be refined further.

2.3.2. Surface Representation

To render the surface of the deformable object—including
the additional surface parts that are generated by cutting—a
surface mesh is reconstructed from the volume representa-
tion. Wu et al. [WDW11] applied the dual contouring ap-
proach [JLSW02] for constructing this surface. Compared
to the splitting cubes algorithm [PGCS09], which was used
in [DGW11a], dual contouring improves the quality of the
generated mesh and reduces the total number of triangles.
Dual contouring operates on the (imaginary) grid that is
formed by the links between the elements at the finest level.
For each link that is cut by the blade, the distances between
the intersection point and the link’s endpoints as well as the
normal of the blade at the intersection point are stored. This
information is used to position a surface vertex within each
cell that is incident to at least one disconnected link. Since
for a cut two surfaces have to be created—one for each mate-
rial side—this vertex is duplicated, so that for each material
component in the cell one vertex exists. The material compo-

c© The Eurographics Association 2014.

J. Wu, R. Westermann, C. Dick / Physically-based Simulation of Cuts in Deformable Bodies: A Survey 7

Figure 6: Illustration of cuts in polyhedral elements. Left:
A tetrahedron is cut into two parts, resulting in a small tetra-
hedron and a triangular prism. Right: The triangular prism
is partially cut, resulting in two polyhedral elements that are
partially connected. Contrary to a tetrahedral discretization,
no further subdivision is required.

nents in a cell are determined by means of a look-up table,
which is indexed by the pattern of connected and discon-
nected links incident to a cell. After generating the vertices,
the surface is spanned by creating two surface patches (2×2
triangles) for each link that is cut. The vertices are finally
bound to the nearest element of the respective material part.
This binding allows for carrying over the deformation com-
puted at the vertices of the hexahedral simulation mesh to
the surface vertices.

2.4. Polyhedral Meshes

When cuts are modeled by element refinement, the resulting
elements necessarily must be tetrahedra or hexahedra, when
a tetrahedral or hexahedral discretization is used. A polyhe-
dral discretization removes this constraint by allowing the
creation of general polyhedra. This potentially enables the
modeling of cuts by creating a smaller number of new ele-
ments [WBG07, MKB∗08].

Without loss of generality, polyhedral modeling of cuts
can be realized by starting with a purely tetrahedral dis-
cretization of the object. To model a complete cut, upon
which an element is split into disconnected parts, two new
convex elements are created. These resulting elements are
composed of vertices of the initial element and the intersec-
tions between its edges and the cutting polygon. As illus-
trated in Figure 6 (left), a tetrahedron is split into a small
tetrahedron and a triangular prism. Note that no re-meshing
is needed to decompose the triangular prism into smaller
tetrahedra. Figure 6 (right) shows the modeling of a partial
cut. The intersections between the element’s edges and the
cutting polygon, and between the element’s faces and the
cutting polygon’s edges are employed as new vertices.

While polyhedral modeling of cuts potentially leads to
simplified operations, similar to tetrahedral meshes, there are
practical issues with respect to ill-shaped elements. A funda-
mental problem is that quality criteria of general polyhedral
elements are unclear. Wicke et al. found that in particular
sliver polyhedra, which are almost planar, lead to numerical
problems during simulation, and applied vertex merging and
snapping to remove these slivers [WBG07]. Furthermore, to
avoid possible numerical problems, it is required to enforce

that the elements are convex. These issues and constraints
make quality and efficient polyhedralization non-trivial.

2.5. Discussion on Discretizations

Avoiding ill-shaped elements is still a major challenge when
using a tetrahedral discretization, especially under the con-
straint of the limited time budget in real-time applications.
While a polyhedral discretization offers more flexibility with
respect to the shape of individual elements, still special care
is required to avoid ill-shaped polyhedra, and also to ensure
the convexity of the elements. The virtual node algorithm is
superior in this aspect, since it embeds possibly ill-shaped
fragments into duplicates of original elements, whose qual-
ity can be ensured during preprocessing.

Using a semi-regular hexahedral discretization is an effec-
tive means to ensure that the elements are well-shaped dur-
ing dynamic mesh refinement. However, a separate surface
representation is required to compensate the jagged nature
of the hexahedral grid.

3. Finite Element Simulation for Virtual Cutting

In mesh-based cutting approaches, the finite element method
is typically used for the numerical discretization of the gov-
erning equations of elasticity. The standard approach is to
directly employ the spatial discretization that is induced by
the mesh, i.e., to create one computational element (finite el-
ement) for each geometrical element (cell). The deformable
body simulation then is identical to the case without cuts.
General simulation of deformable bodies is for example sur-
veyed in [NMK∗06]. A detailed explanation of finite element
procedures for mechanics can be found in engineering text-
books (e.g., [Bat96]), while a concise introduction of FEM
in medical simulation is given in [BN98].

In this section, we discuss three finite element methods
that are specialized for simulating cuts in deformable bodies.
In particular, we discuss the extended finite element method,
the composite finite element method, as well as the polyhe-
dral finite element method. For the first two methods, sepa-
rate spatial discretizations are employed for the representa-
tion of the simulation domain and for the numerical simu-
lation. This allows for the modeling of complicated-shaped
cuts (and also a complicated-shaped original surface of the
object), while requiring only a rather small number of com-
putational elements. In this way, these methods enable to
carefully balance speed and accuracy, which is particularly
important for interactive applications.

For each method, we present its idea and its main compo-
nents (e.g., the design of shape functions and the construc-
tion of element stiffness matrices). In an additional section,
we also briefly review the numerical methods for solving the
system of equations resulting from finite element discretiza-
tion and implicit time integration, since the numerical solver

c© The Eurographics Association 2014.

8 J. Wu, R. Westermann, C. Dick / Physically-based Simulation of Cuts in Deformable Bodies: A Survey

is a crucial component considering the overall performance
of a cutting application.

3.1. The Extended Finite Element Method

The basic idea of the extended finite element method
(XFEM) [BB99] is to model material discontinuities intro-
duced by cuts by adapting the basis functions of the finite
dimensional solution spaces [BM97, SCB01]. XFEM was
originally invented to accurately simulate material interfaces
and crack propagation [MDB99, SMMB00]. The idea was
recently utilized for cutting and fracturing deformable ob-
jects in graphics applications [LT07, JK09, KMB∗09].

In the standard FEM, the displacement within an element
is interpolated from the displacements at the element’s nodes
by using continuous shape functions, which are apparently
not sufficient to model the discontinuities introduced by cuts.
The idea of XFEM is to introduce discontinuous enrich-
ment functions, together with additional degrees of freedom
(DOFs) assigned to the original nodes. The displacement
field u(x) is computed as

u(x) = Φe(x) ue +Ψe(x)Φe(x) ae︸ ︷︷ ︸
enrichment

, (1)

where Φe(x) is the standard shape matrix, ue is the vector of
original DOFs, Ψ(x)e is the element’s shape enrichment ma-
trix, which is composed of discontinuous enrichment func-
tions ψe

i (x), and ae represents the newly assigned DOFs.

To make the shape functions fulfill the Kronecker delta
property, a good choice for the enrichment functions is the
shifted Heaviside function, i.e.,

ψe
i (x) =

H(x)−H(xi)
2

, (2)

where xi is the position of the i-th node, and H(x) is the gen-
eralized Heaviside function (also known as the sign func-
tion)

H(x) =

{
+1 if x is on the cut’s left side;
−1 if x is on the cut’s right side. (3)

As illustrated in Figure 7 (for simplicity for a planar ele-
ment), using the shifted Heaviside function ensures the dis-
continuity across the cut. Substituting the enrichment func-
tions Eq. 2 into Eq. 1, in this example the displacement field
becomes u(x) = Φe(x) (u1, u2 + a2, u3)T on the left side of
the cut, and u(x) = Φe(x) (u1 −a1, u2, u3 −a3)T on the right
side. Employing the shifted Heaviside function as enrich-
ment functions makes it easy to treat boundary conditions:
Since they vanish at the nodes, i.e., ψe

i (xi) = 0, the displace-
ment at the position of the i-th node is independent of the
additional DOFs ae. It should be noted that a different se-
lection of the enrichment functions influences the physical
meaning of the original and the added DOFs, but leads to
the same displacement field.

