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Physically-based Deformation Models 

• Compute the object’s deformation due to external forces 

– Introduced to computer graphics by Terzopoulos et al. 1987 

– Surveyed in STAR by Nealen et al. 2006 

• Finite element methods (FEM), meshfree methods, mass-

spring systems, etc. 

 

𝑥: material coordinates 

𝑢 𝑥 : displacement field 

(x): deformation field 

Undeformed Deformed 
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Recap: Finite Element Simulation of Elasticity 

1) Discretize the object into elements 

2) Build elementary equations 𝐾𝑒𝑢𝑒 = 𝑓𝑒 

3) Assemble a linear system of equations 𝐾𝑢 = 𝑓 

4) Solve for the displacement field 𝑢 

𝑢𝑒: displacements 

𝑓𝑒: external forces 

𝐵𝑒: strain matrix 

𝐶:  material law 

Sharing  
of nodes 

Elementary equation Equation system Discretization Ω𝑒 

Ω  𝐵𝑒𝑇𝐶𝐵𝑒
Ω𝑒

𝐾𝑒

 𝑢𝑒 = 𝑓𝑒  𝐾𝑢 = 𝑓 
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Virtual Cutting Using the Standard FEM 

1) Split elements which are touched by the scalpel 

2) Re-build elementary equations 𝐾𝑒𝑢𝑒 = 𝑓𝑒 

3) Re-assemble a linear system of equations 𝐾𝑢 = 𝑓 

– Remove entries of the deleted initial elements 

– Add entries of the split new elements 

4) Solve for the displacement field 𝑢 

 

Re-assemble the stiffness matrix [Courtecuisse et al 2014] 

Initial K Remove initial entries Add new entries Current K 
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The Extended Finite Element Method (XFEM) 

• Model material discontinuities by enriching the basis functions 

of the solution space [Belytschko et al. 1999] 

– Adapting basis functions instead of modifying the meshes 

 

• Displacement field 𝑢 𝑥  in the standard FEM 

• 𝑢 𝑥 = Φ𝑒 𝑥  𝑢𝑒 

– Φ𝑒 𝑥 : shape matrix 

– 𝑢𝑒: displacement vector at nodes  

 

• Displacement field 𝑢 𝑥  in the extended FEM 

• 𝑢 𝑥 = Φ𝑒 𝑥  𝑢𝑒 +Ψ𝑒 𝑥 Φ𝑒 𝑥  𝑎𝑒 

– Ψ𝑒 𝑥 : shape enrichment matrix 

– a𝑒: added displacement vector at nodes 
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XFEM – Discontinuous Enrichment Function 

Left side of the triangle:  

𝑢 𝑥 = Φ𝑒 𝑥

𝑢1
𝑢2 + 𝑎2
𝑢3

  

 

Right side of the triangle:  

𝑢 𝑥 = Φ𝑒 𝑥

𝑢1 − 𝑎1
𝑢2

𝑢3 − 𝑎3
  

 

1 −1 

Heaviside function 𝐻 𝑥   

Both left and right sides:  

𝑢 𝑥 = Φ𝑒 𝑥

𝑢1
𝑢2
𝑢3

  

 Standard FEM 

• 𝑢 𝑥 = Φ𝑒 𝑥  𝑢𝑒 +Ψ𝑒 𝑥 Φ𝑒 𝑥  𝑎𝑒 

• Shifted enrichment function 

– 𝜓𝑖
𝑒 𝑥 =

𝐻 𝑥 −𝐻(𝑥𝑖)

2
 

– 𝐻 𝑥 =  
1,   if 𝑥 is on the cut′s left side;

−1,   if 𝑥 is on the cut′s right side.
 

 

Extended FEM 
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XFEM -  Stiffness Matrices 

• Standard stiffness matrix 𝐾𝑒 ≔  𝐵𝑒𝑇𝐶𝐵𝑒
Ω𝑒

 

– Material law 𝐶 relates strain to stress 𝜎 = 𝐶: 𝜖 

– Strain matrix 𝐵𝑒  =  𝐵1
𝑒, … , 𝐵𝑛𝑣

𝑒  

 

• Enriched stiffness matrix 𝐾𝑥 𝑒 =  𝐵𝑥 𝑒 𝑇  𝐶 
Ω𝑒 𝐵𝑥 𝑒𝑑𝑥 

• 𝐵𝑥 𝑒  =  𝐵1
𝑒, … , 𝐵𝑛𝑣

𝑒 ,  𝜓1
𝑒𝐵1

𝑒, … , 𝜓𝑛𝑣
𝑒 𝐵𝑛𝑣

𝑒  

• 𝐾𝑥 𝑒 =
𝐾𝑒,𝑢𝑢 𝐾𝑒,𝑢𝑎

𝐾𝑒,𝑎𝑢 𝐾𝑒,𝑎𝑎  
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XFEM – Detailed Cutting of Shells  

• Store enrichment function as a 2D texture  

 

𝐻 𝑥 =  
1,  on left

−1, on right
 

1 −1 

Heaviside function 𝐻 𝑥   

Enrichment texture 
within a quad mesh 

Simulation result 

[Kaufmann et al 2009] 
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XFEM – Detailed Cutting of Shells  

• Store enrichment function as a 2D texture 

 

Enrichment texture 
within a quad mesh 

Simulation result 

Multiple cuts [Kaufmann et al 2009] 
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XFEM – Detailed Cutting of Shells  

• Store enrichment function as a 2D texture 

• Employ harmonic enrichment function for partial cuts 

 

Enrichment texture 
within a quad mesh 

Simulation result 

Enrichment texture  
of a partial cut 

Harmonic enrichments 𝐻 𝑥  Simulation result 

Laplace eq. 

