

Large-Scale Liquid Simulation on Adaptive Hexahedral Grids

Florian Ferstl, Rüdiger Westermann and Christian Dick July 22, 2014

Introduction & Related Work

- Goal: Large-scale liquid simulation
 - Adaptive octree grid
 - Effective resolutions $\geq 1024^3$
- Challenges
 - Memory consumption
 - Consistent, adaptive discretization
 - Performance (bottleneck: pressure solve)
- Our method combines
 - Adaptive octree grid
 - Multigrid solver (for irregular, adaptive grid)
 - FEM discretization (hexahedral elements):
 Element matrix based formulation

Losasso et al., 2004

McAdams et al., 2010

Ando et al., 2013

- Adaptive Octree Grid
- FEM Discretization & element matrices
- Hanging Vertices
- Second Order Boundary Conditions
- Multigrid Solver
- Results

Adaptive Octree Grid

- Refinement strategy
 - Symmetric refinement band around surface (~5 cells wide)
 - Interior is held as coarse as possible
 - Octree is **restricted** to make resolution degrade smoothly towards interior
- Grid adapted after every surface advection step

Grid Example

Uncoarsened

 octree
 (= uniform grid),
 Resolution: 256³

Octree,
 Effective
 resolution: 256³

- Adaptive Octree Grid
- FEM Discretization & element matrices
- Hanging Vertices
- Second Order Boundary Conditions
- Multigrid Solver
- Results

Discretization

• Navier-Stokes Equations

$$\dot{\boldsymbol{u}} = -\boldsymbol{u}\cdot\nabla\boldsymbol{u} + \frac{\mu}{\rho}\Delta\boldsymbol{u} - \frac{1}{\rho}\nabla p + \boldsymbol{g}$$

Pressure Poisson Equation

 $\frac{1}{\rho}\Delta p = \frac{1}{\Delta t}\nabla \cdot \boldsymbol{u}^* \quad \text{on }\Omega$ $p \quad \text{prescribed on }\Gamma_{\text{Air}}$ $\boldsymbol{n} \cdot \boldsymbol{u}_{\Gamma} \quad \text{prescribed on }\Gamma_{Wall}$

- Time splitting:
 - Advection: Semi-Lagrange
 - Diffusion (Optional): FEM
 - External forces: FEM
 - Projection: FEM
- Liquid surface tracked with (particle-) level-set

Finite Element Discretization

• Tri-linear ansatz functions ϕ_i for u and p \rightarrow Co-located grid with all DOFs at cell vertices

•
$$\frac{1}{\rho}\Delta p = \frac{1}{\Delta t}\nabla \cdot \boldsymbol{u}^*$$

$$Lp = D\boldsymbol{u}^* + B(\boldsymbol{u}^* - \boldsymbol{u}_{\Gamma})$$

• Entries of linear operators FEM are given by integration over ansatz functions, e.g. for *L*:

$$(L)_{i,j} = \int_{\Omega} \nabla \phi_i \cdot \nabla \phi_j$$
$$= \sum_{e \in \Omega} \int_e \nabla \phi_i \cdot \nabla \phi_j$$

Contribution of *e* to *L*

ТШТ

FEM Element Matrices

• Every FEM operator can be expressed as a sum of *element matrices:*

$$L = \sum_{e} \hat{L}^{e} = \sum_{e} L^{e} \qquad \text{sum of symmetric} \\ 8x8 \text{ matrices (in 3D)} \end{cases}$$

- *L* is sparse
- The \hat{L}^e are **sparse** and **equal** (up to a cell-size scaling factor and row/column permutation)
- Element matrices $L^e \in \mathbb{R}^{8 \times 8}$
 - \rightarrow A single representative can be analytically pre-computed
 - \rightarrow Entries of L can be assembled on the fly from this representative

$$L = L^1 \widehat{+} \dots \, \widehat{+} L^6$$

ТШТ

- Adaptive Octree Grid
- FEM Discretization & element matrices
- Hanging Vertices
- Second Order Boundary Conditions
- Multigrid Solver
- Results

