
Large-Scale Liquid Simulation on Adaptive

Hexahedral Grids

Florian Ferstl, Rüdiger Westermann and Christian Dick

July 22, 2014

Introduction & Related Work

• Goal: Large-scale liquid simulation

 Adaptive octree grid

 Effective resolutions ≥ 1024³

• Challenges

 Memory consumption

 Consistent, adaptive discretization

 Performance (bottleneck: pressure solve)

• Our method combines

 Adaptive octree grid

 Multigrid solver (for irregular, adaptive grid)

 FEM discretization (hexahedral elements):

Element matrix based formulation

Ando et al., 2013

McAdams et al., 2010

Losasso et al., 2004

Octree

Multigrid

Octree (Tetrahedra)

• Adaptive Octree Grid

• FEM Discretization & element matrices

• Hanging Vertices

• Second Order Boundary Conditions

• Multigrid Solver

• Results

Outline

Adaptive Octree Grid

• Refinement strategy

 Symmetric refinement band around surface (~5 cells wide)

 Interior is held as coarse as possible

 Octree is restricted to make resolution degrade smoothly towards interior

• Grid adapted after every surface advection step

Fluid

Wall

Slice of 3D Grid

Grid Example

• Uncoarsened

octree

(= uniform grid),

Resolution: 256³

• Octree,

Effective

resolution: 256³

Center Slice of 3D Grid

• Adaptive Octree Grid

• FEM Discretization & element matrices

• Hanging Vertices

• Second Order Boundary Conditions

• Multigrid Solver

• Results

Outline

Discretization

• Navier-Stokes Equations

 𝒖 = −𝒖 ⋅ 𝛻𝒖 +
𝜇

𝜌
Δ𝒖 −

1

𝜌
𝛻𝑝 + 𝒈

• Pressure Poisson Equation

1

𝜌
Δ𝑝 =

1

Δ𝑡
𝛻 ⋅ 𝒖∗ on Ω

𝑝 prescribed on ΓAir

𝒏 ⋅ 𝒖Γ prescribed on Γ𝑊𝑎𝑙𝑙

• Time splitting:

 Advection: Semi-Lagrange

 Diffusion (Optional): FEM

 External forces: FEM

 Projection: FEM

• Liquid surface tracked with (particle-) level-set

𝛀
𝚪𝐀𝐢𝐫

𝚪𝐖𝐚𝐥𝐥

Finite Element Discretization

• Tri-linear ansatz functions 𝜙𝑖 for 𝒖 and 𝑝

 Co-located grid with all DOFs at cell vertices

•
1

𝜌
Δ𝑝 =

1

Δ𝑡
𝛻 ⋅ 𝒖∗

↓

𝐿𝑝 = 𝐷𝒖∗ + 𝐵 𝒖∗ − 𝒖Γ

• Entries of linear operators FEM

are given by integration over

ansatz functions, e.g. for 𝐿:

𝐿 𝑖,𝑗 =
Ω

𝛻𝜙𝑖 ⋅ 𝛻𝜙𝑗

=

𝑒∈Ω

𝑒

𝛻𝜙𝑖 ⋅ 𝛻𝜙𝑗

𝑖

𝜙𝑖

Contribution of 𝑒 to 𝐿

“