Jun Wu, Rüdiger Westermann, Christian Dick

Computer Graphics & Visualization Group TU München, Germany

Virtual Cutting in Computer Animation

Applications: computer games, visual effects ۲

Video available at http://graphics.ethz.ch/research/geometry/ modeling/splitMergeCut.php

Meshfree method

[Steinemann et al. 2006]

Virtual Cutting in Computer Animation

Applications: computer games, visual effects ۲

Video available at http://graphics.ethz.ch/publications/papers/ papers.php

Polyhedral finite element method

[Wicke et al. 2007]

Virtual Cutting in Surgery Simulation

• Applications: surgery skill training, pre-operative planning

Surgery simulation on a patient data set

[Courtecuisse et al. 2010] SHACRA team at INRIA

Provide an overview of recent virtual cutting techniques

Reference	Geometry	Deformation	Solver	Scenario	Remark
Bielser et al. [BMG99, BG00, BGTG04]	Tet., refinement	Mass-spring	Explicit/Semi-implicit	Interactive	Basic tet. refinement
Cotin et al. [CDA00]	Tet., deletion	Tensor-mass	Explicit	Interactive	Hybrid elastic model
Mor & Kanade [MK00]	Tet., refinement	FEM	Explicit	Interactive	Progressive cutting
Nienhuys et al. [NFvdS00, NFvdS01]	Tet., boundary splitting/snapping	FEM	Static (CG solver)	Interactive	FEM with a CG solver
Bruyns et al. [BSM*02]	Tet., refinement	Mass-spring	Explicit	Interactive	An early survey
Steinemann et al. [SHGS06]	Tet., refinement + snapping	Mass-spring	Explicit	Interactive (Fig. 13 a)	Hybrid cutting
Chentanez et al. [CAR*09]	Tet., refinement	FEM	Implicit (CG solver)	Interactive (Fig. 13 d)	Needle insertion
Courtecuisse et al. [CJA*10, CAK*14]	Tet., deletion/refinement	FEM	Implicit (CG solver)	Interactive (Fig. 13 c,e)	Surgery applications
Molino et al. [MBF04]	Tet., duplication	FEM	Mixed explicit/implicit	Offline	Basic virtual node algorithm
Sifakis et al. [SDF07]	Tet., duplication	FEM		Offline (Fig. 12 a)	Arbitrary cutting
Jeřábková & Kuhlen [JK09]	Tet.	XFEM	Implicit (CG solver)	Interactive	Introduction of XFEM
Turkiyyah et al. [TKAN09]	Tri.	2D-XFEM	Static (direct solver)	Interactive	XFEM with a direct solver
Kaufmann et al. [KMB*09]	Tri./Quad.	2D-XFEM	Semi-implicit	Offline (Fig. 12 c)	Enrichment textures
Frisken-Gibson [FG99]	Hex., deletion	ChainMail	Local relaxation	Interactive	Linked volume
Jeřábková et al. [JBB*10]	Hex., deletion	CFEM		Interactive	CFEM
Dick et al. [DGW11a]	Hex., refinement	FEM	Implicit (multigrid)	Offline/Interactive (Fig. 12 d)	Linked octree, multigrid solver
Seiler et al. [SSSH11]	Hex., refinement	FEM	Implicit	Interactive	Octree, surface embedding
Wu et al. [WDW11, WBWD12, WDW13]	Hex., refinement	CFEM	Implicit (multigrid)	Interactive (Fig. 13 b, f)	Collision detection for CFEM
Wicke et al. [WBG07]	Poly., splitting	PFEM	Implicit	Offline (Fig. 12 b)	Basic polyhedral FEM
Martin et al. [MKB*08]	Poly., splitting	PFEM	Semi-implicit	Offline	Harmonic basis functions
Pauly et al. [PKA*05]	Particles, transparency	Meshfree	Explicit	Offline	Fracture animation
Steinemann et al. [SOG06]	Particles, diffraction	Meshfree		Offline/Interactive (Fig. 12 e)	Splitting fronts propagation
Pietroni et al. [PGCS09]	Particles, visibility	Meshfree		Interactive	Splitting cubes algorithm

Motivation of the Report

- Provide an overview of recent virtual cutting techniques
- Share our experience and understanding on this topic

Video available at http://wwwcg.in.tum.de/research/research/p ublications/2011/a-hexahedral-multigridapproach-for-simulating-cuts-in-deformableobjects.html Hexahedral finite element method on an octree grid

Armadillo: 500k elements, 10 seconds per frame

[Dick et al. 2011]

Motivation of the Report

- Streeburg 2014
- Provide an overview of recent virtual cutting techniques
- Share our experience and understanding on this topic

Haptic cutting of high-resolution soft tissues

Liver: 15 fps 3k DOFs (170k elements)

[Wu et al. 2014]

Motivation of the Report

- Provide an overview of recent virtual cutting techniques
- Share our experience and understanding on this topic
- Discuss and identify future research problems
 - How to realistically simulate various cutting effects?

Cutting in hospitals

Cutting in kitchens

Images removed due to copyright

- Incorporation of cuts into the computational model
- Deformable body simulation

Virtual Cutting from a Computational Point of View

- Incorporation of cuts into the computational model
- Deformable body simulation
- Detection and handling of collisions
 - Collision detection: STAR by Teschner et al. 2005
 - Realistic contact handling between a scalpel and a soft object: Open question

2D illustration of cutting process

Mesh-based modeling of cuts

FE simulation of deformation

Cutting & Fracturing

- Cutting
 - Controlled separation of a physical object
 - As a result of an acutely directed force, exerted through sharp tools
- Fracturing
 - Cracking / breakage of (hard) objects
 - Under the action of stress

Fracturing example

Physically-based Simulation of Cuts in Deformable Bodies: A Survey

tm_{3D}

Cutting & Fracturing

• from a computational point of view

Challenges

- Physical accuracy
 - Ability to represent arbitrarily-shaped cuts in geometry and topology
 - Ability to predicate the dynamic behavior
- Solutions:
 - Dynamic local refinement of different spatial discretizations
 - Various finite element methods

