
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2014 1

Large-Scale Liquid Simulation
on Adaptive Hexahedral Grids

Florian Ferstl, Rüdiger Westermann, and Christian Dick

Abstract—Regular grids are attractive for numerical fluid simulations because they give rise to efficient computational kernels.
However, for simulating high resolution effects in complicated domains they are only of limited suitability due to memory
constraints. In this paper we present a method for liquid simulation on an adaptive octree grid using a hexahedral finite element
discretization, which reduces memory requirements by coarsening the elements in the interior of the liquid body. To impose
free surface boundary conditions with second order accuracy, we incorporate a particular class of Nitsche methods enforcing the
Dirichlet boundary conditions for the pressure in a variational sense. We then show how to construct a multigrid hierarchy from the
adaptive octree grid, so that a time efficient geometric multigrid solver can be used. To improve solver convergence, we propose
a special treatment of liquid boundaries via composite finite elements at coarser scales. We demonstrate the effectiveness of our
method for liquid simulations that would require hundreds of millions of simulation elements in a non-adaptive regime.

Index Terms—Fluid simulation, finite elements, octree, multigrid

F

1 INTRODUCTION

L IQUID simulation on regular grids has a long tra-
dition in computer graphics. Such techniques are

attractive because of the implicit encoding of topology
by the grid, giving rise to efficient computational
kernels for simulating the liquid’s motion. Especially
when paired with efficient solvers for the pressure
Poisson equation, such as linear time-complexity geo-
metric multigrid solvers [1], the projection step for en-
forcing the incompressibility constraint on the velocity
field is possible at high rates. By using data structures
like OpenVDB [2], regular grids can be dynamically
restricted to the fluid domain, which reduces memory
requirements in comparison to static grids that cover
the whole simulation domain. This makes regular
grids appealing in scenarios where violent flows with
fragmentation and large deformations cover only a
small area of the simulation domain. Since the num-
ber of computational elements is proportional to the
liquid volume, in such scenarios a good ratio between
resolution and memory is achieved.

On the other hand, keeping the number of com-
putational elements proportional to the liquid body
is not sufficient when large bodies of liquid are sim-
ulated at high resolution. This is demonstrated in
Figure 1, where even a regular grid restricted to the
liquid domain requires about 130 millions of cells,
imposing severe memory requirements. Losasso and
co-workers [3] addressed this problem via a first order
accurate finite difference (FD) scheme on an adaptive

• Florian Ferstl, Rüdiger Westermann, and Christian Dick are with the
Computer Graphics and Visualization Group, Technische Universität
München, Germany.
E-mail: ferstlf@in.tum.de, westermann@tum.de, dick@tum.de.

octree grid. It supports an adaptive coarsening of
the computational elements, yet it was shown re-
cently that it introduces velocity oscillations due to
the special treatment of hanging nodes at the coarse-
to-fine grid interface [4]. Zhu et al. [5] introduced
a FD scheme on a rectilinear grid that enlarges the
cells in the far field surrounding a region of interest.
This approach avoids hanging nodes, but it can less
flexibly adapt the cell size locally due to the regular
structure imposed by a rectilinear grid.

Unstructured grids, on the other hand, can adapt
flexibly to local flow features and the changing liquid
domain [6], [7], [8], [4]. However, they cannot take
full advantage of efficient hierarchical solvers because
no canonical coarse versions of such a grid exist in
general. Furthermore, additional workload is required
to generate an unstructured grid from a given set of
vertices or regular cells, and to build the algebraic
equations from the unstructured discretization.

In this work we shed light on the question whether
techniques based on regular grids can be realized in
much the same adaptive, and thus memory efficient
way as techniques based on unstructured grids, yet
keeping the computational advantages of a regular
grid. We focus on the simulation of liquids at extreme
effective resolutions, and we therefore strive for a so-
lution that a) uses computational elements only where
the liquid is present, b) uses ever coarser simulation
resolutions in the liquid body to achieve an element
number proportional to the surface area, c) inherits
the efficient computational kernels of regular grids,
and d) is amenable to geometric multigrid solvers to
achieve high convergence rates. To the best of our
knowledge, grid-based liquid simulation approaches
combining all these properties have not been pro-
posed so far.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2014 2

Fig. 1. Liquid flows using 34 (left) and 13 (right) million multi-resolution finite elements are simulated on an
8-core single node system with 64 GB main memory. A uniform hexahedral grid at the same effective resolution
and restricted to the liquid domain would consist of about 130 million cells in both examples.

1.1 Contribution
To achieve our goals, we make the following specific
contributions:
• We present a multiresolution hexahedral finite

element method including a special treatment of
hanging vertices, combined with a second order
accurate representation of the free liquid surface.

• We make the number of finite elements propor-
tional to the liquid boundary by using an octree
grid that adapts spatially to the surface.

• We embed the finite element hierarchy into a
geometric multigrid solver to achieve optimal
convergence rates, and we use an adaptive varia-
tional formulation as well as element duplication
to represent the domain at coarser scales.

• We propose a cell-based formulation for both the
finite element method and the multigrid solver
by exploiting that most elements share the same
generic element matrix. This formulation enables
us to alleviate memory bandwidth limitations,
leading to speed-up factors between 2 and 3
compared to a stencil-based formulation.

Some achievements of our method are demon-
strated in Figure 1. To demonstrate the different el-
ement resolutions that were used in the simulations,
Figure 2 illustrates the octree grid structure for a part
of the multi-stage water fountain on a 2D slice. The
liquid surface steers the evolution of the hierarchical
grid over time (see Figure 3). The surface is repre-
sented by means of a surface tracking method such
as the particle level-set method by Enright et al. [9].

2 RELATED WORK

Eulerian liquid simulation methods discretize the sim-
ulation domain using a fixed grid and compute the
liquid’s movement through this grid. In particular
the use of regular hexahedral grid structures in com-
bination with finite difference schemes to transform
the governing equations into systems of difference
equations has a long tradition in computer animation,

Fig. 2. Slice through the 3D octree grid the multi-stage
water fountain in Figure 1 (right). A coarser version
is shown for better readability. Cells are classified into
fluid (blue), empty (gray), and solid (red). Note that the
grid refinement is also affected by cells in front of and
behind the shown layer of cells.

see, for instance, [10], [11], [12], [13]. Let us also
refer to the book by Bridson [14], which provides a
thorough overview of grid-based approaches for liq-
uid simulation. To efficiently generate detailed liquid
surfaces from Eulerian simulations, surface tracking
mechanisms making use of implicit level-sets and
additional tracker particles [13], [15], [9] as well as
explicit approaches using semi-Lagrangian advection
of distance functions [16] and surface meshes [17],
[18], [19] have been proposed. A good overview of
the different tracking mechanisms used can be found
in the course notes by Wojtan et al. [20].

Regular grids are appealing because they give rise
to efficient numerical stencils and fast computational
solvers. In particular multigrid methods [21] have
become popular in computer animation due their
linear time-complexity in the number of computa-
tional elements. The potential of geometric multigrid
schemes for projecting the velocity field to a diver-



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2014 3

(a) Advect Surface−−−−−−−−→ (b)
Adapt Grid−−−−−−→ (c) Advect Surface−−−−−−−−→ (d)

Adapt Grid−−−−−−→ (e)

Fig. 3. Illustration of the evolution of the adaptive octree grid for the simulation of a falling water drop: (a,c,e)
Grid and liquid boundary (red curve) in three consecutive time steps. Solid cells only appear in the grid when the
liquid’s surface comes close to an obstacle. Three different shades of blue indicate fluid cells intersected by the
surface, fluid cells within the refinement band around the surface, and interior fluid cells. (b,d) Surface and grid
(with unclassified cells) after surface advection, but before grid adaptation.

gence free state has been employed by McAdams et
al. [1], and Chentanez and Müller [22], [23]. Only
few approaches have addressed adaptivity in liquid
simulations using regular grids. Varying resolutions
have been accommodated via an octree grid [3], by
enforcing incompressibility locally from a divergence-
free field on a coarse resolution grid [24], and by
using simultaneously a coarse grid for representing
the liquid body and a fine grid near the surface [23].
The most recent approach by Zhu et al. [5] makes use
of a rectilinear grid to fade out the grid resolution
from a prescribed focus region.

