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Abstract

In scalar fields, critical points (points with vanishing derivatives) are important indicators of the topology of iso-contours. When
the data values are affected by uncertainty, the locations and types of critical points vary and can no longer be predicted accurately.
In this paper, we derive, from a given uncertain scalar ensemble, measures for the likelihood of the occurrence of critical points,
with respect to both the positions and types of the critical points. In an ensemble, every instance is a possible occurrence of the
phenomenon represented by the scalar values. We show that, by deriving confidence intervals for the gradient and the determinant
and trace of the Hessian matrix in scalar ensembles, domain points can be classified according to whether a critical point can occur
at a certain location and a specific type of critical point should be expected there. When the data uncertainty can be described
stochastically via Gaussian distributed random variables, we show that even probabilistic measures for these events can be deduced.
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1. Introduction1

Scalar ensembles consist of several scalar fields, where ev-2

ery field or instance indicates a possible occurrence of the phe-3

nomenon represented by the data values. Ensembles are of-4

ten generated numerically via multiple simulation runs with5

slightly perturbed input parameter settings. The rationale stems6

from the observation that the result of every run is affected by a7

certain degree of uncertainty, for instance, due to model simpli-8

fications or approximations inherent to the numerical schemes9

employed. Generating multiple instances helps predict and quan-10

tify the range of outcomes and, thus, allows us to classify fea-11

tures with respect to their stability across instances.12

An important class of features in scalar fields is based on13

level-sets or iso-contours, i.e., the set of all points in the domain14

where the scalar field takes on a prescribed value, also called15

an iso-value. The effect of uncertainty on level-sets has been16

treated in several works [1], [2], or [3], which investigate the17

positional variations of level-sets due to uncertainty. Such an18

analysis, however, does not allow making reliable estimates of19

the possible geometric or topological variations of level-sets.20

Recently, Pfaffelmoser et al. [4] have looked into the effect21

of uncertainty on the variability of gradients in scalar fields. In-22

dicators for the likelihood of geometric changes of level-sets23

were derived from confidence intervals of the gradient magni-24

tude and orientation, resulting in a stability analysis of both the25

shape and the slope of level-sets. By using a similar technique26

to propagate uncertainty for derived quantities in scalar fields27

that are linear combinations of the input values, and by intro-28

ducing a method for non-linear combinations, we propose tech-29

niques to classify critical points in scalar ensemble fields with30
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respect to different notions of stability. Interesting features of-31

ten relate to critical points, since these indicate prominent sur-32

face components and their topological changes. Depending on33

the position and type of the critical points, the spatial locations34

where changes in the surface topology take place and the nature35

of these changes can be identified: Surface components emerge36

or vanish at minima and maxima, join or split at saddles.37

Contribution: We investigate the associated gradient and38

Hessian matrix fields of the scalar ensemble members to iden-39

tify the possible locations of the critical points, and assess their40

stability in type throughout the ensemble. We first summarize41

ensembles statistically and derive corresponding moments for42

the gradients. Since critical points occur where the gradients43

vanish, we use confidence intervals of the gradients to obtain44

quantities indicating the possibility of a critical point occurring45

around a given location. We then derive statistical summaries46

for the trace and determinant of the Hessian matrix, to give in-47

sight into the tendency of critical points to behave like minima,48

maxima, or saddles near a specified location in the ensemble.49

The remainder of the paper is as follows: In the next section50

we review related work. We then introduce methods to analyze51

critical points in Section 3, which we visualize in Section 4.52

The proposed approaches are validated in Section 5 and demon-53

strated on two synthetic and two real world data sets in Section54

6. We conclude the paper with a summary of the contributions.55

2. Related Work56

Uncertainty is a topic relevant to many research domains,57

and has been classified among the top research areas in visual-58

ization. Overviews of uncertainty visualization approaches are59

given, for instance, in Griethe and Schumann [5], Thomson et60

al. [6], or Potter et al. [7].61
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Uncertainty information has often been summarized by quan-62

