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Cupid: Cluster-Based Exploration of Geometry Generators
with Parallel Coordinates and Radial Trees

Michael Beham, Wolfgang Herzner, M. Eduard Gröller, Member, IEEE CS, and Johannes Kehrer

Fig. 1. Overview of Cupid : (a) Composite parallel coordinates relate the parameter space of a cup generator and clusters of similar
3D cups. (b) Linked radial tree depicting the hierarchy of the clusters. (c) Members of a cluster can be compared in a detail window.

Abstract—Geometry generators are commonly used in video games and evaluation systems for computer vision to create geometric
shapes such as terrains, vegetation or airplanes. The parameters of the generator are often sampled automatically which can lead to
many similar or unwanted geometric shapes. In this paper, we propose a novel visual exploration approach that combines the abstract
parameter space of the geometry generator with the resulting 3D shapes in a composite visualization. Similar geometric shapes are
first grouped using hierarchical clustering and then nested within an illustrative parallel coordinates visualization. This helps the user
to study the sensitivity of the generator with respect to its parameter space and to identify invalid parameter settings. Starting from a
compact overview representation, the user can iteratively drill-down into local shape differences by clicking on the respective clusters.
Additionally, a linked radial tree gives an overview of the cluster hierarchy and enables the user to manually split or merge clusters.
We evaluate our approach by exploring the parameter space of a cup generator and provide feedback from domain experts.

Index Terms—Composite visualization, hierarchical clustering, illustrative parallel coordinates, radial trees, 3D shape analysis

1 INTRODUCTION

Geometry generators create polygonal meshes that approximate a spe-
cific domain of geometric shapes such as cars, airplanes or vegetation.
They are often used in video games to generate realistic worlds. For
example, every tree in a 3D scene has a different shape by varying the
parameters of the generator [32]. Evaluation systems for computer vi-
sion also use geometry generators to create virtual test cases, e.g., to
evaluate the recognition of different shapes of an object [42].

Geometry generators usually have a set of parameters that deter-
mine the shape of the generated objects. A parameter can be categor-
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ical such as airplane type or continuous such as size of the wing. A
geometry generator can be seen as a function f : Rn→Rm, where n is
the number of parameters, and m is the dimensionality of the resulting
geometric shapes (in our case, we use 3D shapes, but geometry gen-
erators can also create 2D or time-varying shapes [32]). For creating
shapes, the parameter space of the generator is usually sampled auto-
matically. A general goal in this context is to understand the relations
between the parameter space and the resulting geometric shapes [4].
We identify three tasks for analyzing geometry generators which are
also representative for user tasks in other visual analytics applications:

Task 1: Finding similar 3D shapes and the corresponding pa-
rameter settings. The user wants to identify which regions of the
parameter space create certain types of similar 3D shapes. In the case
of airplanes, for example, different types of airplanes would be mil-
itary jets, small airplanes, and airliners. Variations within the type
military jet can be MIG-15, MIG-29, and Sukhoi Su-27. However, we
are typically not interested in small variations of the geometric shape,
for instance, whether an airplane has round or squared windows.

Task 2: Finding errors and implausible 3D shapes. Geometry
generators can produce (physically) implausible or unwanted results.
For example, the appropriate profile of a wing is important for the
ability of the plane to fly. The generated meshes may also contain er-
rors such as holes or self-intersections of the surface. However, not
only one parameter region can produce unwanted results but a com-
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bination of parameters too. Our approach helps the user to identify
such problematic regions in the parameter space by directly relating
the parameters and the created 3D shapes in the visualization.

Task 3: Determine the sensitivity and influence of parameters
on the result. It is often difficult to predict how changes in one or
more of the parameter values influence the resulting geometric shapes.
Changes may be global or local, depending on the parameter (e.g.,
changing the type of an airplane vs. changing the number of windows).
Additionally, the sensitivity of a parameter may not be linear. That is,
for certain regions of the parameter space even small variations may
have a drastic effect on the resulting 3D shapes, while changes in less
sensitive regions may have little to no effect on the created geometry.

In their previous workflow, our domain experts would manually
study thumbnails of the generated 3D shapes in an image gallery and
look up the corresponding parameter settings in a table. This is cum-
bersome and time consuming, especially in case of many generated
3D shapes. Motivated by the tasks described above, we introduce
a new visualization approach called Cupid to efficiently explore the
results of a geometry generator for cups. In this context, our paper
represents a close collaboration between visualization researchers and
domain experts (one of the paper authors has developed both the cup
generator and Cupid ). The contributions of this work are as follows:

• We propose a composite visualization that combines both the ab-
stract parameter space of the geometry generator and the resulting
3D shapes in a single visualization. This enables the user to study
relations between the parameter space and the created geometry.

• Adapting hierarchical clustering, illustrative parallel coordinates,
and a linked radial tree, the user can interactively drill-down into
groups of similar 3D shapes (compare to tasks 1 and 3).

• We evaluate our approach by exploring the results of a cup genera-
tor based on tasks 1–3 and provide feedback from domain experts.

2 RELATED WORK

Visualization and exploration of geometry. The exploration of
a set of geometric shapes is an active area of research. Smith et al. [38]
and Ovsjanikov et al. [29] enable the exploration of a set of 3D shapes
using template objects. The user can deform a template model and the
corresponding object is shown. Coffey et al. [9] extend this technique
to explore simulations or visual effects. By dragging parts of an object,
the user can explore different simulations. Smith et al. [38] and Coffey
et al. [9] also integrate abstract data into the visualization. Smith et al.
add attributes to the generated cars such as weight and sportiness. The
user can select the shape by changing the value of each attribute. Cof-
fey et al. allow the user to select simulations using a wing plot. Talton
et al. [39] present a collaborative tool to get high-quality and alterna-
tive models of a geometry generator depending on a given example.
They use a linked representation of the modeling tool and a map that
shows alternative 3D models. The 3D shapes are placed in a semantic
map depending on their similarity. The map can be adjusted by an ad-
ministrator. To detect high-quality models in the parameter space, the
activity of users is tracked additionally.