Examples of complicated cuts

Challenges

- Physical accuracy
- Robustness
 - Numerical stability in complicated scenarios, e.g., repeated cutting, thin slicing
- Solution: to avoid ill-shaped elements, e.g., by virtual node algorithm, hexahedral discretization

Repeated cutting

Thin slicing

Challenges

- Physical accuracy
- Robustness
- Computation efficiency
- Solutions: reducing #DOFs, efficient solvers, parallelization

Surgery simulation with haptic feedback

[Courtecuisse et al. 2010]

follows the structure of the report

- Introduction
- Mesh-based Modeling of Cuts
- Finite Element Simulation of Virtual Cutting
- Numerical Solvers
- Meshfree Methods
- Summary & Application Study
- Discussion & Conclusion

Principles and differences, not the implementation details
2D illustrations, but applicable to 3D volumetric cutting

Outline

follows the structure of the report

- Introduction
- Mesh-based Modeling of Cuts
 - Modeling of the Cutting Process
 - Tetrahedral Meshes
 - Hexahedral Meshes
 - Polyhedral Meshes
 - Discussion on Discretizations
- Finite Element Simulation for Virtual Cutting
- Numerical Solvers
- Meshfree Methods
- Summary & Application Study
- Discussion & Conclusion

Modeling of the Cutting Process

- Detect intersections between the volumetric mesh (the deformable object) and a surface mesh (cutting surface)
 - Edge-face test

Cutting surface mesh

Object volumetric mesh

- Acceleration techniques
 - Bounding volume hierarchies
 - Breadth-first traversal of the volumetric mesh

Modeling of the Cutting Process

- Cutting surface generation
 - Swept surface of the cutting blade (interactive simulation)
 - Predefined cutting patterns (offline simulation)

Cutting using a predefined pattern

Spatial Discretizations

- 2D: triangles, quadrangles, polygons
- 3D: tetrahedra, hexahedra, polyhedra

Hexahedralized bunny model

Tetrahedral Meshes

- Widely applied in computer graphics & engineering
- An initial tetrahedral discretization of the simulation domain can be generated
 - from surface meshes, medical images, level sets, et al.
 - by TetGen, LBIE-Mesher, et al.
- Challenge: avoiding ill-shaped meshes
 - Ill-shaped meshes lead to numerical instabilities
 - Mesh quality is ensured in the non-trivial initialization

Tetrahedral Meshes

• Many techniques to model cuts into tetrahedral meshes

Cutting configuration

Element duplication

Snapping of vertices

Splitting along existing faces

Element refinement

Snapping + refinement

Techniques for modeling cuts in a tetrahedral mesh (a triangle mesh in 2D)

- Element deletion
 - Remove meshes that are touched by a cutting tool
- Simple, but result in a jagged surface and a loss of volume

Cut Modeling without Creating New Elements

- Element deletion
- Splitting along existing faces
- Simple, but result in a jagged surface and a loss of volume

Cut Modeling without Creating New Elements

- Element deletion
- Splitting along existing faces
- Snapping of vertices
 - Snap vertices onto the cutting surface, i.e., positions altered
 - Then, split along faces
- Partially alleviate the jagged surface, but mesh quality cannot be ensured

Element deletion

Splitting along

existing faces

Snapping of vertices

- Motivation: to accurately model a cut
- Solution: refine meshes along the cut
 - Split edges at the exact intersections
 - Create new, smaller meshes

Cutting configuration

Element refinement

- Motivation: to accurately model a cut
- Solution: refine meshes along the cut
 - Split edges at the exact intersections
 - Create new, smaller meshes
- Geometrically accurate, but easily lead to ill-shaped meshes
 - If the intersection is close to an initial vertex

- Motivation: to improve mesh quality
- Solution: a combination of snapping & refinement
 - Snap the vertex, if the intersection is close to it
 - Split the edge, otherwise

- Incremental, curved cutting path within one mesh ullet
- Solutions: •
 - Successive refinement
 - Revoke and refine

Cut Modeling by Element Duplication

- Motivation: to avoid ill-shaped elements
- Solution: duplicate the initial well-shaped elements
 - Create replicas of the elements that are cut
 - Embed material surfaces into a unique replica

Cutting configuration

Element duplication

Tetrahedral decomposition

•

• Topological configurations of a cut tetrahedron

Hexahedral Meshes

- Each element has a regular shape ullet
- No worry about numerical instabilities! •

- Generated from
 - medical images _
 - polygonal surfaces by voxelization

0 0

0000

0

Hexahedralized bunny model

Hexahedral Meshes - Volume Representation

- Linked volume
 - Decompose the object into a set of uniform hexadedra
 - Connect face-adjacent elements by links
 - Cutting: break the link between elements

2D illustration of cutting on a linked volume

 Cutting surfaces and object boundary surfaces are both considered as cutting operations to break the links

Hexahedral Meshes - Volume Representation

- Adaptive linked octree •
 - Cutting: refine local elements, then break links
 - Regular 1:8 hexahedral decomposition
 - Efficient
 - No ill-shaped elements •

Refined octree

Hexahedral Meshes - Surface Representation

- Surface reconstruction methods
 - Marching cubes
 - Splitting cubes
 - Dual contouring

[Jeřábková et al. 2010]

Using marching cubes

Surface reconstruction after cutting by different methods

Using splitting cubes

Using dual contouring

Hexahedral Meshes - Surface Reconstruction

- Input: positions of intersection points & cutting normals
- Algorithm: (For each 2³ block of elements)
 - Compute a surface vertex position which best matches all cuts
 - Duplicate the vertices as many times as the number of disconnected parts
 - Bind each replica to a volume element