tities such as mean and standard deviation, which have been63

encoded together with the actual data by means of color maps,64

opacity, texture, animation, glyphs, etc., in, for example Wit-65

tenbrink et al. [8], Djurcilov et al. [9], Rhodes et al. [10],66

Lundstrom et al. [11], and Sanyal et al. [12]. Although such67

methods indicate the amount of uncertainty affecting the data,68

they do not allow drawing conclusions on the way uncertainty69

affects specific features of the data, such as level-sets.70

Several approaches have been proposed to visualize the ef-71

fect of uncertainty on the position and structure of such fea-72

tures: Pang et al. [13] and Zehner et al.[14] use confidence73

envelopes containing an isosurface with a certain confidence,74

Grigoryan and Rheingans [15] displace each point on a sur-75

face along its surface normal to an extent proportional to the76

local uncertainty, while Brown [16] uses surface animation to77

illustrate the uncertainty of the values within different areas of78

the surface. Pfaffelmoser et al. [1] examine the positional and79

geometrical variation of level-sets, whereas Pfaffelmoser and80

Westermann [17], [18] incorporate correlation to offer insight81

into possible structural variations. Pöthkow and Hege [2] use82

the concept of numerical condition - the sensitivity of the out-83

put of a function to perturbations of the input data - to extract84

features in uncertain scalar fields, and apply it to visualize the85

positional uncertainty of level-sets. The proposed method was86

extended to include spatial correlation in Pöthkow et al. [19].87

Further approaches to gain insight into salient features and88

their structure are based on topology. Overviews of methods89

dealing with topological features for both static and dynamic90

scalar fields, and especially for steady and time-dependent vec-91

tor fields, are given in Theisel et al. [20], Laramee et al. [21],92

and Scheuermann and Tricoche [22]. For ensembles of uncer-93

tain scalar fields, Thompson et al. [23] introduce hixels - per94

sample histograms of values - to approximate topological struc-95

tures of down-sampled data. Then, Wu and Zhang [3] enhance96

contour trees to represent uncertainty in the data values of the97

scalar fields and the position of the contours, as well as the vari-98

ability of the contour trees themselves.99

For uncertain vector fields, Otto et al. [24] generalize the100

concepts of stream lines and critical points to uncertain (Gaus-101

sian) vector field topology, in order to segment the topology by102

integrating particle density functions. Probabilistic local fea-103

tures, such as critical points, are extracted from Gaussian dis-104

tributed vector fields using Monte Carlo sampling in Petz et105

al. [25], where the mathematical model for uncertainty consid-106

ers the effect of spatial correlations. The method was extended107

to several types of non-parametric models for uncertainty in108

Pöthkow and Hege [26]. A fuzzy topology is proposed in Bhatia109

et al. [27], where the topological decomposition is performed110

by growing streamwaves, based on a representation for vector111

fields called edge maps. In the context of tractography, Schultz112

et al. [28] interpret critical points and other topological con-113

cepts based on probabilistic fiber tracking.114

Numerous techniques have been introduced to assess dif-115

ferent types of variations that uncertainty induces on level-sets116

and other such data features. To the best of our knowledge,117

however, no methods have been proposed to analyze and vi-118

sualize the possible variations of critical points that are caused119

by uncertainty. Investigating different aspects of the stability of120

critical points and how uncertainty affects them would be ben-121

eficial, since critical points are indicative of prominent features122

and their topological changes, and such an analysis could serve123

as a starting point for further insight into the effects of uncer-124

tainty on level-sets and other related features.125

While such studies have not been performed for uncertain126

data sets, critical points have been classified before according to127

different measures of stability and importance, for various pur-128

poses. For scalar fields, Edelsbrunner et al. [29] introduce the129

notion of homological persistence to assign importance mea-130

sures to critical points and use it for topology simplification.131

Dey and Wenger [30] extend this notion to interval persistence,132

to assess which critical points are stable under perturbations of133

the scalar fields. Reininghaus et al. [31] use the persistence at134

multiple scales in scale space, to distinguish between minima135

and maxima with hill-, ridge-, or outlier-like spatial extent.136

Topological persistence is used in the context of MS com-137

plexes, which decompose manifolds into regions of uniform138

gradient flow behavior to investigate the topology of the sur-139

faces. Segmenting the surface into cells of uniform flow helps140

identify its various features and the way they are connected.141

Critical points, connected by lines of steepest descent, are the142

nodes of the MS complex. Successively eliminating critical143

points with an importance measure under a certain threshold re-144

sults in a hierarchy of MS complexes. e.g., Bremer et al. [32] or145

Edelsbrunner et al. [33]. The methods require nonetheless a se-146

ries of assumptions, as well as numerical integration. For these147

reasons and because we are interested exclusively in stability148

aspects of the critical points themselves, we do not compute149

MS complexes, even though we also use the gradient vector150

fields and Hessian matrices in our analysis.151

For vector fields, various measures have been used to clas-152

sify the importance of critical points, such as the Euclidean dis-153

tance between critical points in Tricoche et al. [34] or the area154

of their corresponding flow regions in the topology graph in De155

Leeuw and Van Liere [35]. Wang et al. [36] use the topological156

notion of robustness to quantify the stability of critical points157

with respect to perturbations for stationary and time-varying158

vector fields.159

3. Critical Points in Ensembles160

Critical points of scalar fields are those points where the161

gradient vector vanishes. Several methods can be applied to lo-162

cate critical points in scalar data sets: finding the crossings of163

the zero-contours of the x- and y-components of the gradient164

vector field, or the grid points with non-zero Poincaré indices,165

etc. The locations of critical points, however, are affected by166

the uncertainty in the data, which causes variations in the posi-167

tions and types of critical points throughout the ensemble. We168

are therefore interested to indicate how likely it is that a critical169

point occurs around a given location and, if so, whether a cer-170

tain kind of behavior should be expected there. In the following,171

we use two notions of stability: Positional stability refers to lo-172

cations around which critical points occur repeatedly in the en-173
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semble members, while type stability is used to characterize the174

positions near which critical points of the same nature emerge175

consistently throughout the ensemble.176

To this purpose we do not use the actual critical points of the177

individual ensemble members. Instead, we derive two types of178

indicator functions at every vertex of a Cartesian grid and show179

the chances of a critical point of a certain type occurring close to180

the vertices, i.e., the stability in position and type. As gradients181

and Hessian matrices are fundamental to finding critical points182

and their types, we summarize these quantities statistically via183

confidence intervals and use them to derive the indicators.184

3.1. Confidence Intervals185

For scalar data sets given at the vertices of a 2D Cartesian186

grid structure, the data uncertainty is modeled by a multivariate187

random variable X, with components Xi, j at each grid point xi, j.188

We express the range of possible data values at each vertex us-189

ing intervals, [µ(Xi, j) − σ(Xi, j), µ(Xi, j) + σ(Xi, j)], where µ(Xi, j)190

is the mean value and σ(Xi, j) the standard deviation - a measure191

of the data variability at the grid point. For specific probabil-192

ity distributions of the random variables, confidence intervals193

of various confidence levels can be constructed. The aforemen-194

tioned interval corresponds to a 68% confidence level for a 1D195

Gaussian distributed variable, i.e., there is a 68% probability196

that the true value lies in the confidence interval. In the fol-197

lowing, we call [µ(Xi, j)−σ(Xi, j), µ(Xi, j) +σ(Xi, j)] a confidence198

interval irrespective of the probability distribution, although we199

assign confidence levels only for Gaussian distributions.200

The uncertainty in the data also affects the variability of de-201

rived quantities that depend on the values at neighboring grid202

points, such as partial derivatives. To quantify the latter, we ex-203

press the derived quantities in terms of functions of the random204

variables at neighboring vertices, and propagate the uncertainty205

from the input variables to the outputs. We thus obtain confi-206

dence intervals for the derived quantities. The exact procedure207

depends on the function relating the input to the output.208

Propagating the uncertainty for first-order partial derivatives,209

where the functions approximating the output quantities are lin-210

ear combinations of the values at the neighboring points of a211

grid vertex, has been treated before by Pfaffelmoser et. al [4].212

The paper assesses the variability of gradients in 2D uncertain213

scalar fields and derives confidence intervals for the gradient214

magnitude and orientation. We follow their approach to obtain215

confidence regions for quantities that can be modeled using lin-216

ear combinations of the input variables, such as the gradient,217

the Hessian matrix, and the trace of the Hessian matrix. For218

non-linear combinations, such as the determinant of the Hessian219

matrix, we propagate the uncertainty by linearizing the function220

by a first-order Taylor approximation.221

3.2. Confidence Intervals for Gradients222

To propagate the uncertainty for the gradient, we first ap-223

proximate the gradient ∇Xi, j using the central differences kernel224

A∇ on a stencil s1(Xi, j) holding the four random variables at the225

non-diagonal neighbors of the vertex (cf. Figure 1),226

∇Xi, j = A∇s1(Xi, j). (1)

Figure 1: Stencils of random variables used in approximations.