Composite visualizations combine “two or more visual struc-
tures in the same view” [18]. DesignGalleries [26] use this concept
for exploring multidimensional parameter spaces and (time-varying)
spatial data. After the sampling, a compact representation of the pa-
rameter space is given using multidimensional scaling. Each data point
is represented with thumbnails in the multidimensional layout. Addi-
tionally, some examples are visualized in detail in an image gallery.
The idea of using abstract data to explore a set of shapes is also used
by Buskin et al. [7]. They use a 2D scatterplot where the data points are
replaced by 3D shapes. Additionally, linked views for the evaluation
of a shape and comparison of different shapes are provided. Balaba-
nian et al. [1] extends the idea of combining abstract and spatial data to
hierarchical data. They nest spatial data from a computer tomography
within a graph representing the hierarchy of the body parts. Kniss et
al. [22] present direct manipulation widgets to specify transfer func-
tions directly within a volume visualization. Schmidt et al. [35] per-
form hierarchical clustering in order to identify differences between

sets of images. This approach also enables a drill-down into the hi-
erarchy in order to evaluate the dataset. Our work differs from the
approaches described above in that we focus on the exploration of the
complex relations within the parameter space. We provide a new inte-
gration of spatial data into an abstract space using parallel coordinates.
We do not only explore a set of 3D shapes but also provide techniques
for evaluating the complex relationships between the parameter space
and the generated 3D shapes.

Higher dimensional data. The visualization of higher dimen-
sional data is a challenging problem. Such data are often analyzed
using coordinated multiple views (see Roberts [33] for an overview).
Different data dimensions are explored in linked views including scat-
terplot matrices [2] or parallel coordinates [15, 17]. Fua et al. [11]
extend parallel coordinates for supporting hierarchical clustering. The
user can interactively drill-down into a tree structure. McDonnell and
Mueller [28] propose illustrative parallel coordinates for visualizing
clusters. Their technique enables to define the level of detail of a clus-
ter interactively. They use edge bundling to reduce visual clutter and to
decrease the amount of covered screen space (compare to Holten [16]).
Heinrich et al. [14] give an overview of edge bundling techniques. Lex
et al. [25] propose a focus+context visualization for comparing sepa-
rately clustered groups of variables of biomolecular data. Clustered
records are connected across multiple groups of variables using bun-
dled curves and ribbons. Clusters are a common technique for simpli-
fying large multi-dimensional data. While Talton et al. [39] visualize
clusters using an example, Lewis et al. [24] present with VisualIDs a
technique to automatically generate icons for clusters of textual data.

Parameter studies. HyperSlice [41] is one of the earliest ap-
proaches for exploring higher dimensional parameter spaces. It repre-
sents a higher dimensional function as a matrix of orthogonal 2D slices
around a user-controlled focal point. HyperMoVal [30] builds upon
this concept and uses 2D and 3D projections of ensemble data around
a focal point. Predictions of variations of one model parameter are
represented as function graphs. Berger et al. [4] extend HyperMoVal
for exploring the continuous space of input and output variables of a
simulation. The local neighborhood around the focal point in the input
parameters is mapped to the output domain. Additionally, the local
area around the focal point is shown where variations of input parame-
ters do not affect the predicted output by more than a certain threshold.
Also other approaches use multiple linked views to study relations be-
tween the input and output of a simulation model [19, 20, 27].

Bruckner and Möller [6] present a result-driven exploration ap-
proach for physically-based ensemble simulations. Each volumetric
time sequence is first split into similar segments over time and then
grouped across different ensemble members using density-based clus-
tering. Similar to Cupid, their work supports the user in identifying
similar behavior in different ensemble members. However, the pa-
rameter space and the generated 3D volumes are not directly com-
bined within the same visualization, but analyzed side-by-side using
linked views. Piringer et al. [31] present an approach for analyzing 2D
function ensembles. The 2D functions are represented as icons which
are nested within scatterplots that depict the simulation parameters.
The icons can be analyzed at different levels of detail using brushing.
While their approach uses 2D scatterplots to represent the parameter
space of the simulation, we deal with a higher dimensional parameter
space using parallel coordinates. Additionally, we focus on the analy-
sis of similar 3D shapes using hierarchical clustering.

Finally, Tory et al. [40] present an interface based on parallel co-
ordinates for exploring volume visualizations. Visualization param-
eters such as view and transfer function settings are shown by small
icons within the parallel coordinates. A history bar depicts the result-
ing images and connects them with a polyline to the corresponding
visualization settings. Additionally, images resulting from different
settings for two parameters can be compared in a table view. Cupid
extends and improves this work in a different application area. While
their parallel coordinates style interface shows only a few selected pa-
rameter combinations, our approach is designed to depict a larger num-
ber of parameter settings using hierarchical clustering and illustrative
techniques. Moreover, we directly nest the resulting 3D shapes within
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Fig. 2. Overview of our system for exploring the results of a cup generator: (a) The user determines the parameters of the geometry generator and
the sampling strategy. The parameter space is then sampled and the corresponding 3D shapes are generated. (b) Measures describing geometric
properties of the 3D shapes are derived and the 3D shapes are clustered based on their similarity. (c) The resulting clusters are visualized in a
radial tree and a composite visualization that shows both the abstract parameter space of the geometry generator and the generated 3D shapes.

the parallel coordinates, instead of showing them in an additional his-
tory bar. Our approach is also more result-driven where we focus on
finding similar 3D shapes and the corresponding parameter settings.