Instead of using regular grids, in a number of
previous approaches unstructured grids have been
used to enforce a sharp representation of the liquid
interface and thus to effectively restrict the computa-
tional workload to the liquid domain [25], [26], [6],
[7], [8]. The grids are either re-meshed to the liquid
boundary in every simulation step, or they are used in
Arbitrary Lagrangian-Eulerian (ALE) methods where
the grid vertices are moved according to the fluid
motion [27], eventually requiring re-meshing when
deformations become large. Recently, Ando and co-
workers [4] proposed the integration of a tetrahedral
background grid into FLIP. Here, a quasi regular, yet
adaptive tetrahedralization was constructed from the
dual of a multi-level hexahedral grid. FLIP [28], [29], is
a hybrid method employing an auxiliary background
grid for velocity projection and using particle-based
transport. We mention FLIP here because the use of
an adaptive regular grid as proposed in our work is
promising for reducing the number of required FLIP
particles in the liquid interior.

3 CREEPING OCTREE GRID

We start with a description of the spatially adaptive
octree grid used in our method. The grid is con-
structed in a way that does not require any initial
domain specification. It is sufficient to define the size
h (i.e., the side-length) of the smallest hexahedral cells

to be used in the simulation. All grid cells of size 2kh
are aligned on an imaginary lattice with lattice points
(2kh)Z3, where k = 0, 1, . . . is referred to as the octree
level of the respective cells.

Based on these imaginary lattices, we build the
grid such that only the liquid body is covered by
grid cells, except for an additional thin refinement
band around the liquid boundary (both the fluid/air
and fluid/solid interface). The enclosing space is not
represented. At the beginning of the simulation, the
grid is constructed from a given surface describing
the initial liquid body. During the simulation, in each
time step, the octree grid is adapted to the current
surface of the liquid, as described below. As a result,
the simulation grid seems to ‘creep’ along with the
liquid boundary, as illustrated in Figure 3.

The adaptivity of the octree grid is controlled as
follows. In a narrow band around the liquid boundary,
which we refer to as the refinement band, we require
all simulation cells to be at the finest resolution. The
radius r := ωh (ω ∈ N) of the refinement band has
to be specified. We enforce that the liquid bound-
ary never leaves the refinement band, and thus is
always represented on the finest resolution level. As
a consequence, the maximum time step that can be
simulated is coupled to r. While it is desirable in
principle to make ω large in order to reduce time step
constraints, this can significantly increase the number
of grid cells. We have found that ω = 2 results in
a good trade-off between time step constraints and
memory requirements, and have used this value in
all of our experiments. The interior of the fluid is
filled by coarse cells, with the restriction that the level
difference between neighboring cells sharing at least
one common vertex is at most one. This results in a
restricted octree grid as proposed by Popinet [30]. In
this way, the fluid interior is covered by a minimum
number of cells, while the grid resolution decreases
smoothly with increasing distance to the surface.

In the first simulation step, a restricted octree grid



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2014 4

is built from an analytical or triangle mesh represen-
tation of the given surface of the initial liquid body,
with the requirement that all cells intersected by the
surface are on the finest octree level.

In each simulation step (including the first, in order
to build the refinement band), the following steps
are performed to adapt the grid to the current liquid
boundary:

1) Creation of the refinement band: The set of cells
intersected by the fluid surface is determined.
The set is then successively extended in ω it-
erations, such that in each iteration the finest
level cells in the 26-neighborhood of each cell
of the set are added to the set. If in this process
we encounter finest level cells that do not exist
yet, we create them. If we encounter cells that
are not on the finest octree level, we split them
and apply further splits recursively to keep the
octree grid restricted. In this way, we create
one layer of the refinement band (on both sides
of the liquid boundary) in each iteration. The
resulting refinement band has a minimum width
of (2ω + 1)h at any given point. Cells outside
of the liquid body that do not belong to the
refinement band are deleted.

2) Grid coarsening: As many cells as possible are
merged in the fluid interior, while keeping the
octree grid restricted.

3) Cell classification: The cells of the new grid
are re-classified: Cells in the interior of solids
are classified as solid, cells of which at least
one vertex is lying inside the liquid boundary
as fluid. All remaining cells are labeled empty.
Note that per construction, all non-finest-level
cells are fluid cells and lie completely within
the liquid boundary. As an optimization, we
utilize that all solid cells remain solid when the
obstacles do not move.

The union of all fluid cells now defines the actual com-
putational domain for the finite element discretiza-
tion. The other cells are required only in the advection
steps of the simulation. Consequently, all fluid cells
and all vertices that are adjacent to at least one fluid
cell (referred to as fluid vertices) carry a full set
of simulation quantities. All other cells and vertices
are light-weight and carry only a small subset of
these quantities, in particular including extrapolated
velocities and level-set values required for advection.

To represent the octree grid, an unbalanced octree
data structure is used. Since we do not use an initially
specified domain, the height of this octree varies
over the course of the simulation according to the
dynamically changing extent of the liquid.

3.1 Obstacles
Solid obstacles are handled in a similar way as pro-
posed by Houston et al. [31] for generating a compact

1
2

1
2

1
2

1
2 1

2

1
2

1
2

1
2

Fig. 4. Handling of hanging vertices (2D case), il-
lustrated for the shaded element: The unknowns at
hanging vertices (empty orange dots) are substituted
(blue arrows) by linear interpolation from the unknowns
at non-hanging vertices (filled orange dots). The equa-
tions at hanging vertices are then distributed (green ar-
rows) to non-hanging vertices using the same weights,
corresponding to the interpolation of values at hanging
vertices in the test functions.

level-set representation. Obstacles are initially vox-
elized with respect to the imaginary finest level lattice
such that a run-length encoded binary voxelization
is created. This representation introduces a negligible
memory footprint (compared to the final simulation
grid and the additional data structures used by the
solver), yet it allows us to efficiently test whether a
finest level cell is inside a solid obstacle or not. It
is important to note that the solids’ voxelization is
decoupled from the simulation grid, and that only
those solid parts are represented in the simulation
grid which are located in the refinement band around
the liquid boundary.

4 FINITE ELEMENT FLUID SIMULATION

To simulate the liquid, we solve for its motion on
the fluid domain Ω as dictated by the incompressible
Navier-Stokes equations

u̇ = −u · ∇u+
µ

ρ
∆u+ g − 1

ρ
∇p (1)

∇ · u = 0, (2)

where u is the fluid velocity, ρ the density, µ the
viscosity, p the internal pressure, and g the gravity
force. Note that ρ and µ are constant. We solve the
pressure Poisson equation

1

ρ
∆p =

1

∆t
∇ · u∗ on Ω (3)

p = pA on ΓA (4)

n · ∇p = n · ρ
∆t

(
u∗ − ut+∆t

W

)
on ΓW (5)

in each time step to project the intermediate velocity
u∗ to the space of divergence free functions accord-
ing to ut+∆t = u∗ − ∆t

ρ ∇p in order to enforce (2).
ΓA(ir) and ΓW (all) denote the fluid/air and fluid/solid



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2014 5

interface parts of the liquid boundary ∂Ω, respec-
tively (∂Ω = ΓA ] ΓW ). On ΓA the pressure pA is
prescribed as a Dirichlet boundary condition (4). On
ΓW , the velocity n · ut+∆t

W in normal direction n to
the boundary, and optionally the velocity τ · ut+∆t

W

in tangential direction τ to the boundary for the next
time step t+ ∆t is prescribed. The normal component
is enforced via (5) as a Neumann boundary condition
for the pressure. The optional tangential component
can be enforced by setting τ · ut+∆t to the respective
value after each projection step [32].

The liquid’s surface is captured using the level-set
method [33], i.e., the interface location is represented
by the zero-contour of a signed distance function φ.
Additionally, following [9], we augment the level set
with marker particles to improve mass conservation.