The linear operator A∇ can then be applied to obtain a mean227

µ∇(Xi, j) and covariance matrix Σ∇(Xi, j) at every grid point228

µ∇(Xi, j) = A∇µ(s1(Xi, j)), (2)

Σ∇(Xi, j) = A∇Σ(s1(Xi, j))AT
∇. (3)

The input variables are µ(s1(Xi, j)), a four-element vector229

comprising the mean values µ(s1(Xi, j)k) at each element of the230

stencil, and Σ(s1(Xi, j)), a 4x4 covariance matrix, with the squared231

standard deviations σ(s1(Xi, j)k)2 as diagonal elements, and the232

covariances σ(s1(Xi, j)k)σ(s1(Xi, j)l)ρ(s1(Xi, j)k, s1(Xi, j)l) of each233

pair of elements of the stencil as non-diagonal elements. The234

non-diagonal elements consider the correlations between neigh-235

boring random variables ρ
(
s1(Xi, j)k, s1(Xi, j)l

)
. The output vari-236

ables are the gradient mean µ∇(xi, j), consisting of the mean val-237

ues of the first-order partial derivatives in the x- and y-directions,238

and the covariance matrix Σ∇(xi, j) of dimension 2x2, holding239

the squared standard deviations and the covariances of the first-240

order partial derivatives.241

Note that, while standard deviations are sufficient to indi-242

cate the uncertainty in the scalar data, a 2x2 covariance matrix243

is now necessary to express the variability in the two directions244

of the gradient, as well as their correlation. Consequently, in-245

stead of two confidence intervals for each of the two directions,246

we derive a confidence region corresponding to the covariance247

matrix µ∇(Xi, j)TΣ∇(Xi, j)−1µ∇(Xi, j) ≤ 1.248

3.3. Confidence Intervals for the Hessian Matrix249

Derivations are similar for the second-order derivatives, ex-250

cept that the central differences kernel AH is now applied on251

a nine-point stencil s2(xi, j), holding the point itself and all of252

its neighbors (cf. Figure 1). Uncertainty is propagated for the253

Hessian matrix according to the following equations254

µH(Xi, j) = AHµ(s2(Xi, j)), (4)

ΣH(Xi, j) = AHΣ(s2(Xi, j))AT
H . (5)

The output variables are µH(Xi, j), a three-element vector255

holding the mean values of the second-order partial derivatives,256

and ΣH(Xi, j), the covariance matrix of dimension 3x3. We do257

not use these uncertainty parameters to derive a confidence re-258

gion, but regard them as inputs to other scalar output quantities,259

the trace and the determinant of the Hessian matrix.260

For the trace of the Hessian, tr(H) = Xxx +Xyy, the equations261

µtr(Xi, j) = Atrµ(s3(Xi, j)), (6)

σtr(Xi, j) =

√
AtrΣ(s3(Xi, j))AT

tr, (7)
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yield a mean µtr(Xi, j) and a standard deviation σtr(Xi, j) at every262

grid vertex. The linear operator Atr = [1, 1, 0] is applied on the263

three-element stencil s3(Xi, j) holding the second-order deriva-264

tives, to obtain [µtr − σtr, µtr + σtr] as a confidence interval for265

the trace of the Hessian matrix.266

The same procedure cannot be applied directly to propa-267

gate the uncertainty for the determinant of the Hessian ma-268

trix, det(H) = Xxx · Xyy − X2
xy, which is a non-linear combi-269

nation of random variables. Instead, we linearize the function270

F(Xxx, Xyy, Xxy) = Xxx · Xyy − X2
xy by a first-order Taylor se-271

ries approximation, F ≈ c + Js3
1. Here, c is a constant that272

is disregarded in the propagation and J is the Jacobian matrix,273

containing the first-order partial derivatives of the function F,274

J = [Xyy, Xxx,−2Xxy]. The uncertainty can now be propagated275

as in the linear case, applying the Jacobian matrix to derive the276

standard deviation of the determinant277

σdet(Xi, j) =

√
JΣ(s3(Xi, j))JT, (8)

associated with the mean µdet(Xi, j) = F(µ(s3(Xi, j))). The corre-278

sponding confidence interval for the determinant of the Hessian279

matrix is then [µdet − σdet, µdet + σdet].280

3.4. Indicator Functions281

Notice that, as long as statistical parameters can be obtained282

for the multivariate random variable characterizing the data val-283

ues at the grid points, uncertainty can be propagated to yield284

similar parameters for the gradient, and the trace and determi-285

nant of the Hessian matrix, irrespective of the probability dis-286

tribution of the random variables.287

We use the derived confidence region of the gradient at each288

grid vertex to indicate whether a critical point can occur around289

the respective grid location. For scalar data given at the vertices290

of a Cartesian grid, critical points can occur anywhere within a291

grid cell and are characterized by a zero gradient. We therefore292

derive positional indicators to relate the confidence region of293

the gradient to a zero magnitude. Then, as the Hessian matrix294

can be used to determine the type of a critical point, we use the295

confidence intervals of the trace and determinant of the Hessian296

to infer on the nature of the critical point at the given position.297

Throughout the investigations, we use confidence intervals298

and avoid computing probabilities, because in this way we are299

independent of any probability distribution of the random vari-300

ables. Furthermore, the applied procedures are deterministic301

and computationally inexpensive, needing neither the large com-302

puting times, nor the individually tailored number of trials to303

achieve a prescribed numerical tolerance that Monte Carlo in-304

tegrations do.305

3.4.1. Positional Indicator Functions306

The mean and covariance matrix of the gradient vector at307

a grid vertex state, for the x and y gradient components, their308

means, dispersion around these means, and their coupling. The309

covariance matrix can define the shape of several confidence310

1For a highly non-linear function, other probabilistic approaches, such as a
Monte Carlo simulation, would be preferred to a linearization of the function.

Figure 2: Projection of covariance matrix Σ∇ on a direction vk corresponding to
angle θk , to yield a mean µθk and standard deviation σθk .

regions, which, depending on the desired confidence level, con-311

tain a certain percentage of the total probability distribution. A312

critical point can be considered to occur around a grid location313

if the origin falls within a prescribed confidence region. If no314

specific distribution is assumed, the confidence ellipse corre-315

sponding to the covariance matrix, µT
∇
Σ−1
∇
µ∇ ≤ 1, can be used316

to test whether the origin is a possible realization or not. In317

particular cases, such as the Gaussian distribution, confidence318

regions for arbitrary confidence levels can be considered, for319

instance, µT
∇
Σ−1
∇
µ∇ ≤ 6.17 for a 95.4% confidence level.320

Based on the confidence region of the gradient at a grid ver-321

tex, but irrespective of the probability distribution that the gra-322

dient vector may follow, we have thus derived a binary indicator323

for the possibility of a critical point occurring at the grid vertex324

ind1(xi, j) =

1 if µT
∇
Σ−1
∇
µ∇ ≤ 1,

0 otherwise.
(9)

Because in Equation 9 we use the inverse of the covariance325

matrix, ill-conditioned matrices will cause spurious results. In326

such cases, instead of computing the Mahalanobis distance for327

the origin, we project the covariance matrix on every direction328

of a discretization of the unit circle θk ∈ [0, 2π] (cf. Figure 2).329

The projection yields a mean and a standard deviation330

µθk = vT
k µ∇, (10)

σθk =

√
vT

k Σ∇vk, (11)

which are then used to test whether every confidence interval331

contains the origin or not332

ind1(xi, j) =

1 if |µθk | ≤ σθk ,∀θk ∈ [0, 2π],
0 otherwise.

