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Physically-based Deformation Models

« Compute the object’s deformation due to external forces
— Introduced to computer graphics by Terzopoulos et al. 1987
— Surveyed in STAR by Nealen et al. 2006
* Finite element methods (FEM), meshfree methods, mass-
spring systems, etc.

Undeformed Deformed

x. material coordinates
u(x): displacement field
o(x): deformation field
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Recap: Finite Element Simulation of Elasticity

1) Discretize the object into elements

2) Build elementary equations K¢u® = f*¢

3) Assemble a linear system of equations Ku = f
4) Solve for the displacement field u

Discretization n¢ Elementary equation & Equation system
QO erBeTCBe ué = fe Ku = f
K¢ Sharing
of nodes
l u®: displacements
f¢: external forces

B€: strain matrix
C: material law
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Virtual Cutting Using the Standard FEM

1) Split elements which are touched by the scalpel
2) Re-build elementary equations K¢u® = f*©

3) Re-assemble a linear system of equations Ku = f
— Remove entries of the deleted initial elements
— Add entries of the split new elements

4) Solve for the displacement field u

Initial K Remove initial entries Add new entries

_.:::frh:_f:.“l::::?l;::t

_______ = e, R
i L | o
— [l

Current K

= 'i_' i“‘::1' =l _,,:h‘. i_ ht_.,t. —

Physically-based Simulation of Cuts in Deformable Bodies: A Survey

Re-assemble the stiffness matrix [Courtecuisse et al 2014]
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The Extended Finite Element Method (XFEM) @

Model material discontinuities by enriching the basis functions
of the solution space [Belytschko et al. 1999]
— Adapting basis functions instead of modifying the meshes

Displacement field u(x) in the standard FEM

u(x) = ®¢(x) u®
— ®°(x):shape matrix
— u®: displacement vector at nodes

Displacement field u(x) in the extended FEM
ulx) = ®¢(x) u® + Yé(x)d°(x) a®

— WYe¢(x): shape enrichment matrix

— a®: added displacement vector at nodes




XFEM — Discontinuous Enrichment Function

o u(x) =d(x) u® +¥e(x)d%(x) a®
e Shifted enrichment function

H(x)—H(x;)
— () = Mt

P

_ HG) = { 1, if x is on the cut’s left side; Heaviside function H(x)
~ (-1, ifxisonthe cut’s right side.

Both left and right sides: Left side of the triangle: Right side of the triangle:
Ug 251 Uy — a4
u(x) = ®°(x) (uz> u(x) = ®¢(x) (uz + az) u(x) = dbe(x)( U )
us Uus Uz — ds
Standard FEM Extended FEM
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XFEM - Stiffness Matrices

Standard stiffness matrix K€ = [, B¢' CB®

— Material law C relates strain to stress o = C: €
— Strain matrix B¢ = (B{, ..., BE)

Enriched stiffness matrix *K¢ = [ .(*B®)" C *B®dx
*Be = (Bf,..,Bg, Y$BS, .., BE)

e,uu eua
xige = (KoM KEM

e,au e,aa
K K
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XFEM — Detalled Cutting of Shells

« Store enrichment function as a 2D texture

Heaviside function H(x)

1, on left
H(x) = {—1, on right

Enrichment texture Simulation result
within a quad mesh

[Kaufmann et al 2009]
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XFEM — Detalled Cutting of Shells

« Store enrichment function as a 2D texture

B ¢

Enrichment texture Simulation result
within a quad mesh

~ s

Multiple cuts [Kaufmann et al 2009]
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XFEM — Detalled Cutting of Shells

 Store enrichment function as a 2D texture
« Employ harmonic enrichment function for partial cuts

B ¢

Enrichment texture Simulation result
within a quad mesh
Boundary ~

conditions [VH -n=0 |n
| _ Laplace eq.

\ AH =0 €

H=+1
H=-1

Enrichment texture Harmonic enrichments H(x) Simulation result
of a partial cut [Kaufmann et al 2009]
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The Composite Finite Element Method (CFEM)

« Approximate a high resolution finite element discretization by
a small set of coarser elements [Hackbusch & Sauter 1997]
— Reduce the number of simulation DOFs
— Also used for: construct a grid hierarchy for the multigrid solver

Hexahedral Level 1 Level 2
Finite Elements Composite FEs Composite FEs

— —
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CFEM — Geometrical & Topological Composition

« Duplicated elements: Each connected part is merged to one
Independent element
— Located at the same place in the reference configuration
— But have different topology connections
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° Surface vertices
Linked octree representation Composite finite element
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CFEM — Geometrical & Topological Composition

« Duplicated elements: Each connected part is merged to one
Independent element
— Located at the same place in the reference configuration
— But have different topology connections

- [teratively merge blocks of 23 elements into 1 element

Fine resolution: 82x83x100
Composition level: 3 (83->1)
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CFEM — Numerical Composition

« Displacement interpolation
— composite elements — fine hexahedra
—u=I11u

« Stiffness matrix assembly
— fine hexahedra — composite elements
- K =1TKI

e 8 8 c—oe. , , coe e —
- Kmn - Ze inc4&i=1 2]:1 Wm—)an_)] Kl] ) m,n —_ 1, seny 8

_ wEe = (1 _ Ix%s—cxj’l) (1 _ |y51;yf|) (1 _ |Zﬁts—czf|)
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The Polyhedral Finite Element Method (PFEM)

« Directly evaluate deformation on general polyhedra
[Wicke et al. 2007]

— Tetrahedralization/hexahedralization process is avoided

- Shape functions: u(x) = ¥, ¢;(x) u;
— Tetrahedron: barycentric interpolation
— Hexahedron: tri-linear interpolation
— Polyhedron: 7?7

V; A;
v

» (X) — on Ui,
* | ¢l Zj=1 j i
A
. e A; = A(X, V-1, Vi41)
. A.

V2 Barycentric interpolation for a triangle
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PFEM — Shape Functions

* Mean value interpolation function
— Generalization of barycentric interpolation to convex polyhedra
- Shape functions: u(x) = Y%, ¢;(x) u;
. 1 i=j
— Kronecker delta property: ¢;(x;) = {O Q]

— Completeness: Y%, ¢;(x) = 1

Vidi

®

| . V W.

| i ¢(X) = oy

o l 2j=1 W)

o ‘ ) Oy
tan(ai‘1/2)+tan(ai/2)
W; =
) [lvi—x||

Mean value interpolation for a polygon
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PFEM — Stiffness Matrices

- Stiffness matrix K¢ := [ . B¢  CB®
— Analytical integration over general polyhedra is non-trivial
— Approximated by numerical integration at a few samples

BT € B () + 3, (BY )T € Be(r)

o A1+ A; o A;
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Discussion on FEMs

« Standard FEM
— Each spatial mesh maps to one specific computational finite element

v Keu® = fe

« Extended FEM, composite FEM

— Disconnected spatial mesh corresponds to multiple, duplicated
simulation DOFs

U;- a,
N5=d;

a3

\h
Q

(fean yeaa) (Ge) = ()

Extended FEM Composite FEM
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