To obtain a consistent discretization on the spatially
adaptive octree grid, we employ a finite element
method (FEM). Each fluid cell is a finite element. We
use an equal-order interpolation scheme, where both
u and p are discretized via element-wise tri-linear
basis functions. Accordingly, all degrees of freedom
are located at the grid vertices. At the hanging vertices
at octree level transitions, however, a special treatment
procedure is required: Their values are constrained by
linear/bilinear interpolation along the edge/within
the face with respect to which the vertex is hanging
(see Figure 4 for an illustration). This ensures that the
resulting weak solution is C0 continuous across the
entire domain. Furthermore, as will be demonstrated
below, the specific choice of basis functions yields a
discretization of the pressure Poisson equation that is
exceptionally well suited for a multigrid scheme, as it
results in very good convergence rates.

Let v and q denote the vector and scalar valued
test functions corresponding to u and p, respectively.
By testing (1) against v and (3) against q (i.e., by
multiplying with the test function and integrating
over Ω), we obtain the following weak form of the
continuous problem:∫

Ω

u̇ · v =−
∫

Ω

u · ∇u · v −
∫

Ω

µ

ρ

(
∇u : ∇vT

)
+

∫
Ω

g · v −
∫

Ω

1

ρ
∇p · v (6)∫

Ω

1

ρ
∇q·∇p =− 1

∆t

∫
Ω

q∇ · u∗+ 1

∆t

∫
ΓW

qn ·
(
u∗−ut+∆t

W

)
(7)

For a thorough overview of different FEM weak forms
for the Navier-Stokes equations let us refer to the book
by Gresho [34].

Applying the finite element discretization leads to
the following equations (u, p, etc. now are vectors
containing the respective values at the grid vertices):

M u̇ = C(u)u+Ku+ g −Gp (8)

Lp = − 1
∆tDu

∗ + 1
∆tB(u∗ − ut+∆t

W ) (9)

1: φt+∆t := Advect(φt)
2: Adapt octree grid
3: Reinitialize φt+∆t

4: u′ := Advect(ut)
5: u′ := u′ + ∆tM−1g
6: Solve for u∗: (I −∆tM−1K)u∗ = u′

7: Solve for p: ∆t Lp = −Du∗ +B(u∗ − ut+∆t
W )

8: ut+∆t := u∗ −∆tM−1Gp
9: Extrapolate ut+∆t

Fig. 5. Algorithm for time integration according to
equations (8) and (9). I denotes the identity matrix.
Note that the mass matrix M is lumped, thus M−1 is a
diagonal matrix.

M is the (lumped) mass matrix, C(u) the (FEM)
convection operator, K the diffusion operator, G pres-
sure gradient operator, L the Laplace operator, D
the divergence operator, and B a boundary operator
corresponding to the boundary term in (7).

To perform the time integration of the derived equa-
tions we use an explicit Euler scheme with operator
splitting as proposed by Stam [12]. The resulting
procedure, which is performed in each time step, is
listed in Figure 5.

The listing shows that the octree grid is adapted
after the level-set has been advected, but before it is
re-initialized. In this way, every new vertex that is
introduced during octree adaptation is immediately
assigned a correct value for φ, instead of an inter-
polated value. Level-set re-initialization is performed
only in every tenth time step [33].

We use semi-Lagrangian advection to handle the
advection of the level-set as well as the convective
term (C(u) is not required). During advection, tri-
linear interpolation is used to retrieve samples within
the adaptive hexahedral grid. Furthermore, an im-
plicit Euler scheme is used to handle the diffusive
term with unconditional stability.

4.1 Pressure Boundary Conditions

The boundary conditions (4, 5) for the pressure Pois-
son equation are handled via a particular second
order accurate FEM discretization, while at the same
time the symmetry of the resulting system matrix as
required by the multigrid solver is preserved. For this
method, the integration domain Ω in the weak form
(6, 7) is restricted with subgrid accuracy to the part
of the domain that is actually covered by the fluid
(rather than being aligned to the hexahedral grid).
Considering each single finite element, this means that
the support of the basis functions is restricted to the
portion of the element that is covered by fluid. Note
that the finite element grid is not modified, and that
the degrees of freedom of the finite elements remain
at the grid vertices.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2014 6

This restriction of the integration domain is suf-
ficient to handle the pressure Neumann boundary
condition on the fluid/solid interface ΓW with sub-
grid accuracy. Thus, no special treatment as in finite
difference schemes has to be performed, e.g., by using
the variational approach by Batty et al. [35].

In contrast, for the pressure Dirichlet boundary
condition on the fluid/air interface ΓA, further con-
siderations are necessary. In finite difference schemes,
this condition can be imposed with subgrid accuracy
by using so-called ghost fluid methods [36]. These
methods introduce additional ghost pressure values in
the air, and linear dependencies among the pressure
values around the boundary to enforce the Dirichlet
boundary condition at the actual surface position.
However, when this procedure is directly applied to
the FEM formulation (7), the boundary term cannot be
restricted from Γ to ΓW (as has been done in (7)) since
q = 0|ΓA

no longer holds, resulting in an asymmetric
contribution to the system matrix.

A way to handle the pressure Dirichlet boundary
condition on the fluid/air interface with subgrid ac-
curacy that we have found to work very well in our
formulation is the group of Nitsche methods [37]. In
these methods, all vertices of a finite element are full
degrees of freedom, and a carefully chosen penalty
term is added to the weak form such that the Dirichlet
boundary condition is enforced at the actual surface
position in a variational sense.

In particular, we have adapted the method de-
veloped by Dolbow et al. [38] for general Poisson
problems, which achieves second order accuracy [39].
It maintains symmetry of the system matrix by con-
structing the penalty term such that the aforemen-
tioned asymmetric boundary term is counterbalanced.
Leaving the detailed derivation and convergence
proof to [38], we extend (7) according to:∫

Ω

1

ρ
∇q · ∇p−

∫
ΓA

(
1

ρ
qn · ∇p+

1

ρ
pn · ∇q − αqp

)
= − 1

∆t

∫
Ω

q∇ · u∗ +
1

∆t

∫
ΓW

qn · (u∗ − ut+1
W )

−
∫

ΓA

(
1

ρ
pAn · ∇q + αqpA

)
︸ ︷︷ ︸

=0 if pA=0

(10)

In principle, (10) is constructed by testing (3) against
q, (4) against αq, (4) against − 1

ρ (n · ∇q) and then
by summing up the resulting three equations. The
method requires a constant stabilization parameter
α = s

ρ
Area(ΓA)

Volume(Ω) per cell, where Area(ΓA) is the area of
the fluid/air interface and Volume(Ω) the volume of
the fluid in the cell. s depends on the finite element
type used and has been set to s = 5 in all of our
experiments. If pA = 0, the last term in (10) vanishes.
Note that for cells which do not contain any part of

ΓA

ΓW

Ω * * * *

Fig. 6. Subgrid accurate treatment of boundary con-
ditions (for illustration purposes shown in 2D). Left:
The computational domain Ω is restricted to the portion
of the grid cells that is actually covered by the fluid.
Right: In cells intersected by the fluid/air interface (cells
marked with a star), Ω, ΓA, and ΓW are tetrahedral-
ized/triangulated by employing a pre-computed look-
up table. The degrees of freedom of the finite elements
(black circles) remain located at the grid vertices.

ΓA (i.e., which are fully covered by fluid), the weak
form (10) is equivalent to (7).

In order to apply the extended weak form (10),
in grid cells that are intersected by the fluid/air
interface, the calculation of volume and surface inte-
grals must be restricted to the fluid domain. For this
purpose, we triangulate/tetrahedralize the boundary
and the fluid domain in these cells, as illustrated in
Figure 6 (right). The integration problem has been
similarly addressed in [40], [41]. We then evaluate
the surface and volume integrals using numerical
quadrature on each of the resulting simplices to obtain
the respective element matrices.

For the triangulation/tetrahedralization, we have
derived an extended, marching-cubes-style lookup
table [42]. It provides pre-calculated triangula-
tions/tetrahedralizations for any given configuration
of level-set values (positive/non-positive) at the eight
vertices of a fluid cell. Note that in our implemen-
tation, solids are represented on a per-cell basis. Let
Ωc ⊂ Ω denote the part of a cell’s domain that is
covered by the fluid. Then, for each configuration, the
lookup table contains the following three components:

• A set of triangles that triangulates the fluid/air
interface ∂Ωc ∩ ΓA within the cell (native
marching-cubes).