With the enriched shape functions defined, the enriched

Figure 7: A discontinuous displacement field computed
with the extended finite element method. The green tri-
angle domain is divided by a red cut line. The displace-
ments ui and ai correspond to the original and added
DOFs respectively. Using the shifted Heaviside function
as enrichment functions, the displacement field is u(x) =

Φe(x) (u1, u2 + a2, u3)T on the left side of the cut, and u(x) =

Φe(x) (u1 −a1, u2, u3 −a3)T on the right side.

element stiffness matrix is computed as

xKe =

∫
Ωe

(xBe)TC(xBe)dx, (4)

where C represents the material law, and the enriched ele-
ment strain matrix is composed according to

xBe =
(
Be

1, . . . , Be
nv
, ψe

1Be
1, . . . , ψ

e
nv

Be
nv

)
. (5)

The enriched element stiffness matrix has the form

xKe =

(
Ke,uu Ke,ua

Ke,au Ke,aa

)
, (6)

where the superscripts u and a correspond to the original and
the added DOFs, respectively. Details that facilitate imple-
mentation, as well as enriched element stiffness matrices for
the corotational and non-linear strain formulations were de-
rived by Jeřábková et al [JK09].

While only a single cut is considered above, multiple
cuts, in principle, can be supported by further adding more
enrichment functions and simulation DOFs. Kaufmann et
al. proposed enrichment textures for detailed cutting of
shells [KMB∗09]. They proposed a harmonic enrichment
approach, which uses only one unified kind of enrichment
functions to handle multiple, partial, progressive, and com-
plete cuts. While this approach is in general applicable to 3D
solids, such a generalization has not been reported yet.

3.2. The Composite Finite Element Method

The idea of the composite finite element method (CFEM)
[HS97, SW06] is to approximate a high-resolution finite
element discretization of a partial differential equation by
means of a smaller set of coarser elements. Preusser et
al. used the composite finite element method to resolve
complicated simulation domains with only a few degrees

c© The Eurographics Association 2014.

J. Wu, R. Westermann, C. Dick / Physically-based Simulation of Cuts in Deformable Bodies: A Survey 9

Figure 8: Hierarchical construction of the composite finite element model. Left: 2D illustration of the adaptive linked volume
representation, consisting of a set of octree cells (gray), which are connected via links (green). These links are disconnected
(dashed, orange) at the object’s original boundary and along the newly generated surfaces due to cutting (bold black line).
Middle left to right: Iterative coarsening of the finite element model. The underlying graph representation is indicated by red
vertices and green edges. In each block of 23 cells of the underlying lattice, the connected components (orange) are determined,
and the elements of each connected component are replaced by a separate composite finite element. Duplicated elements are
shaded in dark gray.

of freedom, and also to improve the convergence of ge-
ometric multigrid methods by an effective representation
of complicated object boundaries at ever coarser scales
[PRS07, LPR∗09]. In computer graphics, Nesme et al. em-
ployed CFEM as a special kind of homogenization for re-
solving complicated topologies and material properties in
deformable body simulation [NKJF09].

Recently composite finite elements were leveraged in the
context of virtual cutting to reduce the number of simula-
tion DOFs [JBB∗10, WDW11]. The adoption of CFEM for
cutting simulation is motivated by the following facts. First,
using hexahedral discretizations (see Section 2.3), an accu-
rate representation of complex cuts typically requires a high-
resolution octree grid. Creating a hexahedral simulation ele-
ment for each octree cell would lead to a very high number
of DOFs, exceeding the number of DOFs that can be simu-
lated in real-time. Second, due to its simplicity, the regular or
semi-regular hexahedral grid enables an efficient construc-
tion of composite finite elements.

A composite finite element is obtained by combining a set
of small standard finite elements into a single larger element.
In particular, the shape functions of the composite finite ele-
ment are assembled from the shape functions of the individ-
ual elements. In the following, we discuss the geometrical
and topological composition, and the numerical composition
of the stiffness matrices.

Geometrical and topological composition Building upon
the hexahedral grid, composite elements are constructed by
merging the elements in a block of 23 cells of the un-
derlying lattice into one composite element. This straight-
forward approach, however, may merge topologically dis-
connected elements into one composite element, neglect-
ing the fact of the material’s discontinuity. To accurately
represent the topology and thus to enable a physically cor-
rect simulation, an individual composite element is created
for each mechanically disconnected part, as demonstrated
in [NKJF09, DGW11a, WDW11]. As a consequence, multi-

ple composite finite elements may exist at the same location.
An illustration of this process, which can be iteratively re-
peated to create ever coarser composite elements, is given in
Figure 8.

Numerical composition The stiffness matrices for the com-
posite elements are assembled from those of the underly-
ing standard elements. Using composite finite elements, the
DOFs are located at the vertices of these composite ele-
ments. The displacements at the vertices of the underlying
hexahedral finite elements are determined by trilinear inter-
polation from the vertices of the composite finite elements.
This is described by the equation u = Iũ, where ũ and u de-
note the linearizations of the displacements at the vertices of
the composite finite elements and the underlying hexahedral
finite elements, respectively, and the interpolation matrix I
expresses the trilinear interpolation from the composite ele-
ment vertices.

It can be derived that the stiffness matrix K̃ for the com-
posite finite element discretization has the form

K̃ = ITKI, (7)

where K is the stiffness matrix for the underlying hexahedral
finite element discretization. K̃ is assembled from the com-
posite element stiffness matrices K̃c, which are computed as

K̃c
mn =

∑
e in c

8∑
i=1

8∑
j=1

wc→e
m→iw

c→e
n→ jK

e
i j, m,n = 1, . . .8. (8)

Here, the first sum iterates over the hexahedral elements e
that are merged into the composite element c. Note that the
element matrices are interpreted as 8 × 8 matrices with each
entry being itself a 3 × 3 matrix. Thus, K̃c

mn and Ke
i j denote

3 × 3 blocks of scalar entries.

The trilinear interpolation weights wc→e
m→i from the vertices

m = 1, . . .8 of the composite element c to the vertices i =

c© The Eurographics Association 2014.

10 J. Wu, R. Westermann, C. Dick / Physically-based Simulation of Cuts in Deformable Bodies: A Survey

1, . . . ,8 of the hexahedral element e are defined as

wc→e
m→i = (1−

|xc
m − xe

j |

sc)(1−
|yc

m − ye
j |

sc)(1−
|zc

m − ze
j |

sc), (9)

where (xc
m,y

c
m,z

c
m) and (xe

i ,y
e
i ,z

e
i) are the coordinates of the

vertices, and sc denotes the edge length of the composite
element.

3.3. The Polyhedral Finite Element Method

To avoid the re-meshing process in standard finite elements,
Wicke et al. proposed to directly work on more general con-
vex polyhedral elements [WBG07]. Martin et al. extended
this method to support arbitrary convex and concave polyhe-
dral elements with planar (not necessarily triangulated) faces
[MKB∗08]. Kaufmann et al. further applied discrete discon-
tinuous Galerkin FEM to arbitrary polyhedra [KMBG08].
These approaches are collectively named here as polyhedral
finite element method (PFEM).

Shape functions for polyhedra A key component in PFEM
is valid shape functions defined on the polyhedral domain.
They should fulfill the properties of positivity and reproduc-
tion of linear polynomials, as required for the convergence
of the finite element method [WBG07].

Wicke et al. employed the mean value interpolation func-
tion, which is defined as a normalized weight function for
each vertex xi of a convex polyhedron with k vertices ac-
cording to

φi(x) =
wi(x)∑k

l=1 wl(x)
. (10)

Enumerating xi’s edge-adjacent vertices by x j, the weight wi
is defined as a weighted sum of ratios of signed tetrahedra
volumes by

wi(x) =
∑

j

(
c j, j+1

Vi, j, j+1
+

ci, jV j−1, j+1, j

Vi, j−1, jVi, j, j+1

)
, (11)

where Va,b,c represents the volume of the tetrahedron
spanned by xa, xb, xc and x, and ca,b is computed as

ca,b(x) =
‖(xa − x)× (xb − x)‖

6
arccos

(
(xa − x)T(xb − x)
‖xa − x‖‖xb − x‖

)
.

(12)

Martin el al. used harmonic shape functions as a general-
ization of linear tetrahedral shape functions to general poly-
hedral elements. A shape function is called harmonic if its
Laplacian vanishes within the element. With its value fully
determined at the nodes (constrained by the Kronecker delta
property), the harmonic shape function is uniquely deter-
mined. Since closed form expressions for harmonic shape
functions do not exist for general polyhedra, they numeri-
cally computed the solution of the Laplacian equation using
the method of fundamental solutions.