Polyhedral Meshes

- Flexible in representing shapes
 - Split the elements along a cutting plane
 - No further subdivision (e.g., tetrahedralization) is required
- Pros: no further subdivision is required
- Cons: ill-shaped elements needs to be avoided

Discussion on Discretizations

- Tetrahedral & polyhedral meshes
 - Pros: flexibility in shape modeling, directly renderable surfaces
 - Cons: ill-shaped elements
 - Methods:
 - element deletion, splitting along existing faces, element duplication, snapping of vertices, element refinement, snapping + refinement
- Hexahedral meshes
 - Pros: efficiency wrt. subdivision and solvers, stability
 - Cons: a separate surface is needed
 - Methods:
 - (adaptive) linked volume, surface reconstruction

Outline

follows the structure of the report

- Introduction
- Mesh-based Modeling of Cuts
- Finite Element Simulation for Virtual Cutting
 - Extended FEM
 - Composite FEM
 - Polyhedral FEM
 - Discussion on FEMs
- Numerical Solvers
- Meshfree Methods
- Summary & Application Study
- Discussion & Conclusion

Physically-based Deformation Models

- Compute the object's deformation due to external forces
 - Introduced to computer graphics by Terzopoulos et al. 1987
 - Surveyed in STAR by Nealen et al. 2006
- Finite element methods (FEM), meshfree methods, massspring systems, etc.

Physically-based Simulation of Cuts in Deformable Bodies: A Survey

Discretization **Elementary** equation

- Discretize the object into elements 1)
- Build elementary equations $K^e u^e = f^e$ 2)
- Assemble a linear system of equations Ku = f3)
- Solve for the displacement field u 4)

Recap: Finite Element Simulation of Elasticity

Virtual Cutting Using the Standard FEM

- 1) Split elements which are touched by the scalpel
- 2) **Re-build** elementary equations $K^e u^e = f^e$
- 3) **Re-assemble** a linear system of equations Ku = f
 - Remove entries of the deleted initial elements
 - Add entries of the split new elements
- 4) Solve for the displacement field u

Re-assemble the stiffness matrix [Courtecuisse et al 2014]

The Extended Finite Element Method (XFEM)

- Model material discontinuities by enriching the basis functions of the solution space [Belytschko et al. 1999]
 - Adapting basis functions instead of modifying the meshes
- Displacement field u(x) in the standard FEM
- $u(x) = \Phi^e(x) u^e$
 - $\Phi^{e}(x)$: shape matrix
 - *u^e*: displacement vector at nodes
- Displacement field u(x) in the extended FEM
- $u(x) = \Phi^e(x) u^e + \Psi^e(x) \Phi^e(x) a^e$
 - $\Psi^{e}(x)$: shape enrichment matrix
 - a^e: added displacement vector at nodes

IIZL

$u(x) = \Phi^e(x) u^e + \Psi^e(x) \Phi^e(x) a^e$ Shifted enrichment function

$$- \psi_i^e(x) = \frac{H(x) - H(x_i)}{2}$$

 $- H(x) = \begin{cases} 1, & \text{if } x \text{ is on the cut's left side;} \\ -1, & \text{if } x \text{ is on the cut's right side.} \end{cases}$

Heaviside function
$$H(x)$$

u₁ - a₁ U, 1 Right side of the triangle: Left side of the triangle: Both left and right sides: $u(x) = \Phi^{e}(x) \begin{pmatrix} u_{1} \\ u_{2} + a_{2} \\ u_{2} \end{pmatrix} \qquad u(x) = \Phi^{e}(x) \begin{pmatrix} u_{1} - a_{1} \\ u_{2} \\ u_{3} - a_{3} \end{pmatrix}$ $u(x) = \Phi^e(x) \begin{pmatrix} u_1 \\ u_2 \\ u \end{pmatrix}$ **Standard FEM Extended FEM**

XFEM - Stiffness Matrices

- Standard stiffness matrix $K^e \coloneqq \int_{\Omega^e} B^{e^T} C B^e$
 - Material law C relates strain to stress $\sigma = C: \epsilon$
 - Strain matrix $B^e = (B_1^e, \dots, B_{n_v}^e)$
- Enriched stiffness matrix ${}^{x}K^{e} = \int_{\Omega^{e}} ({}^{x}B^{e})^{T} C {}^{x}B^{e} dx$
- $^{x}B^{e} = \left(B_{1}^{e}, \dots, B_{n_{v}}^{e}, \psi_{1}^{e}B_{1}^{e}, \dots, \psi_{n_{v}}^{e}B_{n_{v}}^{e}\right)$
- ${}^{x}K^{e} = \begin{pmatrix} K^{e,uu} & K^{e,ua} \\ K^{e,au} & K^{e,aa} \end{pmatrix}$

XFEM – Detailed Cutting of Shells

• Store enrichment function as a 2D texture

Enrichment texture within a quad mesh

Simulation result

Heaviside	function $H(x)$
$H(\alpha) = \int d^{2}$	1, on left
$f(x) = \{-1,$	1, on right

[Kaufmann et al 2009]

XFEM – Detailed Cutting of Shells

• Store enrichment function as a 2D texture

Enrichment texture within a quad mesh

Simulation result

[Kaufmann et al 2009]

XFEM – Detailed Cutting of Shells

- Store enrichment function as a 2D texture
- Employ harmonic enrichment function for partial cuts

Enrichment texture within a quad mesh

Simulation result

The Composite Finite Element Method (CFEM)

- Approximate a high resolution finite element discretization by a small set of coarser elements [Hackbusch & Sauter 1997]
 - Reduce the number of simulation DOFs
 - Also used for: construct a grid hierarchy for the multigrid solver

CFEM – Geometrical & Topological Composition

- Duplicated elements: Each connected part is merged to one independent element
 - Located at the same place in the reference configuration
 - But have different topology connections

Linked octree representation

Composite finite element

CFEM – Geometrical & Topological Composition

- Duplicated elements: Each connected part is merged to one independent element
 - Located at the same place in the reference configuration
 - But have different topology connections
- Iteratively merge blocks of 2³ elements into 1 element