• For each of the six cell faces a set of triangles
that triangulates the potential fluid/solid inter-
face ∂Ωc \ ΓA (used only if a respective neighbor
cell is solid).

• A set of tetrahedra that tetrahedralizes the fluid
domain Ωc within the cell (up to ten tetrahedra
are required per cell).

The lookup table is constructed such that the tri-
angulation and tetrahedralization are consistent, i.e.,
each triangle always corresponds to a face of a tetra-
hedron. In order to avoid near-zero values in the
system matrix (due to cells containing almost zero
fluid), we enforce the generated vertices on the edges
of a cell to have a minimum distance of 0.01h to



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2014 7

the cell’s vertices inside the liquid body. Note that
any remaining degenerated triangles/tedrahedra do
not cause problems, because their contribution to the
integral in (10) vanishes. For the numerical quadrature
on the triangles and tetrahedra, we use a three-point
Gaussian and an eight-point Newton-Cotes quadra-
ture rule [43], respectively. For the evaluation of the
surface integrals, the face normals of the triangles are
used as the normal of the boundary.

The simple example in Figure 7 demonstrates the
accuracy achieved by our approach. Considering
the performance, the subgrid accurate treatment of
boundary conditions does not have a significant im-
pact on the total computing time of our method.
The time required for the computation of the ele-
ment matrices for the cells that are intersected by
the fluid/air interface is typically less than 5% of the
time required for one complete time step. From an
implementation point of view, it is worth noting that
the computation of the element matrices, including
triangulation/tetrahedralization and quadrature can
be performed independently for each cell, and thus
can be easily parallelized.

5 MULTIGRID SOLVER
The pressure Poisson equation is solved in each time
step with an efficient geometric multigrid solver,
which exhibits linear time-complexity in the number
of unknowns [21]. Its efficiency is crucial, since with
increasing grid size, the pressure solve quickly be-
comes the major performance bottleneck when less
efficient solvers are used.

A major challenge in the design of geometric multi-
grid solvers is the treatment of complex shaped do-
main boundaries (here, the fluid domain boundary) on
the successively coarser scales. In contrast to common
multigrid schemes on simple shaped (e.g., rectangu-
lar) domains, we have to use modified processes for
the construction of the coarse grid hierarchy and the
algebraic operators on these grids. Our scheme relies
on a specific strategy to generate the coarse grids
incrementally from the fine grid, and uses a varia-
tional principle to generate the transfer and coarse
grid operators. In this way our solver can handle
complex fluid boundaries in a highly efficient manner.

In particular, we address a problem that specifically
arises when the simulation domain is composed of
multiple (locally) separated components (for instance,
separated fluid branches, drops or splashes). In such
situations, separated domain components might get
represented by the same coarse grid cell, when a
canonical coarse grid hierarchy is used. As a con-
sequence, the current error cannot be represented
very well on the coarse grids, which in turn causes
the multigrid convergence to break down. This is
demonstrated in Section 7. We address this problem
by duplicating coarse grid cells at the same geomet-
ric position, with each instance corresponding to a

Fig. 7. Demonstration of second order accurate
boundary conditions for a perturbed liquid in a box: A
bump in the surface (left) is smoothed out after several
seconds of simulation (right). The resulting surface is
perfectly planar. Note that the surface is tracked by a
level-set without particles in this experiment, and that
the blue color indicates fluid cells, rather than depicting
the actual fluid domain.

separated fluid component, similar to [44], [45], [46],
[47]. Conceptually, we build a distinct coarse grid for
each separated fluid component, with the coarse grids
being allowed to overlap. This strategy alleviates the
convergence problem and introduces only little extra
cost when building the multigrid hierarchy.

In each simulation step, the multigrid hierarchy is
rebuilt and the corresponding coarse grid operators
are recomputed. Note that the multigrid hierarchy is
completely separate from the octree data structure
that is used for the representation of the adaptive
octree grid. Cell duplication is controlled by means
of a connectivity graph Gl per multigrid level, which
is constructed on the finest multigrid level l = 0 from
the set of fluid cells, and on the coarser levels l =
1, . . . , lmax by propagating the previous level graph
to the current level along with the grid. The nodes of
each graph Gl correspond to the cells of the grid on
the respective level, and edges in the graph represent
physical connections among these cells. Edges only
exist between nodes corresponding to adjacent cells
that share at least one common vertex. Since the
graphs are only required during construction of the
hierarchy, they do not need to be stored permanently.

Multigrid hierarchy construction starts by creating
the finest level connectivity graph G0. For each fluid
cell a node is created, and two nodes are connected
if the respective fluid cells share at least one common
vertex.

After initialization of the finest level graph, we
build the multigrid hierarchy successively in a fine-
to-coarse process. This process stops at the coarsest
level lmax, as soon as the remaining number of cells
is less than 1000.

In the coarsening procedure, we have to consider
that the finest level grid is an adaptive octree grid
consisting of cells of different size. On the transition
from multigrid level l to level l + 1, we therefore
combine only cells of size 2lh, but copy all larger cells
to the next level.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2014 8

The construction of multigrid level l+ 1 is divided
into the following three steps:

1) Creation of coarse grid cells: Considering an
imaginary lattice with lattice points (2l+1h)Z3,
for each cell of this lattice, we determine the
connectivity components of the subgraph of Gl
induced by the grid cells of size 2lh within this
lattice cell. For each connectivity component, a
coarse grid cell of size 2l+1h is created, which
subsumes the grid cells corresponding to the
respective subgraph. In this way, multiple coarse
grid cells might be created at the same location.
Then, all grid cells with size ≥ 2l+1h are copied
from the level l to level l + 1.

2) Propagation of the connectivity graph: Gl+1 is
obtained by collapsing each subgraph of Gl that
corresponds to a set of merged cells into a single
node.

3) Creation of shared vertices on the coarse grid:
At each vertex position, the subgraph of Gl+1

corresponding to all cells that are incident to
this position is investigated. A shared vertex is
generated for each connectivity component of
this subgraph.

An example illustrating the coarse grid hierarchy
construction according to the specified rules is demon-
strated in Figure 8. Hanging vertices are not shown,
because they are eliminated before the multigrid hi-
erarchy is constructed, as described in Section 6. It
is worth noting that due to the particular coarsening
strategy, no additional hanging vertices are created
in the coarse grid. Furthermore, it can be observed
that duplicate vertices only occur on levels l ≥ 1 and
duplicate cells only on levels l ≥ 2.

The transfer and coarse grid operators are con-
structed as follows: We use full-weighting for the
interpolation operators I ll+1, i.e., values on level l are
tri-linearly interpolated from values on level l + 1.
More precisely, considering the occurrence of du-
plicate coarse grid cells in our advanced multigrid
hierarchy, each cell is merged into exactly one coarse
cell on the next coarser level, and the cell’s vertices
exactly interpolate from and restrict to this coarse
cell’s vertices (see Figure 9). It is important to note
that this scheme also works at the fluid boundary
where coarse cells are only partially ‘filled’ by cells
on the finer level, in that the constructed interpolation
operator always has full rank.

Starting from the linear equation system Lp = b on
the finest level (9), the restriction operators Rl+1

l and
coarse grid operators Ll (L0 ≡ L) are built from fine
to coarse according to

Rl+1
l = (I ll+1)T , (11)

Ll+1 = Rl+1
l LlI

l
l+1, (12)

with (12) being known as Galerkin-based coarsening.
Note that the construction of the operators is purely

Level 0 Level 1

Level 2 Level 3 = lmax

Fig. 8. A 2D example for a multigrid hierarchy. Circles
shaded gray indicate duplicate vertices sharing the
same geometric location, overlapping cells indicate du-
plicate cells. Cell connectivity graphsGl are depicted in
red. Note that for demonstration purposes, the level 0
grid does not strictly adhere to the rules specified in
Section 3, i.e., not all boundary cells are on the finest
octree level.

algebraic, i.e., boundary conditions are automatically
incorporated on the coarse levels. The construction of
the operators follows a variational principle [48], in
that by applying the computed coarse grid correction,
the error is minimized. In particular, in combination
with a converging smoother such as Gauss-Seidel
relaxation, it can be shown that the norm of the error
is monotonically decreasing with each further itera-
tion of the solver, i.e., the convergence of the solver
is guaranteed [49]. As a side note, let us mention
that from a mathematical point of view, the resulting
coarse grid operators can be interpreted as composite
finite element discretizations [50] of the continuous
problem on the coarse grids.