Computation of element matrices In contrast to finite ele-
ment methods based on tetrahedral and hexahedral elements,

an analytical evaluation of the element stiffness matrices for
polyhedral elements is non-trivial. To efficiently integrate
(Be)TCBe over a polyhedral domain, Wicke et al. approx-
imated the integrals using a small set of sample points p
heuristically placed throughout the element, in particular,
one integration sample pi per vertex of the element, and one
sample p f per triangle of the element faces. In their imple-
mentation, the per-vertex samples are placed between the
element centroid c and the vertex xi, at pi = 0.8xi + 0.2c,
while the per-triangle samples are located between the ele-
ment centroid c and the face centroid c f , at p f = 0.9c f +0.1c.
Their simulation results show that the exact location of the
samples has little influence, and that the difference compared
to employing around 10,000 samples per element is subtle.

Integrating over this set of sample points, the element
stiffness matrix Ke has the form

Ke =
∑

i

µe
i

2
(Be(pi))TCBe(pi) +

∑
f

κe
f

2
(Be(p f))TCBe(p f).

(13)
Here, µe

i and κe
f represent the volume fractions associated

with the per-vertex integration sample pi and with the per-
triangle sample p f , respectively. Specifically, enumerating
xi’s edge-adjacent vertices by x j, the volume fraction µe

i is
defined as

µe
i =

∑
j V(xi, x j, x j+1,c)

3Ve . (14)

For a triangle face with vertices x j1 , x j2 , and x j3 , the volume
fraction κe

f is defined as

κe
f =

V(x j1 , x j2 , x j3 ,c)
Ve . (15)

3.4. Discussion on Finite Element Methods

Both the extended finite element method and the composite
finite element method are based on using distinct spatial dis-
cretizations for the representation of the simulation domain
and the numerical discretization. In particular, the spatial
discretization that is employed for the numerical discretiza-
tion does not need to be aligned at the simulation domain
boundary. Compared to the standard finite element meth-
ods, this enables to reduce the number of computational ele-
ments/DOFs along the boundary, and thus to balance speed
and accuracy. Both approaches are based on using duplicated
DOFs at the same location in order to correctly model the
topology of the simulation domain. Whereas the extended
finite element method directly duplicates the DOFs at the
vertices of the original element, the composite finite element
method is based on duplicating elements, which implicitly
leads to a duplication of DOFs.

It is worth noting that the virtual node algorithm [MBF04,
SDF07] described in Section 2.2.4 is related to these ap-
proaches, in that it is also based on the duplication of el-
ements and thus DOFs in order to correctly represent the

c© The Eurographics Association 2014.

J. Wu, R. Westermann, C. Dick / Physically-based Simulation of Cuts in Deformable Bodies: A Survey 11

topology of the simulation domain. However, since in the
virtual node algorithm the duplicated elements are assigned
the (standard) element matrices of the original elements be-
fore cutting, the distribution of the material to the distinct
sides of a cut is not modeled accurately. This is in contrast
to the extended and the composite finite element method,
where the material boundaries (including those resulting
from cutting) are accurately represented by using special-
ized element matrices, i.e., the construction of these matrices
takes the exact material boundaries into account.

3.5. Numerical Solvers

To solve the sparse linear system of equations resulting from
finite element discretization and implicit time integration, an
efficient numerical solver is required. Here it is worth noting
that in the particular application of virtual cutting, the initial-
ization time of the solver plays a significant role. Since the
system matrices have to be re-assembled in every simulation
step due to the use of the corotational strain formulation and
the handling of topology changes, initialization of the solver
has to be performed in every simulation step, too.

3.5.1. Direct Solvers

Direct methods solve for an exact solution of the linear sys-
tem by a finite sequence of operations. Zhang et al. proposed
to solve the equation system resulting from static finite el-
ement simulation of linear materials by pre-computing the
inverse of the global stiffness matrix [ZWP05]. Topologi-
cal modifications add new rows and columns into this ma-
trix, and its inverse can be re-computed efficiently via the
Sherman-Morrison-Woodbury formulae [Hag89]. Lee et al.
made use of condensation [BNC96, WH05] to further accel-
erate the inversion process [LPO10]. By considering only the
surface nodes of the volumetric object in the computation of
the inverse, significantly improved computation times could
be achieved. In a similar manner, Lindblad and Turkiyyah
updated the inverse of the stiffness matrix in the extended
finite element method [LT07]. Turkiyyah et al. proposed to
use progressive updates of the Cholesky factorization to sim-
ulate cutting of a 2D mesh [TKAN09], and Courtecuisse et
al. updated the inverse of the compliance matrix after cut-
ting to model the contact [CJA∗10]. Recently, sparse direct
solvers were applied to corotational elastodynamics with
consistent topology [HLSO12].

3.5.2. Iterative Solvers

Direct solvers using matrix inversion and factorization do
not scale well in the number of DOFs because of their exten-
sive memory and computation requirements. Furthermore,
such solvers cannot trade accuracy for speed, which is re-
quired in interactive applications to guarantee prescribed re-
sponse rates. Iterative solvers, on the other hand, provide
an effective means to balance speed and accuracy. Iterative

solvers use an initial guess to generate a sequence of pro-
gressively accurate approximations to the exact solution of a
system of equations.

The major concern of iterative solvers is the convergence
rate that can be achieved per given time interval. Nienhuys
and van der Stappen [NFvdS00, NFvdS01] used a conjugate
gradient (CG) solver [She94]. CG solvers can be parallelized
efficiently using OpenMP [CAR∗09] and CUDA [CJA∗10].
Dick et al. proposed a geometric multigrid solver for cut-
ting simulation, based on a hexahedral discretization of the
simulation domain [DGW11a]. The main idea of multigrid
is to improve the convergence of a basic iterative method
by global correction, accomplished by solving the system
on a hierarchy of successively coarser grids. It is optimal
in the sense that it exhibits asymptotic linear runtime in
the number of unknowns. A detailed comparison of differ-
ent solvers in the context of virtual cutting has revealed sig-
nificantly improved convergence rates of multigrid methods
compared to a Cholesky solver and a CG solver with Ja-
cobi pre-conditioner. In particular it was demonstrated that
the convergence rate of multigrid methods does not depend
on the smoothness of the object boundary, which was com-
monly referred to as a main weakness of multigrid methods.

4. Meshfree Methods

In contrast to finite element methods, meshfree methods
(also known as meshless methods) do not require a simu-
lation grid. Instead, the material is represented by a set of
moving simulation nodes, which interact with each other ac-
cording to the governing equations of elasticity. The advan-
tage of meshfree methods is that they do not need an explicit
encoding of the material topology and can be used even in
scenarios where the connectivity of the nodes is difficult to
maintain without introducing errors [NTV92]. On the down-
side, meshfree methods need to compute node-to-node adja-
cency in every simulation step, making it necessary to main-
tain and update an additional search data structure.

In computer graphics, Desbrun and Cani are among the
first to employ the concepts underlying meshfree methods
for deformable body simulation. They animated soft sub-
stances that can split and merge by combining particle sys-
tems with inter-particle forces [DG95]. Müller et al. pro-
posed point-based animation for a wide spectrum of volu-
metric objects [MKN∗04]. Meshfree methods have also been
used in offline fracturing [PKA∗05] and interactive cutting
[SOG06, PGCS09].

In meshfree methods, the object is sampled at a set of sim-
ulation nodes xi. The deformation field is approximated by
u(x) =

∑
i φi(x)ui, where ui are the displacement vectors at

the simulation nodes and φi are shape functions. The shape
functions proposed in the computer graphics literature are
usually constructed using the moving least squares (MLS)
approximation [LS81]. Alternative designs of shape func-

c© The Eurographics Association 2014.

12 J. Wu, R. Westermann, C. Dick / Physically-based Simulation of Cuts in Deformable Bodies: A Survey

tions for meshfree methods can be found in engineering text-
books (e.g., [FM03]). The shape functions are weighted by
a polynomial kernel w(x, xi,ri), which rapidly decays with
increasing distance between the simulation node xi and the
point x where the function is to be evaluated. The radius of
influence ri should be sufficiently small to adequately dis-
cretize displacement gradients. It is typically chosen in such
a way that the influence region includes a constant number
of neighbors of the node xi.

Modeling discontinuity Meshfree methods model the ma-
terial discontinuities caused by cutting (as well as initial
surface concavities) by augmenting the shape functions. A
straightforward way is by introducing the visibility crite-
rion [BLG94], i.e., if a point x is invisible from the sim-
ulation node xi due to the newly created surface, the shape
function φi(x) is assigned a value of zero. A drawback of this
solution is that it introduces an artificial discontinuity (see
Figure 9 (a), the two sides of the ray starting from the dis-
continuity tip p are classified as visible and invisible respec-
tively), which affects negatively numerical convergence and
stability. To cope with this, Pietroni et al. extended the vis-
ibility criterion by introducing the concept of visibility disk
and augmented the shape function by the ratio of the visi-
ble region within the disk [PGCS09]. While this approach
alleviates the discontinuity caused by the binary-valued visi-
bility criterion, a rigorous definition of the visibility disk has
not been proposed so far.

