

follows the structure of the report

- Introduction
- Mesh-based Modeling of Cuts
- Finite Element Simulation for Virtual Cutting
- Numerical Solvers
- Meshfree Methods
- Summary & Application Study
- Discussion & Conclusion

Summary

- Mesh-based Modeling of Cuts
- Finite Element Simulation for Virtual Cutting
- Numerical Solvers
- Meshfree Methods
- Summary & Application Study

Future Challenges

- Benchmark problems for virtual cutting methods
- Real-world material properties
 - Nonlinear, anisotropic, viscoelastic, viscoplastic materials
- Parallelization on multi-core and multi-GPU architectures
 - Inherently sequential parts
 - Bandwidth and latency bottleneck
- Physical interaction between a scalpel and soft tissues
- Efficient numerical solution techniques on irregular adaptive spatial discretizations

Cutting Is All Around Us!

footage.shutterstock.com

pfollansbee.wordpress.com

How to simulate these interesting cutting effects?

www.hurriyetdailynews.com

Physically-based Simulation of Cuts in Deformable Bodies: A Survey

Thank you for your attention!

Faculty of Informatics