Outline

follows the structure of the report

- Introduction
- Mesh-based Modeling of Cuts
 - Modeling of the Cutting Process
 - Tetrahedral Meshes
 - Hexahedral Meshes
 - Polyhedral Meshes
 - Discussion on Discretizations
- Finite Element Simulation for Virtual Cutting
- Numerical Solvers
- Meshfree Methods
- Summary & Application Study
- Discussion & Conclusion

Modeling of the Cutting Process

- Detect intersections between the volumetric mesh (the deformable object) and a surface mesh (cutting surface)
 - Edge-face test

Cutting surface mesh

Object volumetric mesh

- Acceleration techniques
 - Bounding volume hierarchies
 - Breadth-first traversal of the volumetric mesh

Modeling of the Cutting Process

- Cutting surface generation
 - Swept surface of the cutting blade (interactive simulation)
 - Predefined cutting patterns (offline simulation)

Cutting using a predefined pattern

Spatial Discretizations

- 2D: triangles, quadrangles, polygons
- 3D: tetrahedra, hexahedra, polyhedra

Hexahedralized bunny model

Tetrahedral Meshes

- Widely applied in computer graphics & engineering
- An initial tetrahedral discretization of the simulation domain can be generated
 - from surface meshes, medical images, level sets, et al.
 - by TetGen, LBIE-Mesher, et al.
- Challenge: avoiding ill-shaped meshes
 - Ill-shaped meshes lead to numerical instabilities
 - Mesh quality is ensured in the non-trivial initialization

Physically-based Simulation of Cuts in Deformable Bodies: A Survey

Tetrahedral Meshes

• Many techniques to model cuts into tetrahedral meshes

Cutting configuration

Element duplication

Snapping of vertices

Splitting along existing faces

Element refinement

Snapping + refinement

Techniques for modeling cuts in a tetrahedral mesh (a triangle mesh in 2D)

Physically-based Simulation of Cuts in Deformable Bodies: A Survey

- Element deletion
 - Remove meshes that are touched by a cutting tool
- Simple, but result in a jagged surface and a loss of volume

Cut Modeling without Creating New Elements

- Element deletion
- Splitting along existing faces
- Simple, but result in a jagged surface and a loss of volume

Cut Modeling without Creating New Elements

- Element deletion
- Splitting along existing faces
- Snapping of vertices
 - Snap vertices onto the cutting surface, i.e., positions altered
 - Then, split along faces
- Partially alleviate the jagged surface, but mesh quality cannot be ensured

Element deletion

Splitting along

existing faces

Snapping of vertices

Physically-based Simulation of Cuts in Deformable Bodies: A Survey

- Motivation: to accurately model a cut
- Solution: refine meshes along the cut
 - Split edges at the exact intersections
 - Create new, smaller meshes

Cutting configuration

Element refinement

- Motivation: to accurately model a cut
- Solution: refine meshes along the cut
 - Split edges at the exact intersections
 - Create new, smaller meshes
- Geometrically accurate, but easily lead to ill-shaped meshes
 - If the intersection is close to an initial vertex

- Motivation: to improve mesh quality
- Solution: a combination of snapping & refinement
 - Snap the vertex, if the intersection is close to it
 - Split the edge, otherwise

Physically-based Simulation of Cuts in Deformable Bodies: A Survey

- Incremental, curved cutting path within one mesh
- Solutions:
 - Successive refinement
 - Revoke and refine

Cut Modeling by Element Duplication

- Motivation: to avoid ill-shaped elements
- Solution: duplicate the initial well-shaped elements
 - Create replicas of the elements that are cut
 - Embed material surfaces into a unique replica

Cutting configuration

Element duplication

Tetrahedral decomposition

•

Topological configurations of a cut tetrahedron

Hexahedral Meshes

- Each element has a regular shape ullet
- No worry about numerical instabilities! •

- Generated from
 - medical images _
 - polygonal surfaces by voxelization

0 0

0000

0

Hexahedralized bunny model

Hexahedral Meshes - Volume Representation

- Linked volume
 - Decompose the object into a set of uniform hexadedra
 - Connect face-adjacent elements by links
 - Cutting: break the link between elements
 - Cutting surfaces and object boundary surfaces are both considered as cutting operations to break the links

- Hexahedral cells — Connected links — Disconnected links
- 2D illustration of cutting on a linked volume

Hexahedral Meshes - Volume Representation

- Adaptive linked octree •
 - Cutting: refine local elements, then break links
 - Regular 1:8 hexahedral decomposition
 - Efficient
 - No ill-shaped elements •

Hexahedral Meshes - Surface Representation

- Surface reconstruction methods
 - Marching cubes
 - Splitting cubes
 - Dual contouring

[Jeřábková et al. 2010]

Using marching cubes

Using splitting cubes

Hexahedral Meshes - Surface Reconstruction

- Input: positions of intersection points & cutting normals
- Algorithm: (For each 2³ block of elements)
 - Compute a surface vertex position which best matches all cuts
 - Duplicate the vertices as many times as the number of disconnected parts
 - Bind each replica to a volume element

Polyhedral Meshes

- Flexible in representing shapes
 - Split the elements along a cutting plane
 - No further subdivision (e.g., tetrahedralization) is required
- Pros: no further subdivision is required
- Cons: ill-shaped elements needs to be avoided

Discussion on Discretizations

- Tetrahedral & polyhedral meshes
 - Pros: flexibility in shape modeling, directly renderable surfaces
 - Cons: ill-shaped elements
 - Methods:
 - element deletion, splitting along existing faces, element duplication, snapping of vertices, element refinement, snapping + refinement
- Hexahedral meshes
 - Pros: efficiency wrt. subdivision and solvers, stability
 - Cons: a separate surface is needed
 - Methods:
 - (adaptive) linked volume, surface reconstruction