Our solver traverses the multigrid hierarchy ac-
cording to the standard V-cycle scheme. On each
level of the hierarchy, we perform two pre-smoothing
and two post-smoothing (multi-color) Gauss-Seidel
relaxation steps. On the coarsest level lmax, the linear
system is solved using a Jacobi-preconditioned con-
jugate gradient solver. The multigrid solver can be
used as a direct solver as well as a preconditioner
for a conjugate gradient solver, which improved its
performance even further in our experiments. When
used as a preconditioner, we perform one V-cycle per
CG iteration.

In our experiments, we stop the multigrid solver
when the norm of the residual r = b − Lp has been
reduced by a factor of 10−6 (i.e., when ‖ri‖2/‖r0‖2 ≤
10−6, where ri denotes the residual after the ith V-
cycle or CG iteration).



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2014 9

6 IMPLEMENTATION DETAILS

As a consequence of the increasing gap between CPU
and memory speed, main memory access has become
the major bottleneck in numerical simulation on to-
day’s PC architectures, both in terms of limited mem-
ory throughput and high memory access latencies.

In grid-based fluid simulation based on the projec-
tion method, computing time is known to be dom-
inated by the run-time of the linear solver for the
pressure Poisson equation. In particular, for a geo-
metric multigrid solver, the most frequent and most
time-consuming operations are the pre- and post-
smoothing relaxation steps as well as the residual
computation step on each level of the multigrid hi-
erarchy. In each of these steps, the numerical stencil
at each vertex, consisting of (approximately) 33 = 27
floating point values, has to be accessed, leading to a
significant amount of memory traffic when this stencil
is fetched from main memory.

6.1 Cell-based FEM and Multigrid Formulation
To alleviate the aforementioned memory bottleneck,
our implementation is built upon a cell-based formu-
lation of the finite element method and the geometric
multigrid solver. This cell-based formulation is lever-
aged by our particular design choices of using a hex-
ahedral discretization, tri-linear finite elements and
Galerkin-based coarsening. More specifically, these
choices allow us to compute the FEM operators,
including in particular the Poisson operator and its
corresponding multigrid coarse grid operators on a
per-cell basis (rather than a per-vertex basis). During
the computation, the numerical stencil at each vertex
is then assembled on-the-fly from the matrices of the
incident cells. Due to the regular hexahedral shape
of the elements in our adaptive grid, for each FEM
operator, (almost) all elements share the same generic
element matrix (except for scaling with the cell size).
These generic element matrices are pre-computed an-
alytically. On the finest level, the only exception are
elements that are intersected by the fluid/air interface.
Only for those we numerically compute and store
the non-generic element matrices resulting from the
second-order accurate boundary conditions.

For the coarse grid versions of the Poisson operator,
the matrix of each cell is assembled from the matrices
of its associated fine grid cells by means of Galerkin-
based coarsening (see Figure 9). This matrix is equal
to the generic Poisson operator element matrix (except
for scaling with the cell size), if (a) the cell is com-
pletely ‘filled’ by fine grid cells and (b) all of these
cells’ matrices are generic. As a consequence, on the
coarse levels, we only have to compute and store the
matrices of those cells for which one of these two
conditions is not met.

Since the generic element matrices can be assumed
to reside in cache memory, the amount of main mem-

c

f

1 1
2

1
2

1
2

1
2

1
4

1
4

1
4

1
4

Fig. 9. Galerkin-based coarsening with our cell-based
formulation (2D case): The vertices of a fine grid cell f
(green) interpolate from the vertices of its associated
coarse grid cell c (black) using linear/bilinear weights
(purple). The matrix of a coarse grid cell is computed
as a sum of matrices derived from its associated fine
grid cells. The contribution of each fine grid cell is
obtained by substituting the fine grid unknowns by
interpolation from the coarse grid unknowns, and dis-
tributing the equations from the fine grid vertices to the
coarse grid vertices using the same weights.

ory traffic is reduced considerably. Compared to an
implementation where the numerical stencil at each
vertex is fetched from main memory, we observe a
speed-up factor for the multigrid solver between 2
and 3—despite of the increased number of floating
point operations due to the on-the-fly assembly of
the stencil. As an additional benefit, the maximum
memory footprint during the course of a time step is
reduced by 20% to 30%.

It is worth noting that the size of the 27-point (in av-
erage) FEM Poisson stencil should not be considered
a major performance drawback per se (compared to a
size of only 7 for the commonly used uniform grid FD
Poisson stencil). Because the performance bottleneck
is the memory throughput resulting from fetching
pressure values rather than arithmetic throughout, the
large vertex overlap among neighboring stencils alle-
viates the impact on performance to a certain extent.
This is especially true in a parallel implementation.
Consider a uniform grid on a rectangular domain:
Although the FEM stencil is larger than the FD stencil
by a factor of 27/7 ≈ 4, the memory throughput
increases only by a factor of 9/5 ≈ 2 (the size ratio
of the stencils’ 2D footprints) when iterating over the
vertices of the grid due to cache coherence. In a simple
experiment, we could actually verify this factor of
roughly 2 between FEM and FD on our test system.

To efficiently handle hanging vertices occurring in
the adaptive hexahedral discretization, we eliminate
these vertices directly on the finest level, similar to
the approach proposed in [51]. This is achieved by
observing that a hanging vertex is lying inside an
edge or face of a neighboring cell, with the unknown
at the hanging vertex being determined by linear or
bilinear interpolation from the edge or face’s vertices.
Note that in a restricted octree, these vertices are guar-



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2014 10

Fig. 10. Two large-scale liquid simulations: Top: 4000 drops of water fall into a rectangular basin. Each drop has
an extent of up to 30 finest octree level cells. Bottom: A liquid is pumped into a multi-stage water fountain.

anteed to be non-hanging. By replacing all hanging-
vertices with the corresponding non-hanging vertices,
each cell can always be associated with 8 non-hanging
vertices (which may be different from the cell’s geo-
metric vertices). The vertex/cell incidence relationship
is then determined accordingly. To obtain a cell’s ele-
ment matrix from the generic element matrix, we first
substitute the unknowns at the cell’s hanging vertices
with the respective unknowns at its associated non-
hanging vertices, and then distribute the equations
at the hanging vertices to the non-hanging vertices,
using the same weights as are used for linear/bilinear
interpolation (see Figure 4). Since there are 8 possible
positions of a cell with respect to its (imaginary)
parent cell in the octree, and since for each position
at most 6 of the 8 vertices can be hanging, there are
at most 8 · 26 = 512 hanging vertex configurations,
corresponding to at most 512 adapted generic element
matrices. These matrices are pre-computed and stored
in a look-up table, which is then used to assemble
the numerical stencils on-the-fly. The elimination of
hanging vertices leads to a speed-up factor of about
2 compared to continuously handling the hanging
vertices on-the-fly during the computation.

6.2 Parallelization

To exploit the performance available on today’s multi-
core CPU architectures, we have parallelized all parts
of our algorithm where cells or vertices can be pro-
cessed independently. Only the adaptation of the
octree grid, the construction of the multigrid coarse
grid hierarchy (not including the computations of the
coarse grid operators), and the re-initialization of the
level set function using a fast marching technique [33]
are running sequentially. In terms of run-time on
a single core, more than 90% of the algorithm are
parallelized.

For the parallelization of the multi-color Gauss-
Seidel relaxation step, a vertex coloring defining sub-

sets of independent vertices is required. For our adap-
tive octree grid, we construct this vertex coloring
independently for each multigrid level l as follows:
For each vertex, we define its level as the maximum
octree level of its incident cells. Considering each
subset of vertices on the same level lv (l ≤ lv ≤ lmax),
these vertices are lying on a uniform grid with spacing
2lvh, and none of the vertices is incident to a cell
larger than 2lvh. Therefore, this subset can be further
partitioned into subsets of independent vertices using
8 colors. As a consequence, on multigrid level l, at
most 8(lmax − l + 1) colors are required to partition
the vertices into subsets of independent vertices.