(12)

Depending on the amount of information the user has on the333

data, the positional indicator can be refined, by considering the334

likelihood of the origin with respect to the covariance ellipse.335
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We illustrate this for the particular case of a Gaussian distri-336

bution, where the mean is the most likely value of the gradient.337

For the grid vertices where the origin falls inside the confidence338

ellipse, we compute the Mahalanobis distance to yield how far339

from the mean the origin lies in terms of the width of the ellipse340

in the direction of the origin. We then take its complement341

ind1(xi, j) =

1 −
√
µT
∇
Σ−1
∇
µ∇ if µT

∇
Σ−1
∇
µ∇ < 1,

0 otherwise.
(13)

The values of the indicator can vary from one - the origin342

lies at the center of the confidence region, to zero - the origin343

lies on the boundary of the confidence region or outside of it.344

The refined indicator assesses the likelihood of the origin,345

depending on its position with respect to the confidence ellipse.346

A zero mean indicates that the origin is the most probable real-347

ization of the gradient vector. Critical points are thus likely to348

occur around the given grid vertex throughout most of the en-349

semble members. The likelihood of the origin as a realization350

of the gradient decreases as the origin drifts from the center of351

the ellipse. Consequently, critical points occur less frequently352

around this location across the ensemble.353

The indicator functions characterize the locations of the crit-354

ical points and can be regarded as a measure of the positional355

stability of the critical points. Indicators have positive values in356

those regions where, according to the uncertainty analysis, criti-357

cal points occur repeatedly throughout the ensemble. Neverthe-358

less, a grid vertex where the positional indicator has a zero value359

does not mean that a critical point cannot appear around the grid360

vertex. While a critical point may still emerge, it is less likely361

to occur, e.g., it may be a transitory state or noise. Conversely,362

indicators may have positive values at grid points around which363

no critical point appears in any ensemble member. These reveal364

locations where critical points could have occurred in ensemble365

members that have not been realized. Furthermore, for specific366

distributions, the indicators may be refined to suggest, in addi-367

tion to whether a critical point can occur around a vertex, the368

qualitative likelihood of an occurrence.369

3.4.2. Type Indicator Functions370

The previously derived indicators point out the possible lo-371

cations where critical points occur frequently in the ensemble372

members. They do not, however, provide any information on373

whether a certain type of critical point could be expected around374

these positions. To obtain this kind of information, we need375

to go an order higher than the gradient, to the Hessian matrix376

and its associated eigenvalues: Only positive eigenvalues im-377

ply a local minimum, only negative eigenvalues a local maxi-378

mum, whereas both positive and negative eigenvalues indicate379

a saddle. The nature of the critical points can be character-380

ized statistically by summarizing either the eigenvalues of the381

Hessian matrix, or its trace and determinant. Because the func-382

tion relating the second-order derivatives to the determinant is383

simpler than the function for the eigenvalues, we use the con-384

fidence intervals of the trace and determinant. From them, we385

derive type indicators showing the tendency of critical points386

Figure 3: Classification of critical points showing stable behavior, depending
on confidence intervals of trace and determinant.

appearing around a grid location to behave like a maximum, a387

minimum, or a saddle repeatedly throughout the ensemble.388

Critical points can be classified according to the trace and389

determinant of the Hessian as follows: Depending on the sign of390

the determinant, we can distinguish between saddles, det(H) <391

0, and minima or maxima, det(H) > 0. For the latter, the sign392

of the trace will further distinguish between minima, tr(H) > 0,393

and maxima, tr(H) < 0. According to this classification and394

the uncertainty analysis, critical points displaying a stable type395

of the behavior can occur around the grid vertices where the396

trace and the determinant of the Hessian can be considered as397

clearly positive or negative based on their confidence intervals398

(cf. Figure 3). We consider the trace (determinant) as distinctly399

positive if the lower endpoint of its confidence interval is greater400

than zero, µ − σ > 0 (or µ/σ > 1), and as distinctly negative if401

the upper endpoint is less than zero, µ + σ < 0 (or µ/σ < −1).402

We begin with an analysis based on the trace of the Hessian403

matrix, for which the propagation of uncertainty necessitates no404

linearization and is unbiased. The trace of the Hessian matrix is405

simply the divergence of the gradient vector field; a clearly pos-406

itive (negative) value of the divergence indicates that a critical407

point occurring around the given position tends to behave like408

a minimum (maximum) or, potentially, a saddle. More specif-409

ically, a divergence deemed as distinctly positive at a certain410

location indicates that, if a critical point appears at the loca-411

tion, it is unlikely that it is a maximum. A minimum has both412

eigenvalues positive and thus a positive divergence of the gra-413

dient, whereas a maximum has both eigenvalues negative and a414

negative divergence. Saddles, on the other hand, have both pos-415

itive and negative eigenvalues, and the divergence can take both416

positive and negative values, depending on which eigenvalue is417

larger in absolute value. Because saddles may display negative418
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or zero divergence, they are less likely to occur near locations419