Fine resolution: 82×83×100 Composition level: 3 (8³->1)

CFEM – Numerical Composition

- Displacement interpolation
 - composite elements \rightarrow fine hexahedra
 - $u = I \tilde{u}$
- Stiffness matrix assembly
 - fine hexahedra \rightarrow composite elements

$$- \widetilde{K} = I^{\mathrm{T}} K I$$

$$- \widetilde{K}_{mn}^{c} = \sum_{e \text{ in } c} \sum_{i=1}^{8} \sum_{j=1}^{8} w_{m \to i}^{c \to e} w_{n \to j}^{c \to e} K_{ij}^{e}, \quad m, n = 1, \dots, 8$$
$$- w_{m \to i}^{c \to e} = \left(1 - \frac{\left|x_{m}^{c} - x_{j}^{e}\right|}{s^{c}}\right) \left(1 - \frac{\left|y_{m}^{c} - y_{j}^{e}\right|}{s^{c}}\right) \left(1 - \frac{\left|z_{m}^{c} - z_{j}^{e}\right|}{s^{c}}\right)$$

Physically-based Simulation of Cuts in Deformable Bodies: A Survey

The Polyhedral Finite Element Method (PFEM)

- Directly evaluate deformation on general polyhedra [Wicke et al. 2007]
 - Tetrahedralization/hexahedralization process is avoided
- Shape functions: $u(x) = \sum_{i=1}^{n_v} \phi_i(x) u_i$
 - Tetrahedron: barycentric interpolation
 - Hexahedron: tri-linear interpolation
 - Polyhedron: ??

V

$$\phi_i(x) = \frac{A_i}{\sum_{j=1}^{n_v} A_j} u_i$$
$$A_i = A(x, v_{i-1}, v_{i+1})$$

Barycentric interpolation for a triangle

PFEM – Shape Functions

- Mean value interpolation function
 - Generalization of barycentric interpolation to convex polyhedra
- Shape functions: $u(x) = \sum_{i=1}^{n_v} \phi_i(x) u_i$
 - Kronecker delta property: $\phi_i(x_j) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$

- Completeness:
$$\sum_{i=1}^{n_v} \phi_i(x) = 1$$

$$\phi_i(x) = \frac{w_i}{\sum_{j=1}^{n_v} w_j}$$
$$w_i = \frac{\tan(\alpha_{i-1/2}) + \tan(\alpha_{i/2})}{||v_i - x||}$$

Mean value interpolation for a polygon

PFEM – Stiffness Matrices

- Stiffness matrix $K^e \coloneqq \int_{\Omega^e} B^{e^T} C B^e$
 - Analytical integration over general polyhedra is non-trivial
 - Approximated by numerical integration at a few samples

Discussion on FEMs

- Standard FEM
 - Each spatial mesh maps to one specific computational finite element

•

- Extended FEM, composite FEM
 - Disconnected spatial mesh corresponds to multiple, duplicated simulation DOFs

Extended FEM

Composite FEM

follows the structure of the report

- Introduction
- Mesh-based Modeling of Cuts
- Finite Element Simulation for Virtual Cutting
- Numerical Solvers
 - Direct solvers
 - Iterative solvers
- Meshfree Methods
- Summary & Application Study
- Discussion & Conclusion

- Implicit time integration leads to a linear system of equations Ax = b
 - when using the linear strain tensor and a linear material model
- *A* is a sparse, symmetric, positive definite matrix
- Update of the system matrix A required ...
 - due to adaptation of the finite element model (cutting)
 - in every time step, when using the corotational strain formulation
 - Requires re-initialization of the solver

Direct Solvers

- Obtain exact solution in a finite number of steps
- Matrix inversion: $b = A^{-1}x$ $(A \in \mathbb{R}^{n \times n})$
 - Computing time $O(n^3)$ (initialization) and $O(n^2)$ (solve)
 - Memory $O(n^2)$
 - Only feasible for (very) small n
 - Incremental update via Sherman-Morrison-Woodbury formulae
 - $(A UV^T)^{-1} = A^{-1} + A^{-1}U(E V^T A^{-1}U)^{-1}V^T A^{-1}$
 - Update can be restructured to be in O(n) under certain assumptions considering the number of non-zero entries
 [Zhong et al. 2005]

Direct Solvers

• Cholesky factorization: $A = LL^T$ for a spd matrix A

$$L \underbrace{L^T x}_{y:=} = b$$
$$Ly = b$$
$$L^T x = y$$

- Better constant factors than matrix inversion
- Can also be incrementally updated [Turkiyyah et al. 2009]

- Successively compute approximations x_m to the solution x $x = \lim_{m \to \infty} x_m$
- Allows for balancing speed and accuracy
 - Monitor norm of residual $r_m = b Ax_m$
 - Stop if residual reduction $\frac{\|r_m\|_2}{\|r_0\|_2} \le \tau$ for given threshold τ

Iterative Solvers

Conjugate Gradient Method

$$Ax = b \quad \Leftrightarrow \quad \underbrace{\frac{1}{2}x^T A x - b^T x}_{F(x):=} \to min \qquad \text{for spd matrix } A$$

- F has a single, global minimum (paraboloid)
- Iterative search for minimum:

$$x_{m+1} = x_m + \lambda_m p_m$$

$$p_m = -\nabla F(x_m) + \sum_{j=0}^{m-1} \alpha_j p_j \qquad p_i^T A p_j = 0 \text{ for } i \neq j$$

- Problem-adapting
- x_m minimizes F on affine subspace of continuously increasing dimension
- Requires matrix-vector products and dot products
- Efficient parallelization using OpenMP [Chentanez et al. 2009] or CUDA [Courtecuisse et al. 2010]