The discontinuity can also be modeled by defining differ-
ent distance measures for quantification of the distance be-
tween x and xi, which is then considered in the weights of the
shape functions. The transparency method [OFTB96] adds
to the Euclidean distance between x and xi a factor that de-
pends on the distance from the discontinuous tip to the inter-
section of the line segment, pa in Figure 9 (b). This distance
measure was used in offline simulations [PKA∗05,GLB∗06].

The diffraction method [OFTB96], which considers the
diffraction of rays around the discontinuity tip, weights the
Euclidean distance between x and xi by their distances to
the discontinuity tip, pxi and px in Figure 9 (c). Note that
the diffraction and transparency methods were designed for
simple 2D domains where the discontinuity tip is well de-
fined. For efficient evaluation of diffraction distances in 3D,
Steinemann et al. proposed the use of a visibility graph for
estimating the distance along fully visible paths between
two points [SOG06]. The distance is chosen as the short-
est path in a pre-computed visibility graph, see Figure 9 (d),
xi→ xa→ xb→ x. Upon cutting, the intersected edges of the
visibility graph are removed from the graph, and the shortest
paths in the graph are updated accordingly.

Boundary surface Meshfree methods do not naturally pro-
vide a representation of the boundary. To create new sur-
faces after cutting, Steinemann et al. proposed to explicitly
triangulate the swept surface of a cutting tool [SOG06]. The
swept surface is trimmed with respect to the original sur-

Figure 9: Discontinuity modeling in meshfree methods. The
object (gray region) is sampled at a set of simulation nodes
(blue dots). (a) The visibility criterion assigns a zero value to
the shape function since xix intersects the cut (the red curve).
(b) The transparency method enhances the Euclidean dis-
tance xix with the distance from the discontinuity tip to the
intersection, pa. (c) The diffraction method considers the
distances from the tip to both nodes, pxi and px. (d) The
diffraction distance is approximated by the shortest path in a
visibility graph, xixa, xaxb, and xbx.

face of the object. In the context of fracturing, Pauly et al.
modeled explicitly advancing crack fronts by continuously
adding surface samples during crack propagation [PKA∗05].
Instead of creating new surfaces explicitly, Pietroni et al.
maintained a uniform hexahedral grid that is embedded into
the simulation domain, and reconstructed from this grid a
mesh corresponding to an implicit surface in the volume
[PGCS09].

5. Summery of Techniques for Cutting Simulation

Since there exist so many different techniques for simulating
cuts in deformable bodies, in the following we try to pro-
vide a comprehensive overview of these techniques accord-
ing to a few specific categories. The overview is presented
in Table 1. In particular, we classify techniques according to
the discretization and the modeling of cuts (Geometry), the
deformable model (Deformation), the time integration and
numerical solver (Solver), and the intended application sce-
nario (Scenario). We further give some remarks on specific
properties of these techniques.

In Table 1 the different techniques are grouped into six
categories. In the first category are techniques building on
tetrahedral discretizations. It can be observed that these tech-
niques are intended primarily for medical applications. The
second and third categories comprise techniques building

c© The Eurographics Association 2014.

J. Wu, R. Westermann, C. Dick / Physically-based Simulation of Cuts in Deformable Bodies: A Survey 13

Reference Geometry Deformation Solver Scenario Remark

Bielser et al. [BMG99, BG00, BGTG04] Tet., refinement Mass-spring Explicit/Semi-implicit Interactive Basic tet. refinement
Cotin et al. [CDA00] Tet., deletion Tensor-mass Explicit Interactive Hybrid elastic model
Mor & Kanade [MK00] Tet., refinement FEM Explicit Interactive Progressive cutting
Nienhuys et al. [NFvdS00, NFvdS01] Tet., boundary splitting/snapping FEM Static (CG solver) Interactive FEM with a CG solver
Bruyns et al. [BSM∗02] Tet., refinement Mass-spring Explicit Interactive An early survey
Steinemann et al. [SHGS06] Tet., refinement + snapping Mass-spring Explicit Interactive (Fig. 13 a) Hybrid cutting
Chentanez et al. [CAR∗09] Tet., refinement FEM Implicit (CG solver) Interactive (Fig. 13 d) Needle insertion
Courtecuisse et al. [CJA∗10, CAK∗14] Tet., deletion/refinement FEM Implicit (CG solver) Interactive (Fig. 13 c,e) Surgery applications

Molino et al. [MBF04] Tet., duplication FEM Mixed explicit/implicit Offline Basic virtual node algorithm
Sifakis et al. [SDF07] Tet., duplication FEM Offline (Fig. 12 a) Arbitrary cutting

Jeřábková & Kuhlen [JK09] Tet. XFEM Implicit (CG solver) Interactive Introduction of XFEM
Turkiyyah et al. [TKAN09] Tri. 2D-XFEM Static (direct solver) Interactive XFEM with a direct solver
Kaufmann et al. [KMB∗09] Tri./Quad. 2D-XFEM Semi-implicit Offline (Fig. 12 c) Enrichment textures

Frisken-Gibson [FG99] Hex., deletion ChainMail Local relaxation Interactive Linked volume
Jeřábková et al. [JBB∗10] Hex., deletion CFEM Interactive CFEM
Dick et al. [DGW11a] Hex., refinement FEM Implicit (multigrid) Offline/Interactive (Fig. 12 d) Linked octree, multigrid solver
Seiler et al. [SSSH11] Hex., refinement FEM Implicit Interactive Octree, surface embedding
Wu et al. [WDW11, WBWD12, WDW13] Hex., refinement CFEM Implicit (multigrid) Interactive (Fig. 13 b, f) Collision detection for CFEM

Wicke et al. [WBG07] Poly., splitting PFEM Implicit Offline (Fig. 12 b) Basic polyhedral FEM
Martin et al. [MKB∗08] Poly., splitting PFEM Semi-implicit Offline Harmonic basis functions

Pauly et al. [PKA∗05] Particles, transparency Meshfree Explicit Offline Fracture animation
Steinemann et al. [SOG06] Particles, diffraction Meshfree Offline/Interactive (Fig. 12 e) Splitting fronts propagation
Pietroni et al. [PGCS09] Particles, visibility Meshfree Interactive Splitting cubes algorithm

Table 1: An overview of cutting techniques outlined in this report.

upon the virtual node algorithm and extended finite ele-
ments, respectively. In the fourth category are techniques
using hexahedral discretizations. Into the fifth and sixth cat-
egory, respectively, fall papers using polyhedral discretiza-
tions and meshfree methods.

We show representative simulation results for each group
in Figures 12 and 13. Figure 12 shows scenarios simulated
offline by (a) the virtual node algorithm, (b) the polyhe-
dral finite element method, (c) the extended finite element
method, (d) the hexahedral finite element method on an oc-
tree grid, and (e) the meshfree method. Figure 13 shows in-
teractive simulation scenarios in various medical contexts,
such as (a) ablating a polyp in a hysteroscopy simulator, us-
ing element refinement together with snapping of vertices,
(b) virtual soft tissue cutting and shrinkage simulation, by
modeling the residual stress in biological tissues, (c) real-
time simulation of a brain tumor resection, using an asyn-
chronous pre-conditioner, (d) needle insertion in a prostate
brachytherapy simulator with a parallelized CG solver, (e)
real-time simulation of laparoscopic hepatectomy dealing
with complex contacts, and (f) haptic-enabled real-time vir-
tual cutting of high-resolution soft tissues, using composite
finite elements and a multigrid solver.

6. Application Study on Cutting Simulation

In the following application study we intend to shed light on
the performance of physically-based cutting simulation and,
by this, to assess the model resolution that can be handled
in interactive scenarios requiring update rates of 20-30 Hz.
We restrict ourselves to the analysis of one specific simula-
tion approach for which a highly optimized implementation
is available. Even though this approach has limitations, we

believe that it allows for a very good estimation of the sim-
ulation efficiency that can be achieved when the model of
linear elasticity is used.

Figure 10 shows our experiment setup in which we simu-
late a cut in a linear elastic liver model. All experiments were
performed on a standard desktop PC equipped with an Intel
Xeon X5560 processor (a single core was used) and 8 GB
main memory.