3 OVERVIEW OF CUPID

Our main goal is to explore the relations between the abstract parame-
ter space of a geometry generator and the generated 3D shapes. While
other approaches show these two domains side-by-side using linked
views and brushing, our idea is to combine both into a single com-
posite visualization [18]. We use parallel coordinates for depicting
the multivariate relations of the parameter space. The naı̈ve approach
of showing each parameter combination together with the resulting
3D shape in the parallel coordinates would lead to visual clutter. Also,
it would be cumbersome for the user to manually search for similar
3D shapes and to examine their relations to the parameters (compare
to task 1). Therefore, we first apply hierarchical clustering to group
similar 3D shapes, which allows the user to study shape variations at
different hierarchy levels.

According to the information seeking mantra [37], we first show
the clusters at the top hierarchy level (overview first). The user can
selectively drill-down into sub-clusters to study shape differences and
inspect details-on-demand. The clusters are depicted using illustra-
tive parallel coordinates [28]. We augment this abstract visualization
of the parameter space by nested icons that represent the 3D shape
or other properties of each cluster. This composite visualization en-
ables the user to directly relate the parameter space to the correspond-
ing clusters of similar 3D shapes, and vice versa (compare to tasks 1
and 3). For understanding the hierarchy of clusters, we adapt a linked
radial tree to display the same icons representing the individual clus-
ters. Here, the user can interactively select, split and merge clusters.

As an application example, we explore the results of a cup gen-
erator that is used for testing the object recognition capabilities of a
domestic robot. The parameter space consists of eleven parameters
(see Table 1). Certain parameters define parts of the cup such as han-
dle type or number of corners, and other parameters represent global
modifiers of the shape such as convexity.

A conceptional overview of Cupid is depicted in Fig. 2. The user
starts with determining the parameters of the geometry generator and
choses a sampling strategy for the parameter space. The parameter
space is then sampled in order to generate the 3D shapes. We also
derive certain measures that describe quantitative properties of the
3D shapes (e.g., surface area or convexity), which can be used in the
visual exploration. The 3D shapes are hierarchically clustered based

Table 1. Parameters of the cup generator.
Parameter name Description Type
number of corners roundness of cup discrete
convexity side convexity from side-view continuous
convexity top convexity from top-view continuous
bottom width width of cup at bottom continuous
center width width of cup at center continuous
top width width of cup at top continuous
bottom type type of bottom categorical
bulge at top if true, then a bulge is created categorical
size of bulge size of the bulge continuous
handle type type of handle (e.g., round, open, closed) categorical
handle size size of handle discrete

on their shape similarity. The resulting clusters are displayed in the
radial tree as well as the composite parallel coordinates.

3.1 Data Generation and Pre-Processing
Initially, the user defines the parameters of the geometry generator
and chooses a sampling algorithm (see Fig. 2a). Each parameter is de-
scribed by a name, a type (categorical or continuous), and the range to
be sampled. As shown in Table 1, the cup generator has attributes such
as handle type, convexity, and parameters describing the overall shape
(e.g., width of the cup at the top, middle and bottom). Additionally, the
user defines the number of samples and selects the sampling method.
We provide random sampling and low-discrepancy sampling. The ad-
vantage of using low-discrepancy sequences is a uniform sampling of
the entire parameter space as opposed to random sampling [21].

3.2 Coregistration and Hierarchical Clustering
We use clustering to group the created 3D shapes according to their
shape similarity. This helps to reduce visual clutter in the visualization
and supports the user in finding regions in the parameter space that re-
sult in similar geometric shapes (compare to tasks 1 and 3). Since the
3D shapes are generated with different alignment, we have to coreg-
ister them first. We then use agglomerative hierarchical clustering to
create a hierarchy of clusters, where clusters of similar 3D shapes are
merged as one moves up the hierarchy. This has the advantage that
initially only a few clusters need to be displayed, and the user can
drill-down into selected sub-clusters.

To align the generated 3D shapes, we use the iterative closest point
(ICP) algorithm which calculates a transformation T (translation and
rotation) that minimizes the difference between the vertices of two
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Fig. 3. Animated transition between two levels of the cluster hierarchy: The geometry and color from the parent are morphed to the child clusters.
Coloring with different luminance enables the user to discriminate between child clusters and ensures consistency during interaction.

geometric meshes [43]. There are many approaches for computing
mesh similarities. Due to its simplicity, we chose to use the sum of
Euclidean distances between each vertex xi in the mesh M1 and its
nearest neighbor in the mesh M2, which can be computed rapidly using
kD-trees:

d(M1,M2) =
1
|M1| ∑

xi∈M1

min
x j∈M2

∣∣xi− x j
∣∣

If smaller parts of the 3D shapes are not aligned (e.g., the handles
of two similar cups have different positions), however, the measure
can result in a large difference. Since our cup generator creates an
identifier for each part of the cup, we align the individual parts first and
compute the similarity based on the aligned parts of the 3D shapes:

d∗ =
1

∑i wi

(
∑

i
wi ·max(d(parti,1,parti,2), d(parti,2,parti,1))

)
,

where parti,k is the ith part of mesh k and wi is the corresponding
weight. Accordingly, more important parts of the geometry can have
higher influence on the similarity than less important ones. If a part
of the shape is missing, we add a penalty value to the similarity value.
Note that the idea of using parts of a 3D shape is not limited to our
cup generator. For example, fractal vegetation generators often have
symbols and predicates, which identify the parts of the geometry [32].

Our hierarchical clustering is based on DBSCAN [10] which is a
popular density-based clustering algorithm. Areas with higher density
(similarity) than the rest of the data form arbitrarily shaped clusters.
Objects in sparse areas that separate the clusters are considered to be
noise. Advantages of this algorithm are that it does not require a pre-
defined number of clusters and it can identify arbitrarily shaped clus-
ters of similar 3D geometries. Additionally, it can be easily adapted to
create a hierarchy of clusters. DBSCAN has two parameters, namely
a similarity threshold st and a minimum number of cluster members
minS in order to be considered a dense area. Starting from an arbitrary
3D shape created by the geometry generator, the 3D shapes with a
similarity d∗ below st are queried. If the number of similar 3D shapes
exceeds minS, the region is considered sufficiently dense and the sim-
ilar 3D shapes are used as seeds for growing the cluster. 3D shapes
located in non-dense regions are classified as noise.