Iterative Solvers

- So far: "Blackbox" solvers
- More advanced solvers: Geometric multigrid solvers
 - Basic relaxation schemes (Jacobi, Gauss-Seidel) only reduce highfrequency error components effectively
 - Consider the problem on a hierarchy of successively coarser grids
 - Reduce lower-frequency error components on coarser grids (where they appear at a higher frequency)

Geometric Multigrid

• Solve $A^h x^h = b^h$, current approximate solution \tilde{x}^h

Geometric Multigrid

• Solve $A^h x^h = b^h$, current approximate solution \tilde{x}^h

Geometric Multigrid

• Solve $A^h x^h = b^h$, current approximate solution v^h

Multigrid Hierarchy Construction

• (Semi-)Regular hexahedral grids

- Blocks of 2³ cells are merged into coarse grid cells of double size
- A cell is created if it covers at least one cell on the finer level
 - Coarser cells might be only partially filled [Liehr et al. 2009]
- Difficult for unstructured grids

Multigrid with Cuts

- Representation of complicated topologies on the coarse grids
 - Physically disconnected parts should be represented by individual coarse grid cells
 - Duplication of cells on the coarse grids [Aftosmis et al. 2000]
 - Graph-based hierarchy construction analogous to composite elements

Multigrid with Cuts

Construction of multigrid hierarchy using an undirected graph representation

- Works equally well for an adaptive octree grid

Solver Comparison

Solver Comparison

[Dick et al. 2011]

Numerical Solvers

- Discussion
 - Direct vs. iterative solvers
 - Blackbox vs. application-specific solvers
 - Speed vs. implementation effort

follows the structure of the report

- Introduction
- Mesh-based Modeling of Cuts
- Finite Element Simulation of Virtual Cutting
- Numerical Solvers
- Meshfree Methods
- Summary & Application Study
- Discussion & Conclusion

Meshfree Methods

- Model objects as a set of interacting nodes which carry properties, e.g., mass, density, velocity, ...
 - Introduced to computer graphics by Desbrun & Cani 1995
 - Re-formulated with continuum mechanics by Müller et al. 2004
- No explicit connectivity information
- Maintain node adjacency implicitly by an influence radius

Mesh-based discretization

Meshfree discretization

Influence Radius & Weighting Kernel

- Strasburg 2014
- Moving Least Squares Approximation [Lancaster & Salkauskas 1981]
- Interpolation: $u(x) = \sum_i \phi_i(x) u_i$, for all $i \in \{i \mid d(x, x_i) \le r\}$ - r: Influence radius
- Shape function: $\phi_i(x) = \omega_i(x, x_i, r)p^T(x)[M(x)]^{-1}p(x_i)$
 - Polynomial basis of order n: $p(x) = [x^0 x^1 \dots x^n]^T$
 - Moment matrix: $M(x) = \sum_{i} \omega_i(x, x_i, r_i) p(x_i) p^T(x_i)$

- Weighting kernel: $\omega_i(x, x_i, r) = \begin{cases} \text{nonzero} & d(x, x_i) \leq r \\ 0 & d(x, x_i) > r \end{cases}$
 - Imply x_i and x are (implicitly) connected if the distance is smaller than the influence radius
- Modeling discontinuity by modifying the weighting kernel

Cutting a meshfree object

- Visibility criterion: assign zero to $\omega_i(x, x_i, r)$, if x is invisible from x_i , i.e., $\overrightarrow{xx_i}$ intersects the cutting path [Belytschko et al. 1994]
- Weighting kernel:

$$\omega_i(x, x_i, r) = \begin{cases} \text{nonzero} \\ 0 \end{cases}$$

 $d(x, x_i) \le r \land x \text{ is visible} \\ d(x, x_i) > r \lor x \text{ is invisible}$

Cutting a meshfree object

Visibility criterion

• Transparency method: add to the Euclidean distance $d(x, x_i)$ a factor that depends on the distance d(p, a) [Organ et al. 1996]

• Graph-based diffraction method: replace Euclidean distance $d(x, x_i)$ with the minimum distance $x_i \rightarrow x$ in a graph [Steinemann et al. 2006] (315)

• E.g.,
$$\omega_i(x, x_i, r) = \begin{cases} \frac{315}{64\pi r^3} (r^2 - d^2(x, x_i))^3 & \frac{d(x, x_i)}{2} \le r \\ 0 & \frac{d(x, x_i)}{2} > r \end{cases}$$

 $d^2(x_i \to x_a \to x_b \to x)$

Cutting a meshfree object

Graph-based diffraction method

Generating New Surface due to Cuts

- Crack surface propagation [Pauly et al. 2005]
 - Represent surface by means of elliptical splats (surfels)
 - Propagate crack front and create additional surfels when necessary

Generating New Surface due to Cuts

- Strachourg 2014
- Explicit cutting surface modeling [Steinemann et al. 2006]
 - Represent cutting surface as a triangle mesh
 - Trim this surface by the initial, triangulated surface of the object

Cutting configuration

Trimming and triangulation

Generating New Surface due to Cuts

- Surface reconstruction based on a regular hexahedral grid [Pietroni et al. 2009]
 - Deformable body is embedded into a regular hexahedral grid
 - Separate edges of grid cells by cutting tool
 - Reconstruct a triangle mesh from the disconnected edges, using intersection points and normal at these points

Separating of edges

Reconstruction of a triangle mesh

[Pietroni et al 2009]

- Advantages:
 - No re-meshing required (volume and surface)
- Disadvantages:
 - Handling of essential boundary conditions is difficult
 - Neighborhood among nodes must be determined during run-time
 - Inversion of the moment matrices is expensive
- Explicit connectivity can still be advantageous ...
 - A graph representation can be used to efficiently determine neighborhood [Steinemann et al. 2006]
 - A regular hexahedral grid can be used to contour the surface [Pietroni et al. 2009]

follows the structure of the report

- Introduction
- Mesh-based Modeling of Cuts
- Finite Element Simulation for Virtual Cutting
- Numerical Solvers
- Meshfree Methods
- Summary & Application Study
- Discussion & Conclusion