Boundary 
conditions 

[Kaufmann et al 2009] 
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The Composite Finite Element Method (CFEM) 

• Approximate a high resolution finite element discretization by 

a small set of coarser elements [Hackbusch & Sauter 1997] 

– Reduce the number of simulation DOFs  

– Also used for: construct a grid hierarchy for the multigrid solver 

Hexahedral  
Finite Elements 

Level 1 
Composite FEs 

Level 2 
Composite FEs 
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CFEM – Geometrical & Topological Composition 

• Duplicated elements: Each connected part is merged to one 

independent element 

– Located at the same place in the reference configuration 

– But have different topology connections 

 

Linked octree representation Composite finite element 

Duplicated 
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CFEM – Geometrical & Topological Composition 

• Duplicated elements: Each connected part is merged to one 

independent element 

– Located at the same place in the reference configuration 

– But have different topology connections 

• Iteratively merge blocks of 23 elements into 1 element 

Fine resolution: 82×83×100 
Composition level: 3 (83->1) 
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CFEM – Numerical Composition 

• Displacement interpolation 

– composite elements → fine hexahedra  

– 𝑢 = 𝐼 𝑢  

• Stiffness matrix assembly 

– fine hexahedra → composite elements  

– 𝐾 = 𝐼T𝐾𝐼 

 

 

 

– 𝐾 𝑚𝑛
𝑐 =    𝑤𝑚→𝑖

𝑐→𝑒𝑤𝑛→𝑗
𝑐→𝑒8

𝑗=1
8
𝑖=1 𝐾𝑖𝑗

𝑒
𝑒 in 𝑐 ,   𝑚, 𝑛 = 1,… , 8 

– 𝑤𝑚→𝑖
𝑐→𝑒 = 1 −

𝑥𝑚
𝑐 − 𝑥𝑗

𝑒

𝑠𝑐
1 −

𝑦𝑚
𝑐 − 𝑦𝑗

𝑒

𝑠𝑐
1 −

𝑧𝑚
𝑐 − 𝑧𝑗

𝑒

𝑠𝑐
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The Polyhedral Finite Element Method (PFEM) 

• Directly evaluate deformation on general polyhedra 

[Wicke et al. 2007] 

– Tetrahedralization/hexahedralization process is avoided 

 

• Shape functions: 𝑢 𝑥 =  𝜙𝑖 𝑥  𝑢𝑖
𝑛𝑣
𝑖=1  

– Tetrahedron:   barycentric interpolation 

– Hexahedron:   tri-linear interpolation 

– Polyhedron:    ?? 

 

𝜙𝑖 𝑥 =
𝐴𝑖

 𝐴𝑗
𝑛𝑣
𝑗=1

𝑢𝑖 ,      

 
𝐴𝑖 = 𝐴(𝑥, 𝑣𝑖−1, 𝑣𝑖+1) 

Barycentric interpolation for a triangle 
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PFEM – Shape Functions 

• Mean value interpolation function 

– Generalization of barycentric interpolation to convex polyhedra 

• Shape functions: 𝑢 𝑥 =  𝜙𝑖 𝑥  𝑢𝑖
𝑛𝑣
𝑖=1  

– Kronecker delta property: 𝜙𝑖 𝑥𝑗 =  
1 𝑖 = 𝑗
0 𝑖 ≠ 𝑗 

 

– Completeness:  𝜙𝑖 𝑥
𝑛𝑣
𝑖=1 = 1 

 

 

𝜙𝑖 𝑥 =
𝑤𝑖

 𝑤𝑗
𝑛𝑣
𝑗=1

  

 

𝑤𝑖 =
tan

𝛼𝑖−1
2 +tan (

𝛼𝑖
2 )

||𝑣𝑖−𝑥||
  

Mean value interpolation for a polygon 
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PFEM – Stiffness Matrices 

• Stiffness matrix 𝐾𝑒 ≔  𝐵𝑒𝑇𝐶𝐵𝑒
Ω𝑒

 

– Analytical integration over general polyhedra is non-trivial 

– Approximated by numerical integration at a few samples 

• 𝐾𝑒 =  
𝜇𝑖
𝑒

2
𝐵𝑒 𝑝𝑖

T 𝐶 𝐵𝑒 𝑝𝑖𝑖 +  
𝜅𝑖
𝑒

2
𝐵𝑒 𝑟𝑖

T 𝐶 𝐵𝑒 𝑟𝑖𝑖  

𝜇𝑖
𝑒 =

𝐴𝑖−1 + 𝐴𝑖 

2𝐴𝑒
 𝜅𝑖

𝑒 =
𝐴𝑖 

𝐴𝑒
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Discussion on FEMs 

• Standard FEM 

– Each spatial mesh maps to one specific computational finite element 

 

 

• Extended FEM, composite FEM 

– Disconnected spatial mesh corresponds to multiple, duplicated 

simulation DOFs 

 

𝐾𝑒𝑢𝑒 = 𝑓𝑒 

𝐾𝑒,𝑢𝑢 𝐾𝑒,𝑢𝑎

𝐾𝑒,𝑎𝑢 𝐾𝑒,𝑎𝑎
𝑢𝑒

𝑎𝑒
=

𝑓𝑒

0
 

Extended FEM Composite FEM 