We analyze three variants of the hexahedral finite element
approach proposed by Dick et al [DGW11a]. It uses the
corotational formulation of finite elements, which simulates
linear dependencies between the components of stress and

Figure 10: Left: Experiment setup. To cut a liver model
the user manipulates a haptic device that is mapped to a
scalpel. Right: High quality surface rendering. Bottom: A
sequence of images from a live recording, available at
http://wwwcg.in.tum.de/research/research/projects/real-
time-haptic-cutting.html.

c© The Eurographics Association 2014.

14 J. Wu, R. Westermann, C. Dick / Physically-based Simulation of Cuts in Deformable Bodies: A Survey

Figure 11: From left to right: Simulation of cuts using finite
elements on a uniform hexahedral grid, finite elements on
an adaptive octree grid, and composite finite elements on an
adaptive octree grid.

strain, and considers the geometric non-linearity by respect-
ing per-element rotations in the strain computation. While
finite element discretizations enable high accuracy, hexahe-
dral elements are well suited for constructing a mesh hier-
archy that can be used by a geometric multigrid solver to
achieve optimal convergence rates. On the other hand, since
hexahedral simulation elements are not aligned with the ob-
ject boundaries, approaches using unstructured tetrahedral
simulation grids might be favorable when smooth boundary-
aware discretizations of the simulation domain are required.
For instance, to perform accurate collision detection and re-
sponse. In all of our experiments, a high-resolution surface
is generated from the cut object using the dual contouring
algorithm on the hexahedral grid, and this surface is used for
rendering and collision detection [WDW13].

Our first variant uses finite elements on a uniform hexahe-
dral grid and realizes cuts by simply disconnecting elements
along element faces. A high-resolution finite element model
consisting of 173,843 hexahedral elements (566,493 DOFs)
on a 82×83×100 uniform grid is used as our reference so-
lution (see Fig. 11 (left)). We simulate the cut by instantly
bringing the cutting tool into its final position and perform-
ing all required operations like finding and disconnecting
edges in the simulation grid, FE matrix assembly, and nu-
merical multigrid solver execution. In particular, we per-
form 2 V-cycles including 4 pre- and post-smoothing Gauss-
Seidel relaxation steps, which reduces the error to below 1%.
Note that while cutting on a uniform grid does not add new
elements, the number of DOFs is increased, since some of
the originally shared element vertices become separated ver-
tices due to the cut.

The second variant uses finite elements on an adaptive oc-
tree grid. This grid is constructed by starting with a uniform
coarse hexahedral grid, which is adaptively refined along
the initial object boundary and the cut, until a user-selected
level is reached. For this variant we have set the resolution
of the initial coarse grid and the refinement depth such that
in the refined regions the grid resolution of the first variant
is reached. The third variant uses the same adaptive grid as
the second one, but instead of standard finite elements, it
uses composite finite elements at the resolution of the ini-

Uniform Adaptive Composite
(2 levels)

Coarse resolution 21×21×25 21×21×25
Refined resolution 82×83×100 82×83×100 82×83×100

Cells (initial) 173 843 40 080 3 439
DOFs (initial) 566 493 129 162 13 557

Cells (added due to cut) 0 1 596 39
DOFs (added due to cut) 2 037 6 438 318

Octree subdivision (t1) 0 13.29 13.39
Surface meshing (t2) 1.26 1.26 1.24

FE matrices (t3) 29.57 7.05 20.99
Multigrid hierarchy (t4) 40.34 10.09 2.06

Solver (t5) 2 033.09 581.66 40.61

Simulation per cut (
∑5

i=1 ti) 2 104.26 613.35 78.29

Table 2: Timings (in milliseconds) for cutting simulations
using finite elements on a uniform hexahedral grid, finite el-
ements on an adaptive octree grid, and composite finite ele-
ments on an adaptive octree grid.

tial coarse grid [WDW11]. Since the refined elements are
used only to correct the coarse grid simulation, consider-
ably higher performance is achieved. The last variant is in-
tended to demonstrate the trade-offs between highest accu-
racy and speed in interactive scenarios when employing the
principle of homogenization for linear elasticity [KMOD09].
Since the adaptive variants restrict the element refinement
to a user-selected depth, alternative (offline) approaches like
extended finite elements [JK09, KMB∗09] can be favorable
in applications where cuts should be modeled at sub-grid ac-
curacy.

Figure 11 (middle) shows the same cut as before, but now
the second variant is used to simulate the cut. We start with a
21×21×25 uniform grid. Initially, this grid is refined adap-
tively along the object boundary via two levels of subdivi-
sion. When the cut is simulated, the grid is further refined
along the cut using the same refinement depth, resulting in
41,676 hexahedral elements (135,600 DOFs).

In the last experiment (see Fig. 11 (right)) we start with
the same initial grid as in the second experiment, and we ap-
ply exactly the same adaptive grid refinement along the ob-
ject boundary and the cut. However, the adaptively generated
elements are not considered as DOFs in the simulation, but
they are used to assemble the coarse grid matrices accord-
ing to their contributions. Thus, the simulation is performed
using 3,439 composite elements (13,557 DOFs).

Table 2 lists the times that are consumed by the different
processes in each experiment. It can be seen that even though
a large number of DOFs can be simulated in roughly 2 sec-
onds using a uniform simulation grid, the grid resolution has
to be reduced about a factor of 4 in each dimension to make
the uniform grid suitable for interactive scenarios. Via the
adaptive octree grid the cut can be simulated at almost no
visual difference to the high-resolution reference solution.

c© The Eurographics Association 2014.

J. Wu, R. Westermann, C. Dick / Physically-based Simulation of Cuts in Deformable Bodies: A Survey 15

Due to the restriction of element refinements along the ini-
tial object boundary and the cut, the overall simulation time
can be reduced by a factor of 3.5. Using composite finite el-
ements, the number of simulation elements to be considered
by the numerical solver can be decreased further, making
this approach suitable for interactive scenarios. Despite the
low number of DOFs to be solved for, the simulation result
is in very good agreement with the results generated by the
other variants. It is clear, however, that due to the reduced
number of DOFs, the simulated deformations cannot exactly
match the high-resolution reference in general.

Table 2 further indicates that surface meshing does not
have any impact on the overall performance. This is because
it works only on the boundary elements. Since the effective
resolution of the boundary elements is the same in all three
experiments, surface meshing always consumes the same
amount of time. It can be seen that in addition to the time
consumed by the multigrid solver, especially in the interac-
tive variant the adaptive grid refinement (t1) and the assem-
bly of the finite element matrices (t3) take up a considerable
amount of the overall time. In this variant, the time required
to generate the multigrid hierarchy (t4) is rather low due to
the low resolution of the simulation grid. This variant re-
quires a grid hierarchy from the finest level to the coarse
simulation level as well for assembling the FE matrices on
the simulation grid. The time for updating this part of the
hierarchy is counted in t3 for this variant.

7. Discussion and Conclusion

In this report we have reviewed the current state-of-the-art
in computer-aided simulation of cuts in deformable bodies.
We have discussed distinct geometry and topology represen-
tations, specifically-tailored finite element approaches, and
meshfree methods, with respect to accuracy, robustness, and
computational efficiency.

The analysis of current techniques indicates a clear trend
towards physically-based simulations. From our experience
this trend is driven by the application domains in which vir-
tual cutting is applied. Especially in virtual surgery simula-
tors, which are used for training and preoperative planning,
doctors are more and more demanding for reliable simula-
tions that can accurately predict the behavior of soft tissue
undergoing cuts and deformations thereof. Thus, going be-
yond this STAR we see the urgent need for a benchmark that
is tailored to the problem of virtual cutting simulation and
that can be used to assess simulation techniques quantita-
tively.

Furthermore, especially in medical applications the accu-
rate modeling of real-world material is becoming of ever in-
creasing importance. Going beyond the model of linear elas-
ticity and homogeneous material, soft tissues exhibiting non-
linear, anisotropic, viscoelastic and even viscoplastic behav-
ior [Hum03] need to be considered by interactive simulators

in the future. However, even though it is known in principle
how to model such tissue types physically, we see the effi-
cient numerical simulation of these types as one of the most
important research questions for the future.

One possibility to achieve interactive cutting simulation
even for complex tissue types is the use of dedicated par-
allelization strategies on multi-core and multi-GPU archi-
tectures. On single GPUs, the parallelization of deformable
body simulation has already shown significant performance
improvements [DGW11b, CJA∗10]. The layout of numeri-
cal solvers across multiple CPU or GPU nodes, however, is
extremely challenging. In particular for the parallelization
of an initially sequential solver, typically frequent commu-
nication between the nodes is required, letting bandwidth
and latency become quickly the bottleneck. It is therefore
required to develop parallel solvers that are particularly tai-
lored to such computing architectures by reducing the com-
munication between the nodes. A promising approach that
needs further investigation are domain decomposition meth-
ods, which divide the problem into subproblems that can be
solved independently.