with clearly positive divergence than minima are. Nevertheless,420

to be able to distinguish between minima and saddles, we need421

to take the sign of the determinant into account. Depending on422

whether the determinant can be regarded as clearly positive or423

negative, the critical point will most likely be a minimum or a424

saddle. Otherwise, a clear distinction is not possible, although425

minima are more likely. A similar analysis can be performed426

for a critical point around a position showing a clearly negative427

divergence: The critical point is expected to be a maximum, a428

saddle, or both, depending on the determinant of the Hessian.429

An analysis based solely on the trace of the Hessian in-430

dicates locations where predominantly minima (maxima) and431

possibly saddles emerge. Taking the determinant into account432

can further differentiate between minima (maxima) and sad-433

dles. Vice-versa, an analysis based only on the determinant434

of the Hessian points out locations with either saddle or min-435

imum/maximum behavior. The trace of the Hessian is in this436

case used to potentially distinguish between stable minima and437

maxima.438

The type indicators can also be refined for particular prob-439

ability distributions. In the case of a Gaussian distribution, we440

can identify locations with an almost zero divergence, where441

only saddle points should be expected. A grid point is consid-442

ered to have a very small divergence if zero is less than a certain443

threshold τ away from µTr in terms of σTr, i.e., |µTr|/σTr < τ.444

If the positional indicators suggest the spatial positions where445

critical points appear in the ensemble, the type indicators point446

out whether a stable behavior can be expected at any of these447

locations. At grid points where a stable sign can be assumed448

for both the trace and the determinant of the Hessian, critical449

points of the same type are likely to occur. The user can ex-450

pect a specific type of critical point and of surface behavior451

around the grid points throughout the ensemble. If just one452

of the quantities shows a stable sign, certain variations in type453

can be expected. While minima (maxima) are still more likely454

than saddles for a stable sign of the trace, no distinction be-455

tween maxima and minima can be made for a stable sign of the456

determinant. If no exact statement can be made on the sign of457

any of the two quantities, according to the uncertainty analysis,458

any type of critical point may appear around the location. This459

indicates a highly unstable surface behavior at the given spatial460

location in the ensemble.461

It is worth mentioning that, even though the proposed meth-462

ods are presented for the 2D case, the extension to 3D is straight-463

forward. Due to space considerations, however, we do not give464

the mathematical derivations for 3D, but only briefly illustrate465

possible 3D visualizations in Section 4.466

4. Visualization467

In the following, we present techniques to illustrate the in-468

troduced indicators together with the scalar fields of the ensem-469

ble. We occasionally display the critical points, even though470

they are not relevant to computing the indicator functions, in471

order to contribute to the validation of the proposed techniques.472

Furthermore, the concurrent visualization allows us to place the473

indicators and the critical points in space, and observe the pos-474

sible occurrences of critical points and their type stability to-475

gether with various related surface components.476

Visual outputs have the scalar fields in the background, ei-477

ther as contour plots or texture maps on a zero-elevation sur-478

face, the used colormap consisting of shades of blue (for low479

values) and green (for high values). We use a rather low number480

of shades, in order to avoid smooth transitions between colors481

and thus convey to a certain extent different surface compo-482

nents when using texture maps. Depending on the interests of483

the user, the visualization techniques can be extended to inte-484

grate further surface components, but, since these are specific485

to the user’s needs, we do not do so here. Critical points, if486

shown, are drawn as circles, colored either in black, when the487

type information is not relevant, or depending on the type of the488

critical points: Saddles maintain their black color, maxima are489

colored in orange, and minima in pink.490

4.1. Visualization of Positional Indicators491

Positional-related indicators are encoded via gray-colored492

circular glyphs, centered at every vertex of a Cartesian grid. To493

avoid clutter, the circular glyphs have radii equal to half of the494

length of a grid cell’s side. We prefer a glyph-based to a point-495

based representation, because it reflects better the fact that criti-496

cal points occur around and not exactly at the grid vertices. The497

visualization is more dense and thus more likely to cover the ac-498

tual positions of the critical points. It also serves to emphasize499

the locations where critical points occur. In the following, we500

denote the connected areas where the indicators take positive501

values as emphasized or marked regions.502

For the refined positional indicators, we encode the comple-503

ment of the Mahalanobis distance in the opacity of the glyph:504

The more opaque the glyph, the more likely it is that critical505

points occur repeatedly around the grid vertex throughout the506

ensemble. Both types of positional indicators are illustrated507

in Figures 4(a) and (b), showing the mean field of a tempera-508

ture ensemble, simulated by the European Center for Medium-509

Range Weather Forecast (ECMWF) for a forecast period of nine510

days above Europe. The general indicators are displayed in Fig-511

ure 4(c), along with every critical point of the ensemble. It can512

be observed that the locations where critical points actually oc-513

cur in the ensemble agree with those marked by the indicators.514

Representing the possible locations of critical points via the515

positional indicators has several benefits over simply displaying516

the critical points of the ensemble. Firstly, deriving and display-517

ing the indicators is a computationally inexpensive technique518

to highlight the regions where critical points tend to occur pre-519

dominantly in the ensemble and requires no tailoring compared520

to various clustering algorithms. It also needs little to no effort521

on the user’s side. Furthermore, the indicators reflect the vari-522

ability induced by uncertainty on the positions of critical points,523

marking locations around which critical points are expected to524

appear consistently in the ensemble. Thus, regions that are em-525

phasized, but contain no critical points, indicate locations where526

critical points could have occurred in further ensemble mem-527

bers that have not been realized. Conversely, regions that have528

not been marked and still contain critical points, suggest that529
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Figure 4: Iso-contours of mean scalar field with positional indicator functions: (a) General and (b) refined indicators for confidence ellipse given by covariance
matrix. (c) General indicators with all critical points. (d) General indicators for confidence level of 95.4% with all critical points.

