

follows the structure of the report

- Introduction
- Mesh-based Modeling of Cuts
- Finite Element Simulation for Virtual Cutting
- Numerical Solvers
 - Direct solvers
 - Iterative solvers
- Meshfree Methods
- Summary & Application Study
- Discussion & Conclusion

- Implicit time integration leads to a linear system of equations Ax = b
 - when using the linear strain tensor and a linear material model
- *A* is a sparse, symmetric, positive definite matrix
- Update of the system matrix A required ...
 - due to adaptation of the finite element model (cutting)
 - in every time step, when using the corotational strain formulation
 - Requires re-initialization of the solver

Direct Solvers

- Obtain exact solution in a finite number of steps
- Matrix inversion: $b = A^{-1}x$ $(A \in \mathbb{R}^{n \times n})$
 - Computing time $O(n^3)$ (initialization) and $O(n^2)$ (solve)
 - Memory $O(n^2)$
 - Only feasible for (very) small n
 - Incremental update via Sherman-Morrison-Woodbury formulae
 - $(A UV^T)^{-1} = A^{-1} + A^{-1}U(E V^T A^{-1}U)^{-1}V^T A^{-1}$
 - Update can be restructured to be in O(n) under certain assumptions considering the number of non-zero entries
 [Zhong et al. 2005]

Direct Solvers

• Cholesky factorization: $A = LL^T$ for a spd matrix A

$$L \underbrace{L^T x}_{y:=} = b$$
$$Ly = b$$
$$L^T x = y$$

- Better constant factors than matrix inversion
- Can also be incrementally updated [Turkiyyah et al. 2009]

- Successively compute approximations x_m to the solution x $x = \lim_{m \to \infty} x_m$
- Allows for balancing speed and accuracy
 - Monitor norm of residual $r_m = b Ax_m$
 - Stop if residual reduction $\frac{\|r_m\|_2}{\|r_0\|_2} \le \tau$ for given threshold τ

Iterative Solvers

Conjugate Gradient Method

$$Ax = b \quad \Leftrightarrow \quad \underbrace{\frac{1}{2}x^T A x - b^T x}_{F(x):=} \to min \qquad \text{for spd matrix } A$$

- F has a single, global minimum (paraboloid)
- Iterative search for minimum:

$$x_{m+1} = x_m + \lambda_m p_m$$

$$p_m = -\nabla F(x_m) + \sum_{j=0}^{m-1} \alpha_j p_j \qquad p_i^T A p_j = 0 \text{ for } i \neq j$$

- Problem-adapting
- x_m minimizes F on affine subspace of continuously increasing dimension
- Requires matrix-vector products and dot products
- Efficient parallelization using OpenMP [Chentanez et al. 2009] or CUDA [Courtecuisse et al. 2010]

Iterative Solvers

- So far: "Blackbox" solvers
- More advanced solvers: Geometric multigrid solvers
 - Basic relaxation schemes (Jacobi, Gauss-Seidel) only reduce highfrequency error components effectively
 - Consider the problem on a hierarchy of successively coarser grids
 - Reduce lower-frequency error components on coarser grids (where they appear at a higher frequency)

Geometric Multigrid

• Solve $A^h x^h = b^h$, current approximate solution \tilde{x}^h

Geometric Multigrid

• Solve $A^h x^h = b^h$, current approximate solution \tilde{x}^h

Physically-based Simulation of Cuts in Deformable Bodies: A Survey

Geometric Multigrid

• Solve $A^h x^h = b^h$, current approximate solution v^h

Multigrid Hierarchy Construction

• (Semi-)Regular hexahedral grids

- Blocks of 2³ cells are merged into coarse grid cells of double size
- A cell is created if it covers at least one cell on the finer level
 - Coarser cells might be only partially filled [Liehr et al. 2009]
- Difficult for unstructured grids

Multigrid with Cuts

- Representation of complicated topologies on the coarse grids
 - Physically disconnected parts should be represented by individual coarse grid cells
 - Duplication of cells on the coarse grids [Aftosmis et al. 2000]
 - Graph-based hierarchy construction analogous to composite elements

Multigrid with Cuts

Construction of multigrid hierarchy using an undirected graph representation

- Works equally well for an adaptive octree grid

Solver Comparison

Physically-based Simulation of Cuts in Deformable Bodies: A Survey

Solver Comparison

[Dick et al. 2011]

Numerical Solvers

- Discussion
 - Direct vs. iterative solvers
 - Blackbox vs. application-specific solvers
 - Speed vs. implementation effort