Another direction of research is the development of ap-
proaches for modeling the physical interaction between a
scalpel and soft tissues accurately [MH01,CDL07,MRO08].
For simplicity, most virtual cutting techniques assume that
the material is separated as long as it is swept by a cut-
ting tool. In the physical world, however, we can observe
that there is a deformation of soft tissues before a cut hap-
pens. The simulation of this kind of tool-object interac-
tion may benefit from general contact resolution techniques
[HVS∗09, AFC∗10, SH12].

Finally, the discussion of techniques in this report has re-
vealed that two major, and somehow opposing, requirements
reflect in the design of cutting techniques. On the one hand,
one seeks to use unstructured spatial object discretizations to
accurately model a cut. This has led to geometric techniques
using tetrahedral or polyhedral meshes, which are re-meshed
irregularly along the cut. On the downside, the re-meshing
step becomes very elaborate for arbitrary cutting paths, and
it increases the number of simulation elements significantly.

On the other hand, to achieve high performance of the
numerical solver used to simulate the dynamic behavior of
the cut body, structured simulation grids have turned out to
be favorable. Scalable solvers exhibiting linear complexity
in the number of supporting vertices have been achieved
via geometric multigrid methods on semi-regular hexahe-
dral grids. While building geometric multigrid hierarchies
on hexahedral grids is simple, on unstructured grids the con-
struction of such hierarchies is extremely complicated and
very time-consuming. In general, however, elements in hex-
ahedral grids are not aligned with the object boundaries, in-
troducing modeling inaccuracies along these boundaries.

In our opinion it is one of the most interesting questions
whether adaptive spatial discretizations can be found that

c© The Eurographics Association 2014.

16 J. Wu, R. Westermann, C. Dick / Physically-based Simulation of Cuts in Deformable Bodies: A Survey

give rise to efficient numerical solution techniques at the
same time allowing for an accurate alignment of simulation
elements along the object boundaries.

Author Biographies

Jun Wu is a research assistant in the Computer Graphics and
Visualization Group at the Technische Universität München,
Germany. He received a B.Eng. in astronautical engineering
in 2006 and a Ph.D. in mechanical engineering in 2012, both
from Beihang University, Beijing, China. His research inter-
ests include physically-based modeling and interactive sim-
ulation, haptic rendering, and their applications in surgery
simulation.

Rüdiger Westermann studied computer science at the
Technical University Darmstadt, Germany. He pursued his
doctoral thesis on multiresolution techniques in volume ren-
dering, and he received a Ph.D. in computer science from the
University of Dortmund, Germany. In 1999, he was a visiting
professor at the University of Utah in Salt Lake City, and he
became an assistant professor at the University of Stuttgart,
Germany. In 2000, he was appointed an associate professor
at the Technical University Aachen, Germany, where he was
head of the Scientific Visualization and Imaging Group. In
2002, he was appointed the chair of Computer Graphics and
Visualization at the Technische Universität München. His re-
search interests include uncertainty and large data visualiza-
tion, large-scale physically-based simulation, interactive and
GPU techniques in computer graphics and visualization.

Christian Dick is a PostDoc in the Computer Graphics and
Visualization Group at the Technische Universität München,
Germany. He received a diploma in computer science in
2007 and a Ph.D. in 2012, both from Technische Univer-
sität München. His research interests include physics-based
simulation of deformable objects and fluids, simulation and
visualization in the context of medical surgery planning and
training, and visualization of very large scientific data sets
such as terrain data.

References

[AFC∗10] Allard J., Faure F., Courtecuisse H., Falipou F.,
Duriez C., Kry P. G.: Volume contact constraints at arbitrary
resolution. ACM Trans. Graph. 29, 4 (July 2010), 82:1–82:10.
15

[Bat96] Bathe K.-J.: Finite Element Procedures. Prentice Hall,
1996. 7

[BB99] Belytschko T., Black T.: Elastic crack growth in finite
elements with minimal remeshing. International Journal for Nu-
merical Methods in Engineering 45, 5 (1999), 601–620. 8

[BG00] Bielser D., Gross M.: Interactive simulation of surgical
cuts. In Proceedings of Pacific Graphics (2000), pp. 116–442. 3,
4, 13

[BGTG04] Bielser D., Glardon P., Teschner M., Gross M.: A
state machine for real-time cutting of tetrahedral meshes. Graph-
ical Models 66, 6 (2004), 398 – 417. 3, 4, 13

[BLG94] Belytschko T., Lu Y. Y., Gu L.: Element-free galerkin
methods. International Journal for Numerical Methods in Engi-
neering 37, 2 (1994), 229–256. 12

[BM97] Babuška I., Melenk J. M.: The partition of unity method.
International Journal for Numerical Methods in Engineering 40,
4 (1997), 727–758. 8

[BMG99] Bielser D., Maiwald V. A., Gross M. H.: Interactive
cuts through 3-dimensional soft tissue. Computer Graphics Fo-
rum 18, 3 (1999), 31–38. 2, 3, 4, 13

[BN98] Bro-NielsenM.: Finite element modeling in surgery sim-
ulation. Proceedings of the IEEE 86, 3 (1998), 490–503. 7

[BNC96] Bro-Nielsen M., Cotin S.: Real-time volumetric de-
formable models for surgery simulation using finite elements and
condensation. Computer Graphics Forum 15, 3 (1996), 57–66.
11

[BS01] Bruyns C. D., Senger S.: Interactive cutting of 3D surface
meshes. Computers & Graphics 25, 4 (2001), 635 – 642. 3

[BSM∗02] Bruyns C. D., Senger S., Menon A., Montgomery K.,
Wildermuth S., Boyle R.: A survey of interactive mesh-cutting
techniques and a new method for implementing generalized in-
teractive mesh cutting using virtual tools. The Journal of Visual-
ization and Computer Animation 13, 1 (2002), 21–42. 1, 13

[CAK∗14] Courtecuisse H., Allard J., Kerfriden P., Bordas
S. P., Cotin S., Duriez C.: Real-time simulation of contact and
cutting of heterogeneous soft-tissues. Medical Image Analysis
18, 2 (2014), 394 – 410. 13, 19

[CAR∗09] Chentanez N., Alterovitz R., Ritchie D., Cho L.,
HauserK. K., GoldbergK., Shewchuk J. R., O’Brien J. F.: Inter-
active simulation of surgical needle insertion and steering. ACM
Trans. Graph. 28, 3 (July 2009), 88:1–88:10. 1, 11, 13, 19

[CDA00] Cotin S., Delingette H., Ayache N.: A hybrid elastic
model for real-time cutting, deformations, and force feedback
for surgery training and simulation. The Visual Computer 16,
8 (2000), 437–452. 2, 3, 4, 13

[CDL07] Chanthasopeephan T., Desai J., Lau A.: Modeling soft-
tissue deformation prior to cutting for surgical simulation: Finite
element analysis and study of cutting parameters. IEEE Trans-
actions on Biomedical Engineering 54, 3 (2007), 349–359. 3,
15

[CJA∗10] CourtecuisseH., JungH., Allard J., Duriez C., LeeD.,
Cotin S.: GPU-based real-time soft tissue deformation with cut-
ting and haptic feedback. Progress in Biophysics and Molecular
Biology 103, 2-3 (2010), 159 – 168. 11, 13, 15, 19

[DG95] Desbrun M., Gascuel M.-P.: Animating soft substances
with implicit surfaces. In Proceedings of SIGGRAPH (1995),
pp. 287–290. 11

[DGBW08] Dick C., Georgii J., Burgkart R., Westermann
R.: Computational steering for patient-specific implant plan-
ning in orthopedics. In Proceedings of Visual Computing for
Biomedicine (2008), pp. 83–92. 6

[DGW11a] Dick C., Georgii J., Westermann R.: A hexahedral
multigrid approach for simulating cuts in deformable objects.
IEEE Transactions on Visualization and Computer Graphics 17,
11 (2011), 1663–1675. 2, 6, 9, 11, 13, 19

[DGW11b] Dick C., Georgii J., Westermann R.: A real-time
multigrid finite hexahedra method for elasticity simulation using
CUDA. Simulation Modelling Practice and Theory 19, 2 (2011),
801–816. 15

[ED08] Eisemann E., Décoret X.: Single-pass GPU solid vox-
elization for real-time applications. In Proceedings of Graphics
Interface (2008), pp. 73–80. 6

c© The Eurographics Association 2014.