such unstable critical points are less likely to occur. Moreover,530

in particular cases, e.g., a Gaussian distribution, we can further531

improve the stability assessment and distinguish between the532

most stable regions - where critical points are likely to occur in533

most ensemble members, and the least stable regions - where534

critical points occur only occasionally.535

Finding the regions holding the most stable critical points536

is useful when the occurrence of certain events or features is537

strictly related to the existence of critical points. It is also rel-538

evant as a first step to rapidly identify the locations and iso-539

values that deserve further investigation.540

Assuming a Gaussian distribution for the current example,541

emphasized regions may occupy larger areas when confidence542

regions with higher confidence levels are considered. Figure543

4(d) shows the positional indicators for a confidence level of544

95.4%. Just a few critical points are outside of the covered re-545

gions or, vice-versa, critical points are not expected to occur546

in unmarked areas. Moreover, critical points that appear in re-547

gions marked in (d), but not in (c), are less likely to emerge548

consistently than those in regions marked in both figures.549

Figures 4(a)-(d) have the mean scalar field as a background.550

We could have nonetheless used any other ensemble member551

instead, since the mean scalar field is only relevant to illustrate552

the ensemble behavior for particular distributions of the random553

variables, such as the Gaussian distribution. In fact, displaying554

the circular glyphs representing the indicators over the individ-555

ual ensemble members and their critical points classifies criti-556

cal points as stable or unstable. Moreover, in the Gaussian case,557

the user can interactively classify the critical points from most558

to least stable by means of a slider functionality: As α varies559

in the right hand side of µ∇(xi, j)TΣ∇(xi, j)−1µ∇(xi, j) ≤ α from 0560

to 9.21 (corresponding to a confidence level of 99%), more and561

more circular glyphs cover the critical points of the ensemble562

member; the lower the value of α that first results in a critical563

point being covered, the more stable the critical point. Criti-564

cal points left uncovered for α ≥ 9.21 are classified as unstable565

according to the uncertainty analysis.566

Illustrating the possible locations of the critical points via567

the indicators is more revealing than simply displaying critical568

points of individual ensemble members or of their mean scalar569

field. While in particular cases the mean field is illustrative570

of the ensemble behavior, its critical points do not provide the571

same insight as that offered by the indicators. First of all, the572

critical points of the mean data set do not necessarily occur in573

every region emphasized by the indicators (cf. Figure 5). Sec-574

ondly, while these critical points reveal locations around which575

critical points may be expected, they indicate neither the shape,576

nor the extent of the regions where critical points may occur.577

Similar techniques can be applied to visualize the potential578

locations of critical points in 3D. We illustrate this in Figure 6579

for the 3D temperature ensemble for which the aforementioned580

2D data set is the slice at the highest pressure level. Spheri-581

cal glyphs, the direct extension of the circular glyphs in 2D, are582

shown immersed in the partly transparent volume data in Figure583

6(a). Then, from a volume data containing at each grid vertex584

the Mahalanobis distance µT
∇
Σ−1
∇
µ∇ of the origin from the gradi-585

ent mean, we extract in Figure 6(b) the iso-surface of iso-value586

1, which we color depending on the values of the scalar field at587
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Figure 5: Critical points of the mean scalar field with positional indicators for
confidence ellipse given by covariance matrix.

the vertices of the iso-surface. The most representative critical588

points of the ensemble are shown as red spheres.589

4.2. Visualization of Type Indicators590

The type indicators are encoded via colored circular glyphs:591

Glyphs for grid points where only the determinant of the Hes-592

sian matrix fulfills the specified criteria for a certain type are593

colored in purple, while those where only the trace of the Hes-594

sian fulfills the criteria are colored in brown, unless the deter-595

minant suggests saddle behavior when the trace indicates maxi-596

mum (minimum) behavior. Such grid points are colored in gray.597

Finally, the glyphs where the criteria hold for both the determi-598

nant and the Hessian matrix, i.e., where critical points with the599

most stable behavior emerge, are colored in red.600

All critical points of the ensemble are shown in Figure 7(a),601

colored according to their type. Figure 7(b) emphasizes regions602

where critical points tend to behave like maxima. Notice that603

regions with stable behavior are indicated mostly in the areas604

where critical points of the same type cluster together, as op-605

posed to those comprising a mixture of critical points of dif-606

ferent types. The type indicators offer nevertheless additional607

insight compared to the naive display of critical points colored608

according to their nature. For instance, both regions numbered609

1 and 2 in Figure 7(b) appear to consist of three clusters of max-610

ima and saddle points, for which a visual inspection would indi-611

cate stable maximum behavior in the middle of the first region,612

and the left and right thirds of the second region. According to613

the uncertainty analysis, however, only the second region shows614

both positive determinant and negative trace values, and thus615

a more likely maximum behavior. Nonetheless, both regions616

show clearly negative trace values, pointing out that minima617

are unlikely to occur, whereas maxima and potentially saddle618

points can be expected around the indicated regions.619

Compared to regions 1 and 2, a clear separation between620

critical points of different types is more difficult to do visually621

in region 3. The type indicators suggest that maxima and, possi-622

bly, saddles are likely to appear in the upper half of the region,623

while maxima and minima can be expected in the lower half.624

Critical points occurring around three grid vertices display sta-625

ble maximum behavior.626

Spatial positions suggesting critical points with predomi-627

nantly saddle behavior are displayed in Figure 7(c). Although628

critical points of different types occur in both regions numbered629

1 and 2, the type indicators reveal locations around which sad-630

dle points can be expected to occur frequently. Figure 7(d)631

shows grid vertices around which primarily minima are expected632

to emerge. Notice that, even though grid points in regions num-633

bered 1 and 2 have distinctively positive trace values, their clearly634

negative determinant values suggest saddle points instead of635

minima as more likely to occur there. Figure 7(a) indicates that636

saddle points indeed prevail in the two areas.637

5. Validation638

In the previous sections we introduced and visualized two639

types of functions to indicate, at each grid vertex, whether criti-640

cal points can be assumed to emerge nearby and display a stable641

behavior. Depending on the indicators, critical points have been642

classified as more or less stable in location and type.643

According to this classification, critical points occurring near644

grid vertices where positional indicators have positive values645

are stable, i.e., they are more likely to appear frequently around646

the same position in the ensemble members. The so-called un-647

stable points are less likely to occur, i.e., they may be numer-648

ical noise or a transitory configuration. Furthermore, positive649

indicator values for those grid vertices around which no crit-650

ical points appear suggest locations where critical points may651

appear in further realizations of the ensemble.652

To validate our techniques, we want to relate the number of653

occurrences of a critical point around a certain position with its654

classification as stable or unstable. This is nonetheless difficult,655

since critical points do not generally occur at the same spatial656

location. Even assigning critical points to grid points does not657

typically result in a significant increase in the number of ensem-658

ble members where a grid vertex gets assigned at least one crit-659

ical point, because critical points may be assigned to different660

neighboring grid points. We alleviate this problem by assigning661

a critical point to all the vertices at the corners of the grid cell662

where the critical point resides. Then, we build a 2D histogram663

that counts, for each grid vertex, the number of ensemble mem-664

bers where at least one critical point was assigned to the vertex.665

Starting with the peak of the histogram in descending order,666

we check, for all the grid points having the given histogram667

value, the percentage of points that do not have positive indica-668

tor values, i.e., the grid points to which critical points have been669

assigned, but have not been marked by the indicators as well.670

This yields, for each histogram value, the percentage of false671

negatives. We can perform a similar analysis for false positives,672

computing the percentage of points that have positive values673

of the indicators, but zero histogram values, i.e., the grid points674

that have been marked by the indicators, but to which no critical675

points have been assigned. Note that the grid points considered676

in the false negative and false positive analysis do not sum up677

to the total number of grid points.678

The false negative error rates for the previous 2D example679

are shown in Table 1. Figure 8 shows the mean scalar field with680

the positional indicators and the six grid points that have the five681

highest histogram values, numbered from 1 to 5 in decreasing682

order. The grid point numbered 1, at the peak of the histogram,683

is marked in 56% of the ensemble members and has a positive684
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Figure 6: 3D temperature ensemble showing positional indicators via (a) gray-colored spherical glyphs and (b) iso-surface of iso-value 1, along with critical points
shown as red spheres in the latter figure.