All per-cell and per-vertex quantities are stored in
linear arrays, which are accessed by means of cell and
vertex indices. In order to allow for an efficient, paral-
lel ‘traversal’ of the cells and vertices of the adaptive
octree grid and the coarse grid hierarchy, the cells and
vertices of each level are consecutively enumerated
in a particular order, which is determined as follows.
First, all fluid cells and fluid vertices are located prior
to non-fluid cells and vertices, respectively. Consid-
ering that the non-fluid cells and vertices carry a
reduced set of simulation quantities, this allows us to
store all quantities contiguously in memory. Second,
considering the parallelization of the Gauss-Seidel
relaxation, the fluid vertices on each multigrid level
are ordered according to their vertex color as defined
above. In this way, the simulation quantities of each
vertex subset are lying consecutively in memory. To
maintain this particular order after adaptation of the
octree grid, we re-enumerate the cells and the vertices
in each simulation step, and re-order the linear arrays
of per-cell and per-vertex quantities accordingly.

7 RESULTS

To demonstrate the effectiveness of our approach, we
have run two large-scale simulations with up to 34
million elements, which are shown in Figure 10. In



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2014 11

0 1 2 3 4 5 6

100

10−2

10−4

10−6

10−8

10−10

10−12

Time t (min)

R
es

id
ua

l
R

ed
uc

ti
on
‖r

(
t
)
‖ 2

/
‖r

(
0
)
‖ 2

Simple Domain, 13.5M cells

JCG (660)

ICCG (310)

MGCG+ (4)

MGCG− (4)

MG+ (4)

MG− (4)

0 2 4 6 8 10 12 14 16

100

10−2

10−4

10−6

10−8

10−10

10−12

Time t (min)

R
es

id
ua

l
R

ed
uc

ti
on
‖r

(
t
)
‖ 2

/
‖r

(
0
)
‖ 2

Complex Domain, 12.5M cells

JCG (3005)

ICCG (1291)

MGCG+ (12)

MGCG− (22)

MG+ (53)

MG− (120)

Fig. 11. Solver convergence over time. In parentheses
are given the number of iterations (V-cycles or CG
iterations) that were required to achieve a residual
reduction by 10−6 (dashed line). As can be seen,
the MGCG+ solver outperforms the JCG/ICCG solvers
roughly by a factor of 8 to 12. Furthermore, the sec-
ond example demonstrates the necessity of the cell-
duplication strategy in complex scenarios, where we
can observe a speed-up of almost a factor of 2 when
comparing MGCG+ to MGCG− and MG+ to MG−.

addition, we have analyzed the convergence behavior
of our solver in several scenarios and compared it to
a conjugate gradient solver. All simulations and tests
were carried out at double floating point precision on
a single workstation equipped with two Intel Xeon
E5-2643 processors with a total of eight cores running
at 3.3 GHz and 64 GB of RAM.

7.1 Convergence Study
In Figure 11 we showcase the performance of our
multigrid solver for two scenarios exhibiting different
complexities of the simulation domain. In particular,
we compare our multigrid solver, used as a direct
solver (MG) and as a preconditioner for the conju-
gate gradient method (MGCG), to conjugate gradient
solvers with Jacobi (JCG) and incomplete Cholesky
IC(0) preconditioners (ICCG). To demonstrate the ef-
fectiveness of our cell duplication strategy in the
construction of the coarse grid hierarchy, we have
also included the convergence behavior of our multi-
grid solver using a standard coarse grid hierarchy,
which is obtained by merging cells purely based

on their geometric position without considering the
connectivity between cells. Multigrid variants with
cell duplication are marked with a +, whereas variants
without cell duplication are marked with a −. In order
to guarantee a fair comparison, the CG solvers are
optimized for low memory traffic in exactly the same
way (matrix-free) as our MG solver based on the on-
the-fly assembly of the numerical stencils, and also
run in parallel. For the IC(0) preconditioner, forward
and backward substitution are parallelized using the
existing vertex coloring scheme. Furthermore, we
have included the initialization times of the solvers
(e.g., the construction of the coarse grid hierarchy
and the computation of the coarse grid operators
for the multigrid solvers). Note that the MG solvers
without cell duplication require slightly less time for
initialization, because no connectivity graphs have to
be built. When analyzing the IC(0) preconditioned
CG solver, it is also important to note that in our
scenario each CG iteration with IC(0) takes almost
three times longer than with its Jacobi counterpart.
As a consequence, although IC(0) requires less than
half of the iterations, the achieved solver times are
roughly identical.

In the first scenario (‘Simple Domain’) we solve for
the pressure in a solid cube that is almost completely
filled with liquid. Since the liquid covers a convex
domain, no cell-duplicates are created. Therefore, the
coarse grid hierarchy generated by our approach is
identical to a standard hierarchy, thus the direct MG
solvers exhibit the same stable convergence rate of
‖ri+1‖2/‖ri‖2 = 0.03. The very high convergence rate
is not further increased by using the MG solver as a
preconditioner for the CG solver. As a consequence
of the slightly higher initialization time required for
creating a coarse grid hierarchy with connectivity
analysis, in this scenario the MG solvers using the
standard hierarchy are slightly faster. Compared to
the commonly used Jacobi and IC(0) preconditioned
CG solvers, all MG variants are about 6 times faster.

The second scenario (‘Complex Domain’) corre-
sponds to the pressure solve in the fully filled fountain
scenario shown in Figure 1. In contrast to the first
scenario, now our advanced coarse grid hierarchy
exhibits a significant number of cell duplicates due
to the complex shape of the fluid domain, formed by
a multitude of fine branches and separated domain
fragments. For this scenario, our direct MG solver
achieves a stable convergence rate of 0.81 and 0.92 for
the advanced and the standard coarse grid hierarchy,
which clearly demonstrates the effectiveness of our
cell duplication strategy. Note that the decrease of
the convergence rates compared to the first scenario
is fully in-line with multigrid theory, considering the
very complex shape of the simulation domain. Here,
when using MG as a preconditioner, the conver-
gence behavior is significantly improved, leading to
an average residual reduction of 0.33 and 0.53 per



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2014 12

Scene (Time Step) #Fluid Cells
(Uncoarsened)

Max. Domain
Resolution

Timings (min) Memory Usage (GB)

TTotal Tφ TOctr TProj TOther Total Sim MG Octree

Drops (first step) 30.5M (131M) 10243 4.25 1.28 1.16 1.41 0.40 25.4 18.0 1.1 6.3
Drops (longest step) 33.3M (129M) 10243 5.10 1.77 1.38 1.46 0.49 24.8 17.2 1.2 6.4
Drops (last step) 12.0M (124M) 10243 1.34 0.28 0.26 0.69 0.11 6.7 4.6 0.5 1.6
Fountain (beginning) 13.4M (129M) 10242 × 3072 2.89 0.33 0.30 2.13 0.13 8.6 5.9 0.5 2.2
Fountain (last step) 34.1M (391M) 10242 × 3072 4.53 0.69 0.95 2.55 0.34 22.4 14.8 1.2 6.4

TABLE 1
Number of elements, timings and memory footprints for distinct time steps of the two simulations depicted in

Figure 10. From top to bottom, these time steps correspond to the images in Figure 10 (top row, 1st),
Figure 1 (left), Figure 10 (top row, 4th), Figure 1 (right) and Figure 10 (bottom row, 4th).

CG iteration, respectively. Compared to the standard
Jacobi and IC(0) preconditioned CG solvers, the MG
preconditioned CG solver is 12 times faster.

Since the performance advantages of MG over CG
are generally weaker at smaller resolutions, we have
further tested the second scenario at several smaller
resolutions. Here, MG as a preconditioner still proved
to be significantly faster, e.g., by a factor of 6 at a
resolution of 1M cells, and a factor of 3 at a resolution
of 250k cells.