Major Articles Surveyed in this Report

Reference	Geometry	Deformation	Solver	Scenario	Remark
Bielser et al [BMG99 BG00 BGTG04]	Tet refinement	Mass-spring	Explicit/Semi-implicit	Interactive	Basic tet refinement
Cotin et al. [CDA00]	Tet., deletion	Tensor-mass	Explicit	Interactive	Hybrid elastic model
Mor & Kanade [MK00]	Tet., refinement	FEM	Explicit	Interactive	Progressive cutting
Nienhuys et al. [NFvdS00, NFvdS01]	Tet., boundary splitting/snapping	FEM	Static (CG solver)	Interactive	FEM with a CG solver
Bruvns et al. [BSM*02]	Tet., refinement	Mass-spring	Explicit	Interactive	An early survey
Steinemann et al. [SHGS06]	Tet., refinement + snapping	Mass-spring	Explicit	Interactive (Fig. 13 a)	Hybrid cutting
Chentanez et al. [CAR*09]	Tet., refinement	FEM	Implicit (CG solver)	Interactive (Fig. 13 d)	Needle insertion
Courtecuisse et al. [CJA*10, CAK*14]	Tet., deletion/refinement	FEM	Implicit (CG solver)	Interactive (Fig. 13 c,e)	Surgery applications
Molino et al. [MBF04]	Tet., duplication	FEM	Mixed explicit/implicit	Offline	Basic virtual node algorithm
Sifakis et al. [SDF07]	Tet., duplication	FEM		Offline (Fig. 12 a)	Arbitrary cutting
Jeřábková & Kuhlen [JK09]	Tet.	XFEM	Implicit (CG solver)	Interactive	Introduction of XFEM
Turkiyyah et al. [TKAN09]	Tri.	2D-XFEM	Static (direct solver)	Interactive	XFEM with a direct solver
Kaufmann et al. [KMB*09]	Tri./Quad.	2D-XFEM	Semi-implicit	Offline (Fig. 12 c)	Enrichment textures
Frisken-Gibson [FG99]	Hex., deletion	ChainMail	Local relaxation	Interactive	Linked volume
Jeřábková et al. [JBB*10]	Hex., deletion	CFEM		Interactive	CFEM
Dick et al. [DGW11a]	Hex., refinement	FEM	Implicit (multigrid)	Offline/Interactive (Fig. 12 d)	Linked octree, multigrid solver
Seiler et al. [SSSH11]	Hex., refinement	FEM	Implicit	Interactive	Octree, surface embedding
Wu et al. [WDW11, WBWD12, WDW13]	Hex., refinement	CFEM	Implicit (multigrid)	Interactive (Fig. 13 b, f)	Collision detection for CFEM
Wicke et al. [WBG07]	Poly., splitting	PFEM	Implicit	Offline (Fig. 12 b)	Basic polyhedral FEM
Martin et al. [MKB*08]	Poly., splitting	PFEM	Semi-implicit	Offline	Harmonic basis functions
Pauly et al. [PKA*05]	Particles, transparency	Meshfree	Explicit	Offline	Fracture animation
Steinemann et al. [SOG06]	Particles, diffraction	Meshfree		Offline/Interactive (Fig. 12 e)	Splitting fronts propagation
Pietroni et al. [PGCS09]	Particles, visibility	Meshfree		Interactive	Splitting cubes algorithm

Publication Year – Method Plot

- Trends: from mass-spring systems to finite element methods
- Tetrahedral elements are consistently improved
- Hexahedral elements are recently advocated

Geometrically accurate separation can be supported by all • spatial discretizations

virtual node algorithm [Sifakis et al 2007]

extended FEM [Kaufmann et al. 2009]

[Steinemann et al 2011]

 Tetrahedral discretizations are widely employed in virtual cutting in surgery simulators

Reference	Geometry	Deformation	Solver	Scenario	Remark
Bielser et al. [BMG99, BG00, BGTG04]	Tet., refinement	Mass-spring	Explicit/Semi-implicit	Interactive	Basic tet. refinement
Cotin et al. [CDA00]	Tet., deletion	Tensor-mass	Explicit	Interactive	Hybrid elastic model
Mor & Kanade [MK00]	Tet., refinement	FEM	Explicit	Interactive	Progressive cutting
Nienhuys et al. [NFvdS00, NFvdS01]	Tet., boundary splitting/snapping	FEM	Static (CG solver)	Interactive	FEM with a CG solver
Bruyns et al. [BSM*02]	Tet., refinement	Mass-spring	Explicit	Interactive	An early survey
Steinemann et al. [SHGS06]	Tet., refinement + snapping	Mass-spring	Explicit	Interactive (Fig. 13 a)	Hybrid cutting
Chentanez et al. [CAR*09]	Tet., refinement	FEM	Implicit (CG solver)	Interactive (Fig. 13 d)	Needle insertion
Courtecuisse et al. [CJA*10, CAK*14]	Tet., deletion/refinement	FEM	Implicit (CG solver)	Interactive (Fig. 13 c,e)	Surgery applications
Molino et al. [MBF04]	Tet., duplication	FEM	Mixed explicit/implicit	Offline	Basic virtual node algorithm
Sifakis et al. [SDF07]	Tet., duplication	FEM		Offline (Fig. 12 a)	Arbitrary cutting
Jeřábková & Kuhlen [JK09]	Tet.	XFEM	Implicit (CG solver)	Interactive	Introduction of XFEM
Turkiyyah et al. [TKAN09]	Tri.	2D-XFEM	Static (direct solver)	Interactive	XFEM with a direct solver
Kaufmann et al. [KMB*09]	Tri./Quad.	2D-XFEM	Semi-implicit	Offline (Fig. 12 c)	Enrichment textures
Frisken-Gibson [FG99]	Hex., deletion	ChainMail	Local relaxation	Interactive	Linked volume
Jeřábková et al. [JBB*10]	Hex., deletion	CFEM		Interactive	CFEM
Dick et al. [DGW11a]	Hex., refinement	FEM	Implicit (multigrid)	Offline/Interactive (Fig. 12 d)	Linked octree, multigrid solver
Seiler et al. [SSSH11]	Hex., refinement	FEM	Implicit	Interactive	Octree, surface embedding
Wu et al. [WDW11, WBWD12, WDW13]	Hex., refinement	CFEM	Implicit (multigrid)	Interactive (Fig. 13 b, f)	Collision detection for CFEM
Wicke et al. [WBG07]	Poly., splitting	PFEM	Implicit	Offline (Fig. 12 b)	Basic polyhedral FEM
Martin et al. [MKB*08]	Poly., splitting	PFEM	Semi-implicit	Offline	Harmonic basis functions
Pauly et al. [PKA*05]	Particles, transparency	Meshfree	Explicit	Offline	Fracture animation
Steinemann et al. [SOG06]	Particles, diffraction	Meshfree		Offline/Interactive (Fig. 12 e)	Splitting fronts propagation
Pietroni et al. [PGCS09]	Particles, visibility	Meshfree		Interactive	Splitting cubes algorithm