Since the number of clusters resulting from DBSCAN can be very
large—depending on the dataset and the parameter setting of the
algorithm—, we extend our approach to hierarchical clustering (com-
pare to Fua et al. [11]). The idea is to group similar clusters to reduce
the number of clusters to be displayed. During the visual exploration,
the user can then interactively drill-down into selected sub-clusters for
a detailed inspection. The initial result of DBSCAN already provides
us the leaf nodes in our hierarchical structure of clusters. In order
to merge clusters, we iteratively apply DBSCAN where the similarity
threshold st is increased by ∆st (the resulting hierarchy is shown in the

radial tree in Fig. 1b). In order to keep our approach simple and us-
able, we only display three hierarchy levels of the clustering. Since we
precompute the similarities between each pair of 3D shapes, the user
can interactively modify the parameters st, ∆st and minS, and inspect
the resulting hierarchy in the radial tree.

4 VISUAL COMPOSITION OF ABSTRACT & SPATIAL DATA

After computing the hierarchical clustering, the data are visualized
using an illustrative parallel coordinates approach and a linked radial
tree. In the following, we describe a composite visualization that com-
bines both abstract and spatial data. We then describe our linked radial
tree, and finally the icons, which are the basic items for nesting the
spatial information within the visualization and steering the views.

4.1 Composite Parallel Coordinates

For exploring the parameter space of the geometry generator, we use
a novel cluster-based parallel coordinates approach with nested spa-
tial information (compare to the nest design pattern by Javed and
Elmqvist [18]). The basic items of the visualization are the clusters
resulting from the hierarchical clustering, which are represented as
nested icons. The icons show the 3D shapes or other properties of the
cluster representatives. Additionally, we use illustrative techniques to
enhance the visual representation of the clusters.

Illustrative techniques can enhance the readability of parallel co-
ordinates [28]. Each cluster is represented by a colored polygon
that shows the extend of the cluster. Rendering just the convex hull
of the polygons would not provide much insight into the underly-
ing data. Therefore, we use the branching technique from McDon-
nell and Mueller [28], which enables the user to control how densely
or sparsely the data are distributed in the parallel coordinates (see
Fig. 1a). We apply edge bundling to enhance the visual representation
[16, 28]. The user can control the bundling factor, which reduces over-
lapping between clusters and decreases the amount of screen space
occupied by a cluster. Moreover, individual 3D shapes that have been
classified as noise are represented as B-splines with gray icons.

The cluster hierarchy is used for color assignment. Each cluster
at the top level of the hierarchy gets a different color using a qual-
itative color map [13]. If the user drills-down into a cluster of in-
terest, the sub-clusters get the same color but with a different lumi-
nance. This ensures consistency during the visual exploration, and the
difference in luminance supports the discrimination between different
sub-clusters. In order to preserve the mental map of the user, we per-
form an animated transition that morphs a selected parent cluster into
its sub-clusters (see Fig. 3). For computing the animated transition, a
unique ID is assigned to the vertices of each cluster. Using the ID, we
can find the vertices of the sub-clusters that are located within their
parent cluster. We use linear interpolation to change the position of
the vertices during the animation as illustrated in Fig. 3 (left).
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Fig. 4. Different representations of the cluster hierarchy: (a) radial tree, (b) circular dendrogram, (c) treemap.

In addition to the parameter values, each cluster is represented by
nested icons that depict the 3D shape or other properties of the cluster
(see Sec. 4.3). The size (area) of an icon represents the corresponding
number of cluster members. The user can set a minimum and maxi-
mum size for the icons to avoid overlap or too small icons. For each pa-
rameter of the generator, the icons are vertically placed at the center of
the corresponding clusters. If two icons overlap, they are moved away
from each other. We place larger icons first, before placing smaller
ones. The icons are used for steering the visualization. Mouse-over an
icon highlights the corresponding cluster, which is then drawn in front
of all other clusters and shown with a higher opacity (see the purple
cluster in Fig. 1a).

Cupid also provides a detail window for comparing 3D shapes
within and across clusters. For example, the user can click on the icon
of a top-level cluster, which then opens a detail window and shows the
3D shapes of the corresponding sub-clusters (see Fig. 1c). Alterna-
tively, a line brush [23] can be used to directly select currently invisible
3D shapes, where the corresponding B-splines (also not shown) inter-
sect with a simple line segment drawn in the view (e.g., see Fig. 11c).
Within the detail window, the selected 3D shapes are first sorted ac-
cording to their cluster membership at the top level, before sorting
them according to their similarity within the sub-clusters. The color of
the clusters at the bottom level is thereby used as background color.

4.2 Composite Radial Tree

We apply hierarchical clustering to reduce visual clutter and to iden-
tify similar 3D shapes at multiple hierarchy levels. For exploring and
modifying the results of the clustering, we adapt a radial tree which
is a popular technique for representing hierarchical data (see Schultz
et al. [36] for an overview). The radial tree is a common node-link
tree layout with a transformation to polar coordinates. The advantage
of radial transformations is a better usage of space for trees with few
hierarchy levels but many nodes at the bottom. We replace the nodes
of the radial tree with icons that represent the clusters (see Sec. 4.3).
While drawing the radial tree, we check for overlapping of icons. If
two icons overlap, one is shifted. Additionally, we draw circles in
the background to discriminate between the different hierarchy levels.
The user can compare the 3D shapes of different cluster members and
manually split or merge clusters in the visualization.