Figure 7: Iso-contours of mean scalar field of temperature ensemble with type indicator functions and critical points. (a) Critical points of the ensemble. Indicators
only for (b) maxima, (c) saddle points, and (d) minima.

indicator value. Notice that three other of its neighboring ver-685

tices also have high histogram values, although only grid points686

numbered 4 and 5 have positive indicator values. Critical points687

in the grid cell given by the four vertices can be assumed stable,688

i.e., they occur frequently in the cell within the ensemble mem-689

bers, but the frequency can be expected to decrease in the lower690

right direction. Comparable observations can be made for the691

two grid points numbered 3: Both vertices are marked in 46%692

of the ensemble members, but only the lower grid point (black-693

colored in Figure 8) shows a positive indicator value. Critical694

points are thus less likely to emerge in the upper direction. Such695

grid points, with zero indicator values, but neighboring vertices696

with positive indicator values, cause the positive false negative697

error rates at the beginning of the table. False negative error698

rates increase towards the end of the table, revealing the grid699

points around which critical points appear less frequently. The700

shown error rates are in fact upper bounds of the actual values,701

because critical points are assigned to all their neighboring grid702

points, but not every grid point is marked by the indicators.703

The results show that grid vertices around which critical704

points occur most often are also marked by the indicators. Re-705

garding the false positives, 12% of the 2019 vertices with posi-706

tive indicator values did not get any critical points assigned. For707

specific distributions, increasing the confidence level would re-708

sult in a larger coverage of the indicators, i.e., lower false neg-709

ative rates, but higher false positive rates.710
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H n r H n r
0.56 1 0 0.22 15 0.33
0.5 1 1 0.2 19 0.58
0.46 2 0.5 0.18 27 0.52
0.4 1 0 0.16 33 0.3
0.38 1 0 0.14 62 0.21
0.34 2 0 0.12 105 0.29
0.32 3 0 0.1 183 0.36
0.3 2 0.5 0.08 352 0.41
0.28 3 0.67 0.06 676 0.54
0.26 5 0.4 0.04 1344 0.66
0.24 12 0.17 0.02 2868 0.84

Table 1: False negative analysis for temperature ensemble. H - histogram value,
normalized by number of ensemble members; n - number of grid points holding
histogram value; r - error rate.

Figure 8: Mean scalar field with positional indicators and the grid points hold-
ing the five highest histogram values, numbered from 1 to 5.

6. Further Results711

We apply the introduced techniques for analysis, visualiza-712

tion, and validation to three other data sets, two synthetic en-713

sembles and another ECMWF ensemble.714

The first synthetic data set, of dimensions 100 x 100, was715

generated by assigning the three parameters a, b, and c in−x4/4−716

y4/4−x2y2/2+ax2/2+bxy+cy2/2, (x, y) ∈ [−2, 2]X[−2, 2], ran-717

dom numbers generated from a multivariate normal distribution718

with the following mean and covariance matrix719

µ =

0.51
0.5

 , Σ =

 1 −0.5 0.5
−0.5 1 −0.5
0.5 −0.5 1

 .
When the parameters take on the values in the mean vec-720

tor, there are three critical points, a saddle at (0, 0) and two721

maxima at (
√

0.75,
√

0.75) and (−
√

0.75,−
√

0.75). Figure 9722

illustrates the results for the first 50 members of an ensemble723

comprising 5000 members, where the considered confidence724

ellipse was that corresponding to the covariance matrix. The725

refined positional indicators, shown in Figure 9(a) (assuming a726

Gaussian distribution fits the data), cover many of the critical727

points, especially around the critical points of the mean. In Fig-728

ure 9(b), several grid points situated around the maxima of the729

mean show clearly positive determinant and negative trace val-730

ues, i.e., stable maximum behavior. The rest of the grid points731

H 1 0.04 0.02
n 4 50 476
r 0.5 0.48 0.40

Table 2: False negatives for first synthetic data set (50 ensemble members).

N 50 100 500 1000 2500 5000
R 0.84 0.71 0.33 0.15 0.02 0.001

Table 3: False positives for first synthetic data set. N - number of ensemble
members; R - false positive error rate.

display only definitely negative trace values, which means that732

saddles should not be excluded around these locations, although733

maxima are more likely. No vertex with a dominant minimum734

behavior is found, since the clearly positive determinant values735

shown in Figure 9(c) only exclude saddles and, according to736

Figure 9(b), indicate maximum behavior. Minima appear occa-737

sionally only around the origin. Even though critical points are738

present around the origin in every ensemble member and the739

positional indicators show positive values there, no stable type740

behavior can be identified in the region. This happens because741

saddle points also occur around the origin, although neither fre-742

quently enough to cause distinctly negative determinant values,743

nor with predominantly positive trace values. Grid points with744

small trace values (τ = 0.1), around which saddle points are745

expected to occur, are shown in Figure 9(d).746

Table 2 shows the results of the false negative analysis. The747

four grid points that make the peak of the histogram, two of748

which have positive indicator values, are located around the ori-749

gin. Notice that critical points are identified around the origin750

in all ensemble members. Furthermore, these critical points ap-751

pear mostly on the secondary diagonal of the square, near the752

two grid points with positive indicator values. The other two753

grid points with maximum histogram values have non-positive754

indicator values, since critical points do not occur around them.755

Their high histogram value is due to the critical points having756

been assigned to all neighbors. Except for these critical points,757

however, all other critical points are rather scattered, reason for758

which no other grid point is marked in more than two ensemble759

members. According to the false negative error rate, nonethe-760

less, the grid points near which more critical points appear have761

positive indicator values.762

Due to the low number of critical points and their scatter-763

ing, the false positive error rate is very high (84%). Never-764

theless, the grid points around which no critical points occur,765

but which display positive indicator values, suggest locations766

where critical points may appear in further realizations of the767

ensemble. To illustrate this, we consider all the 5000 ensem-768

ble members. At the peak of the histogram the situation is un-769

changed, showing that the tendency of critical points to occur770

on the secondary rather than main diagonal of the square had771

been captured well previously. While critical points are still772

scattered (except for the grid points in the vicinity the origin,773

no other vertex is marked in more than 64 ensemble members),774

they cover more densely the regions emphasized by the indi-775
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Figure 9: Iso-contours of mean scalar field of first synthetic data set with indicators. (a) Refined positional indicators with all critical points. (b) Type indicators for
maxima. (c) Type indicators for minima. (d) Type indicators for saddle points.