7.2 Performance Analysis

Table 1 lists timings and memory footprints for dis-
tinct time steps for the scenes depicted in Figures
1 and 10. The first column ‘#Fluid Cells’ shows the
number of fluid cells in the respective state of the
adaptive octree grid. To demonstrate the efficacy of
the adaptiveness of the grid, we have also included
in parentheses the number of fluid cells that would be
required without coarsening in the liquid interior. Our
experiments demonstrate (last row of the table) that
by using the octree grid, the number of fluid cells is
reduced by up to 90% compared to using an uncoars-
ened octree grid. ‘Max. Domain Res.’ indicates the
resolution of a uniform hexahedral grid that would
have to be used instead of our creeping grid in order
to run the simulation using the same cell size as in
the refinement band around the liquid boundary. In
the next columns, we specify the total computation
time TTotal, which is composed of the time spent for
level set advection and velocity extrapolation (Tφ),
adaptation of the octree grid (TOctr), the projection
step including construction of the multigrid hierar-
chy, the construction of the coarse grid operators,
and the pressure solve (TProj), and the time spent
in the remaining parts of the simulation (TOther). In
the remaining columns, we specify the maximum
memory footprint of our simulation during the course
of the time step (‘Total’), which is composed out of
three major parts. First, the memory required for all
simulation quantities stored on a per-cell or per-vertex
basis (‘Sim’), such as u, u∗, p, φ, the cell classification
flags, the non-generic matrices of the FEM and coarse

grid operators, as well as the required temporary
CG variables of the MG preconditioned CG solver.
Second, the memory required for the topological en-
coding of the coarse grid hierarchy of the multigrid
solver (‘MG’), not including the finest level (i.e., the
adaptive octree grid). Third, the memory required for
the topological encoding of the adaptive octree grid
(‘Octree’).

The timings given in the table refer to our parallel
implementation. Compared to the algorithm running
on a single core, we achieve a speed-up factor between
5 and 6 on our eight core workstation.

7.3 Octree vs. Uniform Grid
Coarsening the grid in the liquid interior does in-
evitably influence the simulation result compared
to running the simulation on an uncoarsened grid
(corresponding to a uniform grid). To demonstrate
that our coarsening strategy does result in very little
differences, we have performed a comparison for a
dambreak scenario, which is depicted in Figure 12.
The same setup was run twice: First, using our octree
grid as proposed and second, using the same grid
with the difference that no cells are merged in the
liquid interior. Hence the only difference between the
two simulations is the size of the cells in the liquid
interior (in the octree case cells are coarsened up to
size 16h). As can be seen, the major characteristics
of the flow are maintained almost exactly. There are
only minor differences in surface details and small
splashes, which naturally increase over the course
of the simulation due to the accumulation of small
errors.

8 CONCLUSION AND FUTURE WORK

To the best of our knowledge, our work presents the
first multigrid approach for liquid simulation on a
spatially adaptive octree grid using a hexahedral finite
element discretization. By using an octree simulation
grid in combination with finite elements, the number
of simulation elements can be made proportional to
the liquid boundary area, and oscillatory velocity
modes at level transitions can be avoided. The use of



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2014 13

Fig. 12. Two dambreak simulations: Top: With coarsening in the fluids interior (650k to 1.15M cells). Bottom:
Without coarsening (3.75M cells) the grid is equivalent to a uniform grid (≈ 2563). Note that the unevenness in
the splash coming back off the wall is owed to the random placement of level set particles around the surface.

a hexahedral discretization of the simulation domain
severely simplifies the construction of the adaptive
simulation grid, including a consistent hierarchy of
coarse grids for a geometric multigrid solver, and
gives rise to regular numerical stencils and efficient
realizations of multi-level matrix assembly and multi-
grid solve. Our experiments have demonstrated ex-
cellent convergence rates of the multigrid solver used
to enforce incompressibility, enabling efficient simu-
lations of complicated liquid domains consisting of
millions of simulation elements.

A limitation of the current method is the time
step constraint (CFL number = ω) that it imposes.
This constraint is a result of our particular choice of
grid refinement strategy, i.e., the use of a fixed-width
refinement band. In a next step it will be interesting
to explore more sophisticated refinement strategies in
order to loosen the time step constraints and/or to
reduce the number of required cells in the grid. One
possibility would be to locally vary the width of the
refinement band based on the velocities in a close
vicinity around the surface.

ACKNOWLEDGMENT

This work was supported by the European Union
under the ERC Advanced Grant 291372 SaferVis -
Uncertainty Visualization for Reliable Data Discovery.

REFERENCES

[1] A. McAdams, E. Sifakis, and J. Teran, “A parallel multigrid
poisson solver for fluids simulation on large grids,” in Proc.
ACM SIGGRAPH/Eurographics Symposium on Computer Anima-
tion, 2010, pp. 65–74.

[2] K. Museth, J. Lait, J. Johanson, J. Budsberg, R. Henderson,
M. Alden, P. Cucka, D. Hill, and A. Pearce, “OpenVDB:
an open-source data structure and toolkit for high-resolution
volumes,” in ACM SIGGRAPH Courses, 2013, pp. 19:1–19:1.

[3] F. Losasso, F. Gibou, and R. Fedkiw, “Simulating water and
smoke with an octree data structure,” ACM TOG, vol. 23, no. 3,
pp. 457–462, 2004.

[4] R. Ando, N. Thürey, and C. Wojtan, “Highly adaptive liquid
simulations on tetrahedral meshes,” ACM TOG, vol. 32, no. 4,
pp. 103:1–103:10, 2013.

[5] B. Zhu, W. Lu, M. Cong, B. Kim, and R. Fedkiw, “A new grid
structure for domain extension,” ACM TOG, vol. 32, no. 4, pp.
63:1–63:12, 2013.

[6] N. Chentanez, B. E. Feldman, F. Labelle, J. F. O’Brien, and J. R.
Shewchuk, “Liquid simulation on lattice-based tetrahedral
meshes,” in Proc. ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, 2007, pp. 219–228.

[7] M. K. Misztal, K. Erleben, A. Bargteil, J. Fursund, B. B.
Christensen, J. A. Bærentzen, and R. Bridson, “Multiphase
flow of immiscible fluids on unstructured moving meshes,”
in Proc. ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, 2012, pp. 97–106.

[8] P. Clausen, M. Wicke, J. R. Shewchuk, and J. F. O’Brien, “Sim-
ulating liquids and solid-liquid interactions with Lagrangian
meshes,” ACM TOG, vol. 32, no. 2, pp. 17:1–17:15, 2013.

[9] D. Enright, F. Losasso, and R. Fedkiw, “A fast and accurate
semi-Lagrangian particle level set method,” Computers and
Structures, vol. 83, no. 6-7, pp. 479–490, 2005.

[10] M. Kass and G. Miller, “Rapid, stable fluid dynamics for
computer graphics,” in Proc. SIGGRAPH, 1990, pp. 49–57.

[11] N. Foster and D. Metaxas, “Realistic animation of liquids,”
Graphical Models and Image Processing, vol. 58, no. 5, pp. 471–
483, 1996.

[12] J. Stam, “Stable fluids,” in Proc. SIGGRAPH, 1999, pp. 121–128.
[13] N. Foster and R. Fedkiw, “Practical animation of liquids,” in

Proc. SIGGRAPH, 2001, pp. 23–30.
[14] R. Bridson, Fluid Simulation for Computer Graphics. A K Peters,

2008.
[15] D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell, “A hybrid

particle level set method for improved interface capturing,”
Journal of Computational Physics, vol. 183, no. 1, pp. 83–116,
2002.

[16] A. W. Bargteil, T. G. Goktekin, J. F. O’Brien, and J. A. Strain,
“A semi-Lagrangian contouring method for fluid simulation,”
ACM TOG, vol. 25, no. 1, pp. 19–38, 2006.

[17] C. Wojtan, N. Thürey, M. Gross, and G. Turk, “Deforming
meshes that split and merge,” ACM TOG, vol. 28, no. 3, pp.
76:1–76:10, 2009.

[18] T. Brochu, C. Batty, and R. Bridson, “Matching fluid simula-
tion elements to surface geometry and topology,” ACM TOG,
vol. 29, no. 4, pp. 47:1–47:9, 2010.