We also evaluate other hierarchical representations like dendro-
grams and treemaps (see Fig. 4). Dendrograms are a typical technique
for visualizing hierarchical clustering. A circular dendrogram is very
similar to a radial tree but intermediate nodes are not drawn to avoid
visual clutter (see Fig. 4b). However, we prefer the radial tree lay-
out because the user can relate the intermediate nodes to the cluster
representatives shown in the parallel coordinates, for example, using
linking. Treemaps are another popular technique for representing hi-
erarchical data. We implement a treemap using the strip tilling algo-
rithm [3] which ensures good readability and preserves the ordering of
the nodes. We replace the nested rectangles with icons (see Fig 4c).
The advantage of a treemap is its compact layout, but the structure of

the hierarchy is more difficult to read. In the evaluation, our domain
experts rated the radial tree as the preferred choice for Cupid.

Our adapted radial tree can also be used to modify the result of the
hierarchical clustering, where the user can manually split and merge
clusters. In Fig. 5a, for example, the user clicks on the icons of two
similar clusters (highlighted in red) and merges them by pressing the
minus button (the result is shown in Fig. 5b). Clusters can be split as
well by marking different 3D shapes in the radial tree, for example,
using a detail window (see Fig. 5c) and by pressing the plus button.
Since the ordering within a cluster does not provide information, the
new cluster is simply added at the end of the sub-nodes in Fig. 5d. The
user can also change the ordering of the sub-nodes by dragging.

Fig. 5. Two similar clusters in (a) are merged in (b). Using a detail
window (c), selected members of a cluster are split into a new cluster (d).

4.3 Nested Icons
We nest geometric representations within a view in Cupid using icons.
The icons can either represent a cluster of similar 3D shapes or de-
pict the individual cluster members at the bottom level of the hierar-
chy. The icon’s background represents the color of the cluster, and
the size/area indicates the number of cluster members. This consistent
representation in both views ensures a good user experience. By de-
fault, the shaded geometry is shown from the same point of view set by
the user (see Fig. 6a). For icons representing a cluster, we display the
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Fig. 6. Types of icons: (a) shaded geometry, (b) variability visualization,
(c) sharp edges, and (d) starplots.

3D shape of the cluster member with the shortest Euclidean distance
between its parameter values and the average values of the cluster. In
the following, we describe three alternatives to the shaded geometry.

In some applications, the variability of the members within a cluster
is in focus. For this purpose, we encode the variance between the near-
est vertices of the cluster members to the cluster representative using
a color map (see Fig. 6b). This enables the user to see constant and
varying regions of the 3D shapes within a cluster. As another alter-
native representation, we offer an illustration of the object’s silhouette
which is very important for comparing 3D shapes. Following the idea
of iWires [12], the “sharp edges” of the geometry are drawn to display
just enough information to identify the 3D shape. Additionally, the
shaded geometry is shown with low opacity (see Fig. 6c).

Finally, Cupid provides starplots [6, 8] as an additional type of icon
that can depict derived geometric properties. The starplots are created
analogous to parallel coordinates but with polar coordinates. To ensure
good readability, we only show the convex hull of the line-paths for the
cluster members. Since starplots are well suited for showing outliers,
they enable the user to quickly find implausible cups (e.g., by looking
at derived parameters such as shape stability, see Sec. 5).

Both the radial tree and the composite parallel coordinates are
linked which enables the user to investigate clusters of similar 3D
shapes across both views. The nested icons in both views provide the
same operations which enables consistency during interaction. Click-
ing on an icon selects the related cluster, and mouse-over enlarges the
related icons in both views and highlights the cluster in the composite
parallel coordinates. Additionally, the user can drill-down into sub-
clusters by clicking on the icon of an intermediate node. While the
radial tree already displays the sub-clusters, an animated transition is
performed in the composite parallel coordinates.

5 GEOMETRIC PROPERTIES

Cupid provides composite parallel coordinates and representations of
the cluster hierarchy for visual exploration of similar 3D shapes and
the corresponding parameters (compare to tasks 1 and 3). In addition,
we provide derived geometric properties that help the user to identify
interesting 3D shapes such as implausible or deformed cups (compare
to task 2). The properties can be mapped to an axis in the parallel
coordinates or shown in the nested icons using starplots.

5.1 Derived Geometric Properties
In the pre-processing stage (see Fig. 2b), we calculate the following
geometric properties in addition to shape similarity. We use these
properties for exploring the geometry generator’s parameter space:

• Surface area = ∑
NT
i=1 A(ti), where A(ti) is the area of a triangle ti

and NT is the number of triangles of a cup.
• Volume enclosed by the mesh V of a cup.
• Convexity =V/C, where V is the volume enclosed by the mesh

and C is the volume enclosed by the convex hull.

• Shape stability =
‖d−b‖

r , where d is the origin of the coordinate
system of the 3D shape, b is the center of gravity of the shape,
and r is the radius of the bounding sphere.

• Number of crossing faces.

We have chosen these properties because they enable the user to detect
invalid 3D shapes (e.g., number of crossing faces larger than zero) and

Fig. 7. A function plot in the parallel coordinates shows the derived ge-
ometric property “surface area” with respect to two parameters in order
to identify possible correlations (like in the right case).

describe characteristics of cups such as shape stability or convexity.
Finding good properties that describe 3D shapes is still an open prob-
lem. In order to deal with arbitrary geometries, we will include further
properties such as the fractal dimension of shapes (used to evaluate
plants) in future work.

5.2 Visualization of Geometric Properties
The derived geometric properties can be represented by starplots or
mapped to the axes of the parallel coordinates. The starplots can be
enlarged in additional windows that are linked with the parallel co-
ordinates. If the user selects a region of interest, the corresponding
B-splines are shown in the parallel coordinates. This enables a result-
driven exploration of the parameter space using linking and brushing.

Additionally, we add a function plot to each parameter (see Fig. 7).
These plots show the function f : x→ g, where x is a parameter value
of the geometry generator and g is a user-selected geometric property.
In the function plot, we show the linear regression between the param-
eter value and the geometric property. This gives the user a hint about
a possible correlation between the parameter and the geometric prop-
erty and hides noise resulting from other parameters. Our function
plots are similar to those in HyperSlice [41] at the diagonal positions
of the matrix. Additionally, they added 2D slices for the visualization
of pairs of parameters. Our approach provides a similar visualization
using the B-splines of the parallel coordinates. The geometric proper-
ties can be mapped to coloring and opacity, which are specified with
a user-defined transfer function (e.g, B-splines representing cups with
small surface area are shown in green in Fig. 7). The user can also
fade-in (or hide) the B-splines in order to prevent visual clutter.