J. Wu, R. Westermann, C. Dick / Physically-based Simulation of Cuts in Deformable Bodies: A Survey 17

[FG99] Frisken-Gibson S.: Using linked volumes to model ob-
ject collisions, deformation, cutting, carving, and joining. IEEE
Transactions on Visualization and Computer Graphics 5, 4
(1999), 333–348. 6, 13

[FM03] Fries T.-P., Matthies H. G.: Classification and overview
of meshfree methods. Technical University of Braunschweig
(2003). 12

[GCMS00] Ganovelli F., Cignoni P., Montani C., Scopigno R.: A
multiresolution model for soft objects supporting interactive cuts
and lacerations. Computer Graphics Forum 19, 3 (2000), 271–
281. 3, 4

[GLB∗06] Guo X., Li X., Bao Y., Gu X., Qin H.: Meshless
thin-shell simulation based on global conformal parameteriza-
tion. IEEE Transactions on Visualization and Computer Graph-
ics 12 (2006), 375–385. 12

[GW06] Georgii J., Westermann R.: A multigrid framework for
real-time simulation of deformable bodies. Computer & Graph-
ics 30 (2006), 408–415. 2

[Hag89] Hager W. W.: Updating the inverse of a matrix. SIAM
Review 31, 2 (1989), 221–239. 11

[HLSO12] Hecht F., Lee Y. J., Shewchuk J. R., O’Brien J. F.:
Updated sparse cholesky factors for corotational elastodynamics.
ACM Transactions on Graphics 31, 5 (Oct. 2012), 123:1–13. 11

[HS97] HackbuschW., Sauter S.: Composite finite elements for
the approximation of PDEs on domains with complicated micro-
structures. Numerische Mathematik 75, 4 (1997), 447–472. 8

[Hum03] Humphrey J.: Review paper: Continuum biomechanics
of soft biological tissues. Proceedings of the Royal Society of
London. Series A: Mathematical, Physical and Engineering Sci-
ences 459, 2029 (2003), 3–46. 15

[HVS∗09] Harmon D., Vouga E., Smith B., Tamstorf R., Grin-
spun E.: Asynchronous contact mechanics. ACM Trans. Graph.
28, 3 (July 2009), 87:1–87:12. 15

[JBB∗10] Jeřábková L., Bousquet G., Barbier S., Faure F., Al-
lard J.: Volumetric modeling and interactive cutting of de-
formable bodies. Progress in Biophysics and Molecular Biology
103, 2-3 (2010), 217 – 224. 2, 3, 6, 9, 13

[JK09] Jeřábková L., Kuhlen T.: Stable cutting of deformable
objects in virtual environments using XFEM. IEEE Computer
Graphics and Applications 29, 2 (2009), 61–71. 2, 8, 13, 14

[JLSW02] Ju T., Losasso F., Schaefer S., Warren J.: Dual con-
touring of hermite data. ACM Trans. Graph. 21, 3 (2002), 339–
346. 6

[KMB∗09] Kaufmann P., Martin S., Botsch M., Grinspun E.,
Gross M.: Enrichment textures for detailed cutting of shells.
ACM Trans. Graph. 28, 3 (July 2009), 50:1–50:10. 2, 3, 8, 13,
14, 19

[KMBG08] Kaufmann P., Martin S., Botsch M., Gross M.:
Flexible simulation of deformable models using discon-
tinuous galerkin FEM. In Proceedings of ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation
(2008), pp. 105–115. 10

[KMOD09] Kharevych L., Mullen P., Owhadi H., Desbrun M.:
Numerical coarsening of inhomogeneous elastic materials. ACM
Trans. Graph. 28, 3 (July 2009), 51:1–51:8. 14

[LJD07] LimY.-J., JinW., De S.: On some recent advances in mul-
timodal surgery simulation: A hybrid approach to surgical cutting
and the use of video images for enhanced realism. Presence:
Teleoper. Virtual Environ. 16, 6 (Dec. 2007), 563–583. 3

[LPO10] Lee B., Popescu D. C., Ourselin S.: Topology modifi-
cation for surgical simulation using precomputed finite element

models based on linear elasticity. Progress in Biophysics and
Molecular Biology 103, 2-3 (2010), 236 – 251. 11

[LPR∗09] Liehr F., Preusser T., Rumpf M., Sauter S., Schwen
L. O.: Composite finite elements for 3D image based computing.
Computing in Visualization and Science 12, 4 (2009), 171–188.
9

[LS81] Lancaster P., SalkauskasK.: Surfaces generated by mov-
ing least squares methods. Mathematics of Computation 37, 155
(1981), 141–158. 11

[LT07] Lindblad A., Turkiyyah G.: A physically-based frame-
work for real-time haptic cutting and interaction with 3D contin-
uum models. In Proceedings of ACM symposium on Solid and
Physical Modeling (2007), pp. 421–429. 3, 4, 8, 11

[MBF04] MolinoN., Bao Z., Fedkiw R.: A virtual node algorithm
for changing mesh topology during simulation. ACM Trans.
Graph. 23, 3 (Aug. 2004), 385–392. 3, 5, 10, 13

[MDB99] Moës N., Dolbow J., Belytschko T.: A finite element
method for crack growth without remeshing. International Jour-
nal for Numerical Methods in Engineering 46, 1 (1999), 131–
150. 8

[MG04] Müller M., Gross M.: Interactive virtual materials. In
Proceedings of Graphics Interface (2004), pp. 239–246. 3

[MH01] Mahvash M., Hayward V.: Haptic rendering of cutting:
A fracture mechanics approach. Haptics-e 2, 3 (2001), 1–12. 15

[MK00] Mor A. B., Kanade T.: Modifying soft tissue models:
Progressive cutting with minimal new element creation. In Pro-
ceedings of the Third International Conference on Medical Image
Computing and Computer-Assisted Intervention (2000), pp. 598–
607. 2, 3, 4, 13

[MKB∗08] Martin S., Kaufmann P., BotschM., WickeM., Gross
M.: Polyhedral finite elements using harmonic basis functions.
Computer Graphics Forum 27, 5 (2008), 1521–1529. 2, 7, 10, 13

[MKN∗04] Müller M., Keiser R., Nealen A., Pauly M., Gross
M., AlexaM.: Point based animation of elastic, plastic and melt-
ing objects. In Proceedings of ACM SIGGRAPH/Eurographics
symposium on Computer animation (2004), pp. 141–151. 2, 11

[MRO08] Misra S., Ramesh K. T., Okamura A. M.: Modeling of
tool-tissue interactions for computer-based surgical simulation:
A literature review. Presence: Teleoper. Virtual Environ. 17, 5
(Oct. 2008), 463–491. 15

[NFvdS00] Nienhuys H.-W., Frank van der Stappen A.: Combin-
ing finite element deformation with cutting for surgery simula-
tions. In EuroGraphics short presentations (2000), pp. 43–52. 2,
3, 4, 11, 13

[NFvdS01] Nienhuys H.-W., Frank van der Stappen A.: A
surgery simulation supporting cuts and finite element deforma-
tion. In Medical Image Computing and Computer-Assisted In-
tervention - MICCAI 2001, Niessen W., Viergever M., (Eds.),
vol. 2208 of Lecture Notes in Computer Science. 2001, pp. 145–
152. 3, 4, 11, 13

[NKJF09] Nesme M., Kry P. G., Jeřábková L., Faure F.: Pre-
serving topology and elasticity for embedded deformable mod-
els. ACM Trans. Graph. 28, 3 (July 2009), 52:1–52:9. 9

[NMK∗06] Nealen A., Müller M., Keiser R., Boxerman E.,
Carlson M.: Physically based deformable models in computer
graphics. Computer Graphics Forum 25, 4 (2006), 809–836. 7

[NTV92] Nayroles B., Touzot G., Villon P.: Generalizing the
finite element method: Diffuse approximation and diffuse ele-
ments. Computational Mechanics 10, 5 (1992), 307–318. 11

[OBH02] O’Brien J. F., Bargteil A. W., Hodgins J. K.: Graphical
modeling and animation of ductile fracture. In Proceedings of
SIGGRAPH (2002), pp. 291–294. 2

c© The Eurographics Association 2014.