[19] N. Thürey, C. Wojtan, M. Gross, and G. Turk, “A multiscale
approach to mesh-based surface tension flows,” ACM TOG,
vol. 29, no. 4, pp. 48:1–48:10, 2010.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2014 14

[20] C. Wojtan, M. Müller-Fischer, and T. Brochu, “Liquid simula-
tion with mesh-based surface tracking,” in ACM SIGGRAPH
Courses, 2011, pp. 8:1–8:84.

[21] W. Hackbusch, Multi-Grid Methods and Applications. Springer,
1985.

[22] N. Chentanez and M. Müller, “A multigrid fluid pressure
solver handling separating solid boundary conditions,” in
Proc. ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, 2011, pp. 83–90.

[23] ——, “Real-time Eulerian water simulation using a restricted
tall cell grid,” ACM TOG, vol. 30, no. 4, pp. 82:1–82:10, 2011.

[24] M. Lentine, W. Zheng, and R. Fedkiw, “A novel algorithm for
incompressible flow using only a coarse grid projection,” ACM
TOG, vol. 29, no. 4, pp. 114:1–114:9, 2010.

[25] B. E. Feldman, J. F. O’Brien, B. M. Klingner, and T. G.
Goktekin, “Fluids in deforming meshes,” in Proc. ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, 2005,
pp. 255–259.

[26] B. M. Klingner, B. E. Feldman, N. Chentanez, and J. F. O’Brien,
“Fluid animation with dynamic meshes,” ACM TOG, vol. 25,
no. 3, pp. 820–825, 2006.

[27] C. W. Hirt, A. A. Amsden, and J. L. Cook, “An arbitrary
Lagrangian-Eulerian computing method for all flow speeds,”
Journal of Computational Physics, vol. 135, no. 2, pp. 203–216,
1997.

[28] J. U. Brackbill and H. M. Ruppel, “FLIP: A method for
adaptively zoned, particle-in-cell calculations of fluid flows
in two dimensions,” Journal of Computational Physics, vol. 65,
no. 2, pp. 314–343, 1986.

[29] Y. Zhu and R. Bridson, “Animating sand as a fluid,” ACM
TOG, vol. 24, no. 3, pp. 965–972, 2005.

[30] S. Popinet, “Gerris: a tree-based adaptive solver for the in-
compressible Euler equations in complex geometries,” Journal
of Computational Physics, vol. 190, no. 2, pp. 572–600, 2003.

[31] B. Houston, M. B. Nielsen, C. Batty, O. Nilsson, and K. Museth,
“Hierarchical RLE level set: A compact and versatile de-
formable surface representation,” ACM TOG, vol. 25, no. 1,
pp. 151–175, 2006.

[32] D. L. Brown, R. Cortez, and M. L. Minion, “Accurate projec-
tion methods for the incompressible Navier-Stokes equations,”
Journal of Computational Physics, vol. 168, no. 2, pp. 464 – 499,
2001.

[33] S. Osher and R. Fedkiw, Level set methods and dynamic implicit
surfaces. Springer, 2003.

[34] P. M. Gresho, R. L. Sani, and M. S. Engelman, Incompressible
Flow and the Finite Element Method: Isothermal Laminar Flow.
Wiley, 2000.

[35] C. Batty, F. Bertails, and R. Bridson, “A fast variational frame-
work for accurate solid-fluid coupling,” ACM TOG, vol. 26,
no. 3, pp. 100:1–100:7, 2007.

[36] F. Gibou, R. P. Fedkiw, L.-T. Cheng, and M. Kang, “A second-
order-accurate symmetric discretization of the poisson equa-
tion on irregular domains,” Journal of Computational Physics,
vol. 176, no. 1, pp. 205–227, 2002.

[37] J. Nitsche, “Über ein Variationsprinzip zur Lösung von
Dirichlet-Problemen bei Verwendung von Teilräumen, die
keinen Randbedingungen unterworfen sind,” Abhandlungen
aus dem Mathematischen Seminar der Universität Hamburg,
vol. 36, no. 1, pp. 9–15, 1971.

[38] J. Dolbow and I. Harari, “An efficient finite element method
for embedded interface problems,” International Journal for
Numerical Methods in Engineering, vol. 78, no. 2, pp. 229–252,
2009.

[39] I. Harari and J. Dolbow, “Analysis of an efficient finite element
method for embedded interface problems,” Computational Me-
chanics, vol. 46, no. 1, pp. 205–211, 2010.

[40] C. Min and F. Gibou, “Geometric integration over irregular
domains with application to level-set methods,” Journal of
Computational Physics, vol. 226, no. 2, pp. 1432–1443, 2007.

[41] J. L. Hellrung Jr., L. Wang, E. Sifakis, and J. M. Teran, “A
second order virtual node method for elliptic problems with
interfaces and irregular domains in three dimensions,” Journal
of Computational Physics, vol. 231, no. 4, pp. 2015–2048, 2012.

[42] W. E. Lorensen and H. E. Cline, “Marching cubes: A high reso-
lution 3D surface construction algorithm,” in Proc. SIGGRAPH,
1987, pp. 163–169.

[43] A. Stroud, Approximate calculation of multiple integrals.
Prentice-Hall, 1971.

[44] M. J. Aftosmis, M. J. Berger, and G. Adomavicius, “A parallel
multilevel method for adaptively refined Cartesian grids with
embedded boundaries, AIAA 2000-0808,” in Proc. 38th AIAA
Aerospace Sciences Meeting and Exhibit, 2000.

[45] J. Teran, E. Sifakis, S. Blemker, V. Ng-Thow-Hing, C. Lau, and
R. Fedkiw, “Creating and simulating skeletal muscle from the
visible human data set,” IEEE TVCG, vol. 11, no. 3, pp. 317–
328, 2005.

[46] M. Nesme, P. G. Kry, L. Jeřábková, and F. Faure, “Preserving
topology and elasticity for embedded deformable models,”
ACM TOG, vol. 28, no. 3, pp. 52:1–52:9, 2009.

[47] R. Crockett, P. Colella, and D. Graves, “A Cartesian grid
embedded boundary method for solving the Poisson and
heat equations with discontinuous coefficients in three dimen-
sions,” Journal of Computational Physics, vol. 230, no. 7, pp.
2451–2469, 2011.

[48] W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid
Tutorial, 2nd ed. SIAM, 2000.

[49] U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrid. Aca-
demic Press, 2001.

[50] F. Liehr, T. Preusser, M. Rumpf, S. Sauter, and L. O. Schwen,
“Composite finite elements for 3D image based computing,”
Computing and Visualization in Science, vol. 12, no. 4, pp. 171–
188, 2009.

[51] W. Wang, “Special bilinear quadrilateral elements for locally
refined finite element grids,” SIAM Journal on Scientific Com-
puting, vol. 22, no. 6, pp. 2029–2050, 2000.

Florian Ferstl received his MSc in computer
science ‘with distinction’ from the Technische
Universität München in 2011. Since 2012,
he is a PhD student at the Technische Uni-
versität München in the Computer Graphics
and Visualization Group headed by professor
Rüdiger Westermann. His research interests
include physics-based simulation of fluids,
finite element methods, multigrid methods,
interactive flow visualization and GPU com-
puting.

Rüdiger Westermann studied computer sci-
ence at the Technical University Darmstadt,
Germany. He pursued his Doctoral thesis on
multiresolution techniques in volume render-
ing, and he received a PhD in computer sci-
ence from the University of Dortmund, Ger-
many. In 2002, he was appointed the chair
of computer graphics and visualization at the
Technical University Munich. His research
interests include scalable simulation and vi-
sualization algorithms, GPU computing, real-

time rendering of large data, and uncertainty visualization.

Christian Dick is a PostDoc in the Computer
Graphics and Visualization Group at the
Technische Universität München, Germany.
He received a diploma in computer science
in July 2007 and a PhD in January 2012,
both from Technische Universität München.
His research is focussed on interactive sim-
ulation and visualization methods, including
physics-based simulation of deformable ob-
jects and fluids, simulation and visualization
in the context of medical applications, as well

as the visualization of very large scientific data sets.