6 IMPLEMENTATION

We implement Cupid in VolumeShop [5], which is a 3D visualization
framework and rapid-prototyping toolkit. A key feature of Vol-
umeShop is its modular design. All components like renderings and
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Fig. 8. Some examples of detected categories: The cups vary in profile,
roundness, handle, width and even more.

object loading can be extended by a plug-in mechanism. The plug-ins
enable to adapt VolumeShop to the needs of the visualization. Addi-
tionally, the modular design of VolumeShop ensures a good separa-
tion between data, logic and rendering, according to the Model-View-
Controller (MVC) pattern. A great support for implementing compos-
ite and linked visualization techniques makes VolumeShop an ideal
visualization framework for Cupid.

The visualizations are implemented with C++, OpenGL and GLSL
as a shader-language. This combination gives enough computational
power to reduce the latency of our visualizations. Individual tasks can
be outsourced into shader programs, which enables a better separa-
tion between logic and viewing code. The pre-processing operations
are outsourced to external applications. This design enables us to eas-
ily replace pre-processing operations and test different preprocessing
pipelines. Moreover, we use the ICP algorithm from the Point Cloud
Library (PCL) for aligning shapes [34].

7 RESULTS

In the introduction, we discuss several tasks for analyzing geometry
generators. According to these tasks, we present results and the used
workflow to solve the tasks with Cupid in this section. The first task is
to find categories of similar 3D shapes and the corresponding parame-
ter values (see task 1). We then present our workflow to find unwanted
cups (see task 2). According to the third task, the last two sub-sections
show how to detect parameters that strongly influence the shapes and
how to find sensitive ranges of a parameter (see task 3).

7.1 Finding Similar 3D Shapes and Corresponding Param-
eter Values

The first task is to characterize the generated 3D shapes. We want to
detect all variations of the shapes and to identify the corresponding
parameter values. Some example 3D shapes are shown in Fig. 8.

Initially, the results from the hierarchical clustering are inspected in
a radial tree. We can interactively adjust the parameters of the cluster-
ing to improve the results (e.g., having between five and nine clusters
at the top hierarchy level). After this step, clusters can be split or
merged manually. In Fig. 9a, for example, the 3D shapes within the
top cluster look rather different from their parent and are thus split
into separate clusters. In contrast, the sub-clusters in Fig. 9b look very
similar to their parent. At the bottom hierarchy level, only very simi-
lar 3D shapes are grouped together using a low similarity threshold st.
Furthermore, the user can quickly detect variations of shapes within a
cluster using the starplot icon (not shown here).

After clustering the 3D shapes, the corresponding parameter values
can be studied easily using the composite parallel coordinates. Since
both views are linked, we only need to highlight (mouse-over) the se-
lected icon. The corresponding cluster is then highlighted in the par-
allel coordinates. In the following, we use the hierarchical clustering
to analyze the parameter space.

7.2 Finding Implausible or Unwanted 3D Shapes

The next task is to find unwanted or (physically) implausible cups.
Such shapes would affect computer games or evaluation systems for
computer vision and thus need to be identified. Cupid derives geomet-
ric properties to detect unwanted 3D shapes (see Sec. 5). Such cups
can, for instance, have a high value for shape stability or a very small
volume of the enclosing shape. Moreover, erroneous meshes can be
detected using the number of crossing faces. By mapping the derived
properties to the axes in the parallel coordinates or by using the starplot
icon, the user can quickly identify such shapes.

Fig. 9. Parent and child icons within the blue rectangle look different
and are thus split into separate clusters. In contrast, the icons within the
pink rectangle belong to the same category. Icons highlighted with a red
rectangle are labeled as unwanted cups by the user (selected examples
are enlarged).

While invalid cups can often be detected automatically, we are also
interested in cases that are difficult to describe by derived properties
(e.g., a cup that is deformed or looks like a beer mug). In such cases,
the validity of a cup depends on semantic knowledge. For example, if
a cup has a very small handle, some users classify it as unwanted and
others as a cup with novel design. To handle such ambiguous cases,
the user has to manually determine the validity of the cups. In the
radial tree, we first inspect the icons located at the bottom level of the
hierarchy. Since the icons are grouped by similarity, it is easy for the
user to spot outliers. In Fig. 9, the cups with a red border have been
labeled as unwanted by the user. The corresponding B-spline curves
are drawn in the linked parallel coordinates, where we can investigate
the respective parameter values. We can also change the view-point
for the cups or use a detail window for further inspection.

7.3 Evaluating Parameter Influence
According to task 3, we study the influence of parameters in this sub-
section and identify sensitive regions in the parameter space in the next
sub-section. The clustering provides information about the influence
and sensitivity of the generator with respect to its parameters.

To determine the influence of parameters, we use the composite par-
allel coordinates and analyze the distribution of clusters of similar 3D
shapes. If the polygon of a cluster covers only small portions of a pa-
rameter range, the parameter has high influence because small changes
have a large effect on the resulting geometry (e.g., see the orange and
turquoise clusters for “convexity side” in Fig. 10). In contrast, if large
changes in the parameter value result in similar 3D shapes, the pa-
rameter has low influence. The individual polygons (or branches) of a
cluster then cover large portions of the parameter range (see the orange
and turquoise clusters for “center width” in Fig. 10).