18 J. Wu, R. Westermann, C. Dick / Physically-based Simulation of Cuts in Deformable Bodies: A Survey

[OFTB96] Organ D., Fleming M., Terry T., Belytschko T.:
Continuous meshless approximations for nonconvex bodies by
diffraction and transparency. Computational Mechanics 18, 3
(1996), 225–235. 12

[OH99] O’Brien J. F., Hodgins J. K.: Graphical modeling and an-
imation of brittle fracture. In Proceedings of SIGGRAPH (1999),
pp. 137–146. 2

[PGCS09] Pietroni N., Ganovelli F., Cignoni P., Scopigno R.:
Splitting cubes: a fast and robust technique for virtual cutting.
The Visual Computer 25, 3 (Feb. 2009), 227–239. 2, 6, 11, 12, 13

[PKA∗05] Pauly M., Keiser R., Adams B., Dutré P., Gross M.,
Guibas L. J.: Meshless animation of fracturing solids. ACM
Trans. Graph. 24, 3 (July 2005), 957–964. 2, 11, 12, 13

[PRS07] Preusser T., Rumpf M., Schwen L. O.: Finite element
simulation of bone microstructures. In Proceedings of the 14th
Workshop on the Finite Element Method in Biomedical Engineer-
ing, Biomechanics and Related Fields (July 2007), pp. 52–66. 9

[SCB01] Strouboulis T., Copps K., Babuska I.: The generalized
finite element method. Computer Methods in Applied Mechanics
and Engineering 190, 32-33 (2001), 4081–4193. 8

[SDF07] Sifakis E., Der K. G., Fedkiw R.: Arbitrary cutting
of deformable tetrahedralized objects. In Proceedings of ACM
SIGGRAPH/Eurographics symposium on Computer animation
(2007), pp. 73–80. 3, 5, 10, 13, 19

[SH12] Spillmann J., Harders M.: Robust interactive collision
handling between tools and thin volumetric objects. IEEE Trans-
actions on Visualization and Computer Graphics 18, 8 (Aug.
2012), 1241–1254. 15

[She94] Shewchuk J. R.: An Introduction to the Conjugate Gra-
dient Method Without the Agonizing Pain. Tech. rep., Carnegie
Mellon University, 1994. 11

[She02] Shewchuk J.: What is a good linear finite element?
interpolation, conditioning, anisotropy, and quality measures
(preprint). Tech. rep., University of California at Berkeley, 2002.
3

[SHGS06] Steinemann D., Harders M., Gross M., Szekely G.:
Hybrid cutting of deformable solids. In Virtual Reality Confer-
ence (2006), pp. 35–42. 3, 4, 13, 19

[Si06] Si H.: TetGen: A Quality Tetrahedral Mesh Gen-
erator and Three-Dimensional Delaunay Triangulator, 2006.
http://tetgen.org. 3

[SMMB00] SukumarN., MoësN., MoranB., Belytschko T.: Ex-
tended finite element method for three-dimensional crack mod-
elling. International Journal for Numerical Methods in Engi-
neering 48, 11 (2000), 1549–1570. 8

[SOG06] Steinemann D., Otaduy M. A., Gross M.: Fast arbi-
trary splitting of deforming objects. In Proceedings of ACM
SIGGRAPH/Eurographics symposium on Computer animation
(2006), pp. 63–72. 2, 11, 12, 13, 19

[SSSH11] Seiler M., Steinemann D., Spillmann J., Harders M.:
Robust interactive cutting based on an adaptive octree simulation
mesh. The Visual Computer 27, 6-8 (2011), 519–529. 2, 6, 13

[SW06] Sauter S., Warnke R.: Composite finite elements for el-
liptic boundary value problems with discontinuous coefficients.
Computing 77, 1 (2006), 29–55. 8

[TKAN09] Turkiyyah G., Karam W. B., Ajami Z., Nasri A.:
Mesh cutting during real-time physical simulation. In SIAM/ACM
Joint Conference on Geometric and Physical Modeling (2009),
pp. 159–168. 11, 13

[TKH∗05] Teschner M., Kimmerle S., Heidelberger B., Zach-
mann G., Raghupathi L., Fuhrmann A., Cani M.-P., Faure F.,

Magnenat-Thalmann N., Strasser W., Volino P.: Collision de-
tection for deformable objects. Computer Graphics Forum 24, 1
(2005), 61–81. 1

[TMFB05] Teran J., Molino N., Fedkiw R., Bridson R.: Adap-
tive physics based tetrahedral mesh generation using level sets.
Engineering with Computers 21, 1 (2005), 2–18. 3

[TMY∗11] Tang M., Manocha D., Yoon S.-E., Du P., Heo J.-
P., Tong R.-F.: VolCCD: Fast continuous collision culling be-
tween deforming volume meshes. ACM Trans. Graph. 30, 5 (Oct.
2011), 111:1–111:15. 1

[WBG07] Wicke M., Botsch M., Gross M.: A finite element
method on convex polyhedra. Computer Graphics Forum 26,
3 (2007), 355–364. 2, 3, 7, 10, 13, 19

[WBWD12] Wu J., Bürger K., Westermann R., Dick C.: In-
teractive residual stress modeling for soft tissue simulation. In
Proceedings of Eurographics Workshop on Visual Computing for
Biology and Medicine (2012), pp. 81–89. 3, 19

[WDW11] Wu J., Dick C., Westermann R.: Interactive high-
resolution boundary surfaces for deformable bodies with chang-
ing topology. In Proceedings of 8th Workshop on Virtual Reality
Interaction and Physical Simulation (2011), pp. 29–38. 2, 6, 9,
13, 14

[WDW13] Wu J., Dick C., Westermann R.: Efficient collision
detection for composite finite element simulation of cuts in de-
formable bodies. The Visual Computer 29, 6-8 (2013), 739–749.
1, 3, 13, 14

[WH05] WuW., Heng P. A.: An improved scheme of an interac-
tive finite element model for 3d soft-tissue cutting and deforma-
tion. The Visual Computer 21, 8-10 (2005), 707–716. 11

[WWD14] Wu J., Westermann R., Dick C.: Real-time haptic cut-
ting of high resolution soft tissues. Studies in Health Technology
and Informatics (Proc. Medicine Meets Virtual Reality 21) 196
(2014), 469–475. 19

[WWWZ10] Wu J., Wang D., Wang C. C. L., Zhang Y.: Toward
stable and realistic haptic interaction for tooth preparation simu-
lation. Journal of Computing and Information Science in Engi-
neering 10, 2 (2010), 021007:1–9. 3

[ZBS05] Zhang Y., Bajaj C., Sohn B.-S.: 3d finite element mesh-
ing from imaging data. Computer Methods in Applied Mechanics
and Engineering 194, 48-49 (2005), 5083–5106. 3, 6

[ZWP05] Zhong H., WachowiakM. P., Peters T. M.: Adaptive fi-
nite element technique for cutting in surgical simulation. In Med-
ical Imaging 2005: Visualization, Image-Guided Procedures, and
Display, Robert L. Galloway J., Cleary K. R., (Eds.), vol. 5744
of Proc. SPIE. 2005, pp. 604–611. 11

c© The Eurographics Association 2014.

J. Wu, R. Westermann, C. Dick / Physically-based Simulation of Cuts in Deformable Bodies: A Survey 19

Figure 12: Offline progressive cutting scenarios simulated by (a) the virtual node algorithm on a tetrahedral mesh (image
courtesy of Sifakis et al. [SDF07] c©2007 ACM), (b) the polyhedral finite element method (image courtesy of Wicke et al.
[WBG07] c©2007 WILEY), (c) the extended finite element method on quads (image courtesy of Kaufmann et al. [KMB∗09]
c©2009 ACM), (d) the hexahedral finite element method on an adaptive octree grid [DGW11a], and (e) the meshfree method
(image courtesy of Steinemann et al. [SOG06] c©2006 Eurographics). Copyrighted materials, image a, b, c, and e, are reprinted
with permissions from ACM, WILEY, ACM, and Eurographics, respectively.

Figure 13: Interactive simulation in medical contexts. (a) Ablating a polyp in a hysteroscopy simulator (image courtesy of
Steinemann et al. [SHGS06] c©2006 IEEE). (b) Virtual soft tissue cutting and shrinkage simulation [WBWD12] (abdomen
photographs courtesy of Dr. med. Laszlo Kovacs). (c) Real-time simulation of a brain tumor resection (image courtesy of
Courtecuisse et al. [CAK∗14] c©2014 Elsevier). (d) Needle insertion in a prostate brachytherapy simulator (image courtesy of
Chentanez et al. [CAR∗09] c©2009 ACM). (e) Real-time simulation of laparoscopic hepatectomy (image courtesy of Courte-
cuisse et al. [CJA∗10] c©2010 Elsevier). (f) Haptic-enabled virtual cutting of high-resolution soft tissues [WWD14]. Copyrighted
materials, image a, c, d, and e, are reprinted with permissions from IEEE, Elsevier, ACM, and Elsevier, respectively.

c© The Eurographics Association 2014.