 Tetrahedral discretizations are widely employed in virtual cutting in surgery simulators

Ablating a polyp in a hysteroscopy simulator [Steinemann et al 2006]

Simulation of a brain tumor resection

[Courtecuisse et al 2014]

 Tetrahedral discretizations are widely employed in virtual cutting in surgery simulators

Needle insertion in a prostate brachytherapy simulator

[Chentanez et al 2009]

Real-time simulation of laparoscopic hepatectomy

[Courtecuisse et al 2010]

 Hexahedral discretizations are recently demonstrated to provide a good balance between speed and accuracy

Reference	Geometry	Deformation	Solver	Scenario	Remark
Bielser et al. [BMG99, BG00, BGTG04]	Tet., refinement	Mass-spring	Explicit/Semi-implicit	Interactive	Basic tet. refinement
Cotin et al. [CDA00]	Tet., deletion	Tensor-mass	Explicit	Interactive	Hybrid elastic model
Mor & Kanade [MK00]	Tet., refinement	FEM	Explicit	Interactive	Progressive cutting
Nienhuys et al. [NFvdS00, NFvdS01]	Tet., boundary splitting/snapping	FEM	Static (CG solver)	Interactive	FEM with a CG solver
Bruyns et al. [BSM*02]	Tet., refinement	Mass-spring	Explicit	Interactive	An early survey
Steinemann et al. [SHGS06]	Tet., refinement + snapping	Mass-spring	Explicit	Interactive (Fig. 13 a)	Hybrid cutting
Chentanez et al. [CAR*09]	Tet., refinement	FEM	Implicit (CG solver)	Interactive (Fig. 13 d)	Needle insertion
Courtecuisse et al. [CJA*10, CAK*14]	Tet., deletion/refinement	FEM	Implicit (CG solver)	Interactive (Fig. 13 c,e)	Surgery applications
Molino et al. [MBF04]	Tet., duplication	FEM	Mixed explicit/implicit	Offline	Basic virtual node algorithm
Sifakis et al. [SDF07]	Tet., duplication	FEM		Offline (Fig. 12 a)	Arbitrary cutting
Jeřábková & Kuhlen [JK09]	Tet.	XFEM	Implicit (CG solver)	Interactive	Introduction of XFEM
Turkiyyah et al. [TKAN09]	Tri.	2D-XFEM	Static (direct solver)	Interactive	XFEM with a direct solver
Kaufmann et al. [KMB*09]	Tri./Quad.	2D-XFEM	Semi-implicit	Offline (Fig. 12 c)	Enrichment textures
Frisken-Gibson [FG99]	Hex., deletion	ChainMail	Local relaxation	Interactive	Linked volume
Jeřábková et al. [JBB*10]	Hex., deletion	CFEM		Interactive	CFEM
Dick et al. [DGW11a]	Hex., refinement	FEM	Implicit (multigrid)	Offline/Interactive (Fig. 12 d)	Linked octree, multigrid solver
Seiler et al. [SSSH11]	Hex., refinement	FEM	Implicit	Interactive	Octree, surface embedding
Wu et al. [WDW11, WBWD12, WDW13]	Hex., refinement	CFEM	Implicit (multigrid)	Interactive (Fig. 13 b, f)	Collision detection for CFEM
Wicke et al. [WBG07]	Poly., splitting	PFEM	Implicit	Offline (Fig. 12 b)	Basic polyhedral FEM
Martin et al. [MKB*08]	Poly., splitting	PFEM	Semi-implicit	Offline	Harmonic basis functions
Pauly et al. [PKA*05]	Particles, transparency	Meshfree	Explicit	Offline	Fracture animation
Steinemann et al. [SOG06]	Particles, diffraction	Meshfree		Offline/Interactive (Fig. 12 e)	Splitting fronts propagation
Pietroni et al. [PGCS09]	Particles, visibility	Meshfree		Interactive	Splitting cubes algorithm

 Hexahedral discretizations are recently demonstrated to provide a good balance between speed and accuracy

Virtual soft tissue cutting and shrinkage simulation

[Wu et al 2012]

Haptic-enabled virtual cutting of high-resolution soft tissues [Wu et al 2014]

Purposes of Application Study

- Provide an estimation of the performance of virtual cutting
- Identify performance bottlenecks in the simulation loop
- Exam accuracy and performance of adaptive methods
- Not an evaluation of all techniques
- But a detailed analysis of our implementations of three variants of hexahedral finite elements

Physically-based Simulation of Cuts in Deformable Bodies: A Survey

Experimental Setup

• Linear elastic material, corotational strain formulation

- Standard desktop PC
 - Intel Xeon X5560 processor (a single core was used)
 - 8 GB main memory
- Haptic device
 - Sensable Phantom Premium 1.5