Next, we investigate 3D shapes that have been classified as noise
by the clustering. Many such shapes have been generated by small
values for the parameter “number of corners.” We select those shapes
using a line brush and inspect the cups in a detail window. As shown
in Fig. 11c, the corresponding cups look very angular. Moreover, the
clusters in this parameter range are very narrow, while the clusters for
larger values of “number of corners” are larger. This is not surprising
because changing from three to four corners has a higher influence on
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Fig. 10. Exploring the influence of parameters on the created cups:
The orange (a) and turquoise (b) clusters cover large regions of the
parameter “center width” but only a small region of “convexity side.”

the generated 3D shape than changing from 30 to 31, for example.
Using additional detail windows, we can investigate the influence of
“number of corners” on the roundness of the generated shapes.

We analyze other parameters in a similar way. For example, the pa-
rameter “convexity side” also has a high influence on the resulting cups
because the individual clusters cover only small parameter ranges and
modify the profile of the shape (see Fig. 11b). In contrast, the param-
eter “center width” has low influence because it influences the shape
in combination with “top width” and “bottom width.” The respective
clusters in Fig. 11a cover larger portions of the parameter range.

The derived geometric properties can also be used to evaluate the
influence of a parameter. The idea is to find correlations between the
parameter of the generator and the derived geometric properties using
the function plots (e.g., surface area or shape stability). If such a cor-
relation is found, the parameter has a high influence on the selected
geometric property (and on the result). Such an example is shown in
Fig. 7, where the parameter “surface area” influences the derived con-
vexity of the shape. The function includes some noise because also
other parameters affect the convexity.

7.4 Sensitivity Analysis of Parameter Regions
As discussed in the introduction, a sensitive region of a parameter af-
fects the resulting 3D shapes more than other regions of the same pa-
rameter. A good starting point for finding sensitive regions is to look
for narrow clusters or noise. The “number of corners” is such an ex-
ample that has been discussed already (see Fig. 11c).

The main challenge of finding a sensitive region is to identify
whether the number of clusters within a (small) region depends on the
current parameter or its interplay with other parameters. In Fig. 11c,

Fig. 11. Comparison of selected 3D shapes using a detail window:
(a) The orange cluster covers a large portion of the parameter value
with similar 3D shapes. (b) The parameter has a high influence on the
resulting shapes, since clusters are rather narrow. (c) Changes in low
values of “number of corners” already create different 3D shapes, while
changes in large values produce rather similar cups.

for example, several clusters with round cups but different silhouettes
can be seen. The difference results from other parameters such as
“handle type” and “convexity side.” In contrast, the clusters with lower
values for “number of corners” have different roundness, where varia-
tions stem mainly from the parameter itself. The corresponding region
has a high sensitivity.

Another example of a parameter with high influence is “convexity
side.” To identify sensitive regions, we analyze the parameter in the
same way as the “number of corners.” The parameter varies the profile
of the 3D shape (see Fig. 11b). Low convexity values result in con-
cave cups and high convexity values result in convex cups. While the
cups at the top and bottom (mainly) differ according to the amount of
convexity/concavity, a significant change is found in the middle. The
clusters in the middle contain straight cups (neither convex nor con-
cave), the clusters above and below differ according to the convexity.

8 EVALUATION

Our approach is evaluated by three domain experts for geometry gen-
erators and evaluation systems for computer vision. The domain ex-
perts have to solve tasks similar to those described in the introduction.
For the evaluation, we sample the cup generator with 100 cups using
random sampling.

At the beginning of the evaluation, the main functionality is pre-
sented to the domain experts, followed by a live presentation. Then,
the domain experts have to solve different user tasks. They can ask
questions if something is ambiguous or not well traceable. After solv-
ing a task, the domain experts report the degree of difficulty and guid-
ance provided by Cupid. If the task is not solved successfully, potential
problems of the workflow are discussed to identify the weaknesses of
our system. After solving all tasks, the domain experts grade the used
techniques according to usefulness and usability.

8.1 User Tasks

Our evaluation focuses primarily on the workflows and not the used
visualization techniques. For example, we are interested if the coloring
of the clusters is sufficient to solve our tasks. The domain experts have
to solve the following tasks:
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User task 1: Evaluation of the parameter space and geometric
result. The first task is to give an overview which groups of cups
are generated. Then, the domain experts have to find the associated
parameter regions. We test several tree layouts. Additionally, the do-
main expert have to explore the hierarchical clustering and rate the
similarity of objects within a cluster.

User task 2: Finding implausible cups. At first, the user needs
to find examples of physically implausible or unwanted cups. Physi-
cal implausible cups result from big handles or very small bodies, for
example. Also meshes with errors occur (e.g., self-intersections of the
surface). The domain experts have to find examples for both errors
and find the corresponding parameter values.

User task 3: Determine the influence and sensitivity of param-
eters. In tasks 1 and 2 the generated 3D shapes are in focus. Task 3
requires the analysis of the parameter space to determine the influence
and sensitivity of a parameter. Three different parameters with dif-
ferent influences are selected. The domain experts have to determine
the effect of each parameter on the geometry and sort the parameters
according to their influence. The parameter with the largest influence
is then used for a sensitivity analysis, i.e., the experts have to look for
regions where the resulting shapes have a high or a low variation.

Finally, we asked the experts about the difficulty to solve the tasks
and about the usefulness of the visualization and interaction methods.

8.2 Feedback from Domain Experts
The domain experts like the combination of the parallel coordinates
with the radial tree. One of them especially values that Cupid allows
to deal with a larger number of parameters at a time. Due to our ap-
proach, they can now detect interrelationships between parameters of
the geometry generator rather quickly and identify sensitive param-
eter ranges (i.e., where a slight change has a large influence on the
created 3D shape). During the evaluation, the domain experts use the
radial tree to get an overview of the clusters, while the parallel coordi-
nates are used for inspecting details. They see this combination as an
intuitive way of exploring the geometry generator and rate this combi-
nation as excellent. Including the spatial information into the abstract
representation of the parameter space supports the easy exploration
of the generated shapes. All domain experts were able to assign the
parameters to the resulting 3D shapes, and vice versa.