H n r H n r
0.24 1 0 0.12 9 0.44
0.22 1 0 0.1 15 0.87
0.2 3 0.67 0.08 38 0.76
0.18 1 0 0.06 47 0.81
0.16 3 0 0.04 46 0.89
0.14 1 0 0.02 97 0.99

Table 4: False negative analysis for second synthetic data set.

cators. Consequently, the false positive rate decreases dramati-776

cally to 0.1%. The decreasing trend of the error rate for increas-777

ing numbers of ensemble members is shown in Table 3.778

A second synthetic data set, also of dimensions 100 x 100,779

was generated by assigning the parameterω in x3+y3−ωxy−x−780

y = 0, (x, y) ∈ [−2, 2]X[−2, 2], random numbers generated from781

a normal distribution with a zero mean and standard deviation782

of 2. Depending on the value of ω, there should be either four783

(two nodes and two saddles for −2<ω<2), three (two nodes and784

a saddle for ω = ±2), or two critical points (a node and a saddle785

for ω< − 2 or 2<ω).786

The mean scalar field, together with the positional and type787

indicators, and all critical points, is shown in Figures 10(a)-(c).788

The badly-scaled covariance matrices of the gradients cause789

spurious results for the positional indicators (cf. Figure 10 (a)),790

which now cover the whole domain with no distinct pattern,791

even though critical points occur mostly on the main diagonal.792

Nonetheless, it does not affect the type indicators (cf. Figures793

10 (b) and (c)), which still identify the maximum behavior in794

the upper triangular part and the minimum behavior in the lower795

triangular part. Projecting the covariance matrix (cf. Figures796

10(d)-(f)) results in positional indicators that cover mostly ar-797

eas where critical points are identified. Both false positive (13%798

for 45 marked grid points) and negative error rates (cf. Table 4)799

are correspondingly low.800

For our last example we use data from the ECMWF Ensem-801

ble Prediction System (EPS), ECMWF’s operational ensemble802

weather forecast system. The EPS produces forecasts twice803

daily and includes 50 members and a control run. For more804

details on the system, we refer the reader to, for instance, [37].805

Here we use the forecast initialized on October 17, 2012. The806

data has been interpolated horizontally from the model grid to807

a regular latitude/longitude grid with a grid spacing of 0.3 de-808

grees in both dimensions, and vertically to levels of constant809

pressure. The selected scalar field is the 60 hour forecast of the810

geopotential height field at a pressure level of 1000 hPa, valid811

on October 19, 2012.812

Figure 11 shows the geolocated mean scalar field, where813

low altitudes of the pressure surface are colored in shades of814

blue and high altitudes in shades of green. A distinct low pres-815

sure system is visible south of Greenland, several critical points816

appearing there. Critical points are useful in this context to help817

identify features related to adverse weather conditions, such as818

cyclonic centers. Cyclonic features can be located by using819

a mixture of techniques, among which the detection of well-820

defined geopotential minima. Since data is inherently affected821

by uncertainty, it is relevant to point out the spatial locations822

around which pressure minima are to be expected and which823

should be further investigated.824

Positional indicators are shown in Figure 11(a) for a confi-825

dence ellipse corresponding to a 95.4% confidence level. The826

indicators cover the majority of areas where critical points oc-827

cur, including the region displaying the low pressure. False neg-828

ative error rates are therefore low, many of them under 20%,829

while the false positive rate is 37%. Type indicators showing830

stable minimum behavior are shown in Figure 11(b). The up-831

per left corner of the region has several grid points with clearly832

positive trace values, but no definitely positive determinant val-833

ues and even five grid points with clearly negative determinant834

values, i.e., while minima are the most likely type of critical835

points to appear in the region, saddle points should not be ex-836

cluded, especially around the five grid points.837

7. Conclusion838

Prominent features display variations across ensembles, po-839

tentially changing their location and shape. In this paper, we840

developed several indicator functions to give insight into the841
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Figure 10: Iso-contours of mean scalar field of second synthetic data set with indicators. (a) Positional indicators and all critical points. (b) Type indicators for
maxima. (c) Type indicators for minima. (d) Modified positional indicators. (e) Type indicators for maxima after modification. (f) Type indicators for minima after
modification.

salient features of scalar fields and their stability, by investigat-842

ing their associated critical points. We summarized ensembles843

statistically and computed corresponding moments for the asso-844

ciated gradient fields and the determinant and trace of the Hes-845

sian matrices. The first were used to derive quantities indicating846

the likelihood of existence of a critical point at a given location,847

whereas the latter reveal whether the critical point tends to be-848

have consistently like a minimum, a maximum, or a saddle.849

We then presented techniques to visualize the proposed indica-850

tors simultaneously with the scalar fields and several of their851

surface components. Finally, we applied the methods on two852

synthetic and two real world data sets, to illustrate how the pro-853

posed methods emphasize the possible critical points and their854

stability in behavior in ensembles of uncertain scalar fields.855

Positional indicators based on confidence intervals of gra-856

dients show the locations where critical points tend to occur857

repeatedly within ensemble members. Critical points already858

indicate within one ensemble member the relevant iso-values859

where topological changes of the iso-contours occur: Contour860

components emerge at minima, disappear at maxima, split or861

merge at saddles. The positional indicators can be regarded as862

a fast and computationally inexpensive method to point out the863

locations and iso-values that are significant for the ensemble864

according to the uncertainty analysis. Depending on the size865

of the ensemble, some of the indicated positions are not related866

to the available ensemble members, as the indicators may mark867

grid points with no critical points occurring in the immediate868

vicinity. However, such locations were shown to be suggestive869

for ensemble members that have not been realized.870

The type indicators characterize the behavior of critical points871

and suggest the manner in which interesting associated surface872

components (iso-contours and various regions grown around873

critical points) develop. For instance, a location indicating a874

critical point that tends to behave like a minimum shows a stable875

structure, in the sense that the critical point, the region grown876

around it, and the topological event of a surface component877

emerging persist throughout the ensemble members. On the878

other hand, a spatial position with no specific type behavior879

indicates a potentially unstable structure, whose shape inverts880

across the ensemble, even though the structure may be present881

in most ensemble members. Conclusions on the stability of882

the associated features are harder to draw when the uncertainty883

analysis allows the clear exclusion of only one type of critical884

point behavior. The type indicators are also useful in appli-885
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Figure 11: Mean scalar field of temperature ensemble with indicator functions. (a) Positional indicators with all critical points. (b) Type indicators for minima.
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cations where locating stable critical points of a certain type886

is relevant to the detection and tracking of various features,887

e.g., pressure minima are used in meteorological applications888

to identify cyclonic features.889

There are several possible directions for future work: Firstly,890

the notion of stability of critical points could be extended, to al-891

low tracking critical points (and associated features) from one892

ensemble member to another. Furthermore, similar investiga-893

tions could be performed for uncertain vector fields. It would894

be interesting to develop the analysis to assess the stability of895

the entire topology of the vector fields, in addition to the critical896

points.897
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