Hanging Vertices

- Hanging vertices at grid level transitions are constrained to tri-linearly interpolated values
 - New basis functions are linear combinations of original basis functions
 - Formally:
 - *I*: Interpolation operator (non-hanging vertices to all vertices)
 - *L'*: "unconstrained FEM operator" (treating hanging vertices as DOFs)
 - Hanging vertex elimination: $L = I^T L' I$

Hanging Vertices

- Hanging vertex elimination: $L = I^T L' I$
- This can be done on element matrix level!
 - L^e': relates the geometrically adjacent vertices of its cell
 - $L^e = (I^e)^T L^{e'} I^e$ (all 8x8 matrices in 3D)
 - L^e : relates the logically adjacent vertices of its cell
- Different hanging vertex configurations possible
 - \rightarrow Instead of one precomputed L^e , lookup table with 512 precomputed L^e s

ТШ

- Adaptive Octree Grid
- FEM Discretization & element matrices
- Hanging Vertices
- Second Order Boundary Conditions
- Multigrid Solver
- Results

Second Order Boundary Conditions

ПΠ

- Second order accurate BCs are essential for animation
- Ghost fluid method not applicable to the FEM discretization
- Our solution: An embedded interface method
 - Second order accurate
 - Currently only Γ_{Air} treated with second order accuracy

Boundaries: Formulation

- Do not fix pressure at any vertices
- Add penalty term to enforce p = 0 at Γ_{Air} in a variational sense
- Restrict integration to fluid filled portion of cells and the corresponding boundary:

$$(L)_{i,j} = \int_{\Omega} \nabla \phi_i \cdot \nabla \phi_j + \int_{\Gamma_{\text{Air}}} [\dots],$$

Boundaries: Computation

- Changes only affect element matrices in boundary cells
- Compute those at runtime
 - Triangulate / tetrahedralize boundary cells using an extended, marching cubes style lookup table
 - Numerically integrate terms over the resulting tets / triangles
- Store element matrices explicitly (only) for boundary cells

Second Order Boundaries

ПЛ

- Adaptive Octree Grid
- FEM Discretization & element matrices
- Hanging Vertices
- Second Order Boundary Conditions
- Multigrid Solver
- Results

Multigrid Solver

- Define interpolation operators I_{2h}^h (tri-linear interpolation)
- Compute coarse grid operators according to

$$L_{2h} = \left(I_{2h}^h\right)^T L_h I_{2h}^h$$

- Solver performs standard V-Cycles
 - Gauss-Seidel smoother, PCG on coarsest level
 - MG efficient and stable if used as standalone solver, but even faster if used as preconditioner for CG

Element Matrix Coarsening

- Galerkin-based coarsening can be done on element matrix level!
 - All coarse grid operators can be written as sum of element matrices L_l^e
 - On coarser levels, these are purely mathematic constructs
- Each coarse grid element matrix can be computed from its children fine grid element matrices

A few more things...

- Optional MG extension: Cell duplication
 - Complex, branching domains are often represented poorly on coarse grids
 (→ bad solver convergence)
 - Duplicate cells (and vertices) where necessary using a connectivity graph to track topology
- Parallelization: 90% parallelized (in terms of run-time on a singlecore)

ТШП

- Adaptive Octree Grid
- FEM Discretization & element matrices
- Hanging Vertices
- Second Order Boundary Conditions
- Multigrid Solver
- Results

Solver Convergence

- Simple Domain: Standing water in a box
- Complex Domain:

More Results

- Fountain: up to 34M adaptive cells, 25GB memory, effective resolution 1024² x 3072, < 5 min per time-step
- 4000 Drops: up to 33M adaptive cells, 22GB memory, effective resolution 1024³, < 5 min per time step

Conclusion

- Liquid simulation:
 - Adaptive octree grid
 - Multigrid solver
 - FEM discretization
- Limitations & future work
 - Accurate wall boundaries
 - Grid refinement strategy

Additional example: FLIP simulation (over 100M particles) with octree background grid

Thats all, thanks!