Physically-based Simulation of Cuts in Deformable Bodies: A Survey

• Basis

- Geometry modeling: hexahedral elements
- Surface reconstruction: dual contouring
- Numerical solver: multigrid solver
- Variants
 - FEs on a uniform hexahedral grid
 - FEs on an adaptive octree grid
 - Composite FEs on an adaptive octree grid

Three Variants

Model Information of Three Variants

	Uniform	Adaptive	Composite (2 levels)
Coarse resolution		21×21×25	21×21×25
Refined resolution	82×83×100	82×83×100	82×83×100
# Cells (initial)	173 843	40 080	3 439
# DOFs (initial)	566 493	129 162	13 557
# Cells (added due to cut)	0	1 596	39
# DOFs (added due to cut)	2 037	6 438	318

Simulation Results

- Adaptive octree deformation resembles the uniform approach
- Composite simulation results in a slightly stiffer deformation

FEs on a uniform hexahedral grid

FEs on an adaptive octree grid

Composite FEs on an adaptive octree grid

Timings

 Accurate cutting simulation can be performed at 2 seconds per frame, on a uniform 82×83×100 grid

	Uniform
Coarse resolution	
Refined resolution	82×83×100
# DOFs (initial)	566 493
Octree subdivision (t_1)	0
Surface meshing (t_2)	1.26
FE matrices (t_3)	29.57
Multigrid hierarchy (t_4)	40.34
Solver (t_5)	2 033.09
Simulation per cut ($\sum_{i=1}^{5} t_i$)	2 104.26

Timing in milliseconds

• Numerical solver is the bottleneck in cutting simulation

	Uniform
Coarse resolution	
Refined resolution	82×83×100
# DOFs (initial)	566 493
Octree subdivision (t_1)	0
Surface meshing (t_2)	1.26
FE matrices (t_3)	29.57
Multigrid hierarchy (t_4)	40.34
Solver (t ₅)	2 033.09
Simulation per cut $(\sum_{i=1}^{5} t_i)$	2 104.26

Timing in milliseconds

• Adaptive octree improves the performance by a factor of 3.5

	Uniform	Adaptive
Coarse resolution		21×21×25
Refined resolution	82×83×100	82×83×100
# DOFs (initial)	566 493	129 162
Octree subdivision (t_1)	0	13.29
Surface meshing (t_2)	1.26	1.26
FE matrices (t_3)	29.57	7.05
Multigrid hierarchy (t_4)	40.34	10.09
Solver (t ₅)	2 033.09	581.66
Simulation per cut $(\sum_{i=1}^{5} t_i)$	2 104.26	613.35

Timing in milliseconds

tM_{3D}

 Interactive cutting (12 fps) is possible on a 21×21×25 composite simulation grid

	Uniform	Adaptive	Composite (2 levels)	
Coarse resolution		21×21×25	21×21×25	
Refined resolution	82×83×100	82×83×100	82×83×100	
# DOFs (initial)	566 493	129 162	13 557	
Octree subdivision (t_1)	0	13.29	13.39	
Surface meshing (t_2)	1.26	1.26	1.24	
FE matrices (t_3)	29.57	7.05	20.99	
Multigrid hierarchy (t_4)	40.34	10.09	2.06	
Solver (t ₅)	2 033.09	581.66	40.61	
Simulation per cut ($\sum_{i=1}^{5} t_i$)	2 104.26	613.35	78.29	i

Timing in milliseconds

Timings

• Solver, FE matrices, octree subdivision affect the performance in the composite approach

	Uniform	Adaptive	Composite (2 levels)
Coarse resolution		21×21×25	21×21×25
Refined resolution	82×83×100	82×83×100	82×83×100
# DOFs (initial)	566 493	129 162	13 557
Octree subdivision (t_1)	0	13.29	13.39
Surface meshing (t_2)	1.26	1.26	1.24
FE matrices (t_3)	29.57	7.05	20.99
Multigrid hierarchy (t_4)	40.34	10.09	2.06
Solver (t_5)	2 033.09	581.66	40.61
Simulation per cut ($\sum_{i=1}^{5} t_i$)	2 104.26	613.35	78.29

tM_{3D}

• Time of surface meshing is negligible

	Uniform	Adaptive	Composite (2 levels)
Coarse resolution		21×21×25	21×21×25
Refined resolution	82×83×100	82×83×100	82×83×100
# DOFs (initial)	566 493	129 162	13 557
Octree subdivision (t_1)	0	13.29	13.39
Surface meshing (t_2)	1.26	1.26	1.24
FE matrices (t_3)	29.57	7.05	20.99
Multigrid hierarchy (t_4)	40.34	10.09	2.06
Solver (t ₅)	2 033.09	581.66	40.61
Simulation per cut ($\sum_{i=1}^{5} t_i$)	2 104.26	613.35	78.29

n milliseconds

follows the structure of the report

- Introduction
- Mesh-based Modeling of Cuts
- Finite Element Simulation for Virtual Cutting
- Numerical Solvers
- Meshfree Methods
- Summary & Application Study
- Discussion & Conclusion

Summary

- Mesh-based Modeling of Cuts
- Finite Element Simulation for Virtual Cutting
- Numerical Solvers
- Meshfree Methods
- Summary & Application Study

Future Challenges

- Benchmark problems for virtual cutting methods
- Real-world material properties
 - Nonlinear, anisotropic, viscoelastic, viscoplastic materials
- Parallelization on multi-core and multi-GPU architectures
 - Inherently sequential parts
 - Bandwidth and latency bottleneck
- Physical interaction between a scalpel and soft tissues
- Efficient numerical solution techniques on irregular adaptive spatial discretizations

Cutting Is All Around Us!

footage.shutterstock.com

pfollansbee.wordpress.com

How to simulate these interesting cutting effects?

www.hurriyetdailynews.com

wb-3d.com

en.wikipedia.org

Thank you for your attention!

Faculty of Informatics