The first task of finding a group of similar shapes is easily solved
by all domain experts. They explore the data using the radial tree as
described in Sec. 7.1. The domain experts detect several categories of
3D shapes and inspect the corresponding parameter values with link-
ing between the radial tree and the parallel coordinates. While the
initial clustering represents a good starting point for the exploration,
some cups were wrongly assigned. This is because our similarity met-
ric works well for very similar shapes, but it has problems with less
similar shapes. In such cases, the domain experts interactively modify
the clustering using the merging and splitting tool. They rate the task
with a low degree of difficulty and a good support by Cupid.

While solving task 1, the domain experts find some examples of
implausible cups (see task 2). For finding more implausible cups, they
navigate through all clusters at the top or middle hierarchy level of the
radial plot and inspect their members. This can be done fast because
the cups within a cluster have similar characteristics. In contrast, the
starplots and function plots depicting derived geometric properties are
not used primarily. One domain expert explains that the properties are
not intuitive. After a discussion, the domain experts think that they
are a useful extension for specific tasks. For example, finding physical
implausible cups can be done with the shape stability property.

For evaluating the influence of a parameter on the result, the domain
experts use the parallel coordinates. They look for clusters that only
cover a small portion of the parameter range (see Sec. 7.3). The effect
of each parameter is explored using the line brush. The domain experts
test different regions of the parameter space and analyze the variation
of shapes in a detail window. They like this integration of geometry
into the parallel coordinates and rate it as good. Furthermore, they
use the function plots and test several derived geometric properties.
Since the domain experts do not find reasonable geometric properties,

they select the properties by guessing. They rate the function plots as
satisfactory. In summary, the domain experts rate the task of evaluating
the parameter influence with an average degree of difficulty.

The domain experts denote the analysis of the sensitivity as the
most difficult task. This task requires to analyze a combination of
parameters because clusters can be affected by several parameters (see
Sec. 7.4). The domain experts explore various regions and study the
variations using line brushes. Additionally, the clustering is also used
for a sensitivity analysis. The domain experts identify several regions
with different sensitivity. They rate this task with a high degree of dif-
ficulty because the relationships between parameters and 3D shapes
are difficult to understand. Furthermore, the domain experts ask for
methods to test own parameter combinations and to vary the sampling
rate interactively. Testing own parameter combinations could enable a
new workflow to vary only one parameter and set other parameters to
a default value. Varying the sampling interactively can be used to ex-
clude uninteresting regions of the parameter space. We will investigate
this further in our future work.

At the end of the evaluation, an interview about the techniques pro-
vided by Cupid is done. The domain experts appreciate the interaction
techniques like linking and brushing. The integration of clustering
into the parallel coordinates using illustrative methods is also rated
between good and excellent. The domain experts appreciate the pos-
sibilities provided by Cupid. They rate the integration of geometry
between good and excellent and like the different variations of icons.
The methods using derived geometric properties are rated lower be-
cause the workflow is not so intuitive.

9 CONCLUSION AND FUTURE WORK

We present a novel visualization approach for exploring the parameter
space of a geometry generator. Our goal is to support a quick explo-
ration of the generated 3D shapes within their parameter space (task 1).
The parameter regions of implausible or unwanted objects are easily
detected by the user (task 2). Moreover, the sensitivity analysis of the
parameter space is an important and difficult task (task 3). Our solution
is a new composite parallel coordinates visualization which combines
both the abstract parameter space of the generator and the resulting
cups into the same visualization. This combination allows the user
to study complex relations between both domains. To reduce visual
clutter and to find similar 3D shapes, we use hierarchical clustering
and an illustrative approach. Our technique supports level-of-details
by controlling the similarity of the objects and the details of the clus-
tering. For reducing visual clutter, we use several techniques like edge
bundling, hierarchical clustering, and different cluster styles. Addi-
tionally, a linked radial tree layout is used to analyze or modify the
hierarchy of the clustering. For quickly finding implausible objects,
we derive geometric properties which are also helpful for a sensitivity
analysis of the parameter regions and their degree of influence.

The feedback from the domain experts is positive. They see the de-
mand for this tool and want to use it in their current workflow. How-
ever, the sensitivity task could not be solved sufficiently because some
features like visual steering were missing. Therefore, future work will
focus on these features and on the exploration of other geometry gen-
erators like an airplane generator. For this application, the preprocess-
ing steps need to be evaluated to address the new domain areas and
to ensure a quick response of the steering. Finally, we want to further
evaluate the different components and possibilities of our approach in
a detailed user study.
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[40] M. Tory, S. Potts, and T. Möller. A parallel coordinates style interface
for exploratory volume visualization. IEEE Trans. Vis. Comput. Graph.,
11(1):71–80, 2005.

[41] J. J. van Wijk and R. van Liere. HyperSlice: Visualization of scalar func-
tions of many variables. In Proc. IEEE Conf. Visualization, pages 119–
125, 1993.

[42] O. Zendel, W. Herzner, and M. Murschitz. VITRO – model based vision
testing for robustness. Proc. Int’l. Symp. Robotics (ISR), pages 24–26,
2013.

[43] Z. Zhang. Iterative point matching for registration of free-form curves
and surfaces. Int. J. Comput. Vision, 13(2):119–152, 1994.

10


	Introduction
	Related Work
	Overview of Cupid
	Data Generation and Pre-Processing
	Coregistration and Hierarchical Clustering

	Visual Composition of Abstract & Spatial Data
	Composite Parallel Coordinates
	Composite Radial Tree
	Nested Icons

	Geometric Properties
	Derived Geometric Properties
	Visualization of Geometric Properties

	Implementation
	Results
	Finding Similar 3D Shapes and Corresponding Parameter Values
	Finding Implausible or Unwanted 3D Shapes
	Evaluating Parameter Influence
	Sensitivity Analysis of Parameter Regions

	Evaluation
	User Tasks
	Feedback from Domain Experts

	Conclusion and Future Work

