

follows the structure of the report

- Introduction
- Mesh-based Modeling of Cuts
- Finite Element Simulation of Virtual Cutting
- Numerical Solvers
- Meshfree Methods
- Summary & Application Study
- Discussion & Conclusion

Meshfree Methods

- Model objects as a set of interacting nodes which carry properties, e.g., mass, density, velocity, ...
 - Introduced to computer graphics by Desbrun & Cani 1995
 - Re-formulated with continuum mechanics by Müller et al. 2004
- No explicit connectivity information
- Maintain node adjacency implicitly by an influence radius

Mesh-based discretization

Meshfree discretization

Influence Radius & Weighting Kernel

- Strabburg 2014
- Moving Least Squares Approximation [Lancaster & Salkauskas 1981]
- Interpolation: $u(x) = \sum_i \phi_i(x) u_i$, for all $i \in \{i \mid d(x, x_i) \le r\}$ - r: Influence radius
- Shape function: $\phi_i(x) = \omega_i(x, x_i, r)p^T(x)[M(x)]^{-1}p(x_i)$
 - Polynomial basis of order n: $p(x) = [x^0 x^1 \dots x^n]^T$
 - Moment matrix: $M(x) = \sum_{i} \omega_i(x, x_i, r_i) p(x_i) p^T(x_i)$

- Weighting kernel: $\omega_i(x, x_i, r) = \begin{cases} \text{nonzero} & d(x, x_i) \leq r \\ 0 & d(x, x_i) > r \end{cases}$
 - Imply x_i and x are (implicitly) connected if the distance is smaller than the influence radius
- Modeling discontinuity by modifying the weighting kernel

Cutting a meshfree object

- Visibility criterion: assign zero to $\omega_i(x, x_i, r)$, if x is invisible from x_i , i.e., $\overrightarrow{xx_i}$ intersects the cutting path [Belytschko et al. 1994]
- Weighting kernel:

$$\omega_i(x, x_i, r) = \begin{cases} \text{nonzero} \\ 0 \end{cases}$$

 $d(x, x_i) \le r \land x \text{ is visible} \\ d(x, x_i) > r \lor x \text{ is invisible}$

Cutting a meshfree object

Visibility criterion

• Transparency method: add to the Euclidean distance $d(x, x_i)$ a factor that depends on the distance d(p, a) [Organ et al. 1996]

• Graph-based diffraction method: replace Euclidean distance $d(x, x_i)$ with the minimum distance $x_i \rightarrow x$ in a graph [Steinemann et al. 2006] (315)

• E.g.,
$$\omega_i(x, x_i, r) = \begin{cases} \frac{315}{64\pi r^3} (r^2 - d^2(x, x_i))^3 & \frac{d(x, x_i)}{2} \le r \\ 0 & \frac{d(x, x_i)}{2} > r \end{cases}$$

 $d^2(x_i \to x_a \to x_b \to x)$

Cutting a meshfree object

Graph-based diffraction method

Generating New Surface due to Cuts

- Crack surface propagation [Pauly et al. 2005]
 - Represent surface by means of elliptical splats (surfels)
 - Propagate crack front and create additional surfels when necessary

Generating New Surface due to Cuts

- Strachourg 2014
- Explicit cutting surface modeling [Steinemann et al. 2006]
 - Represent cutting surface as a triangle mesh
 - Trim this surface by the initial, triangulated surface of the object

Cutting configuration

Trimming and triangulation

Generating New Surface due to Cuts

- Surface reconstruction based on a regular hexahedral grid [Pietroni et al. 2009]
 - Deformable body is embedded into a regular hexahedral grid
 - Separate edges of grid cells by cutting tool
 - Reconstruct a triangle mesh from the disconnected edges, using intersection points and normal at these points

Separating of edges

Reconstruction of a triangle mesh

[Pietroni et al 2009]

- Advantages:
 - No re-meshing required (volume and surface)
- Disadvantages:
 - Handling of essential boundary conditions is difficult
 - Neighborhood among nodes must be determined during run-time
 - Inversion of the moment matrices is expensive
- Explicit connectivity can still be advantageous ...
 - A graph representation can be used to efficiently determine neighborhood [Steinemann et al. 2006]
 - A regular hexahedral grid can be used to contour the surface [Pietroni et al. 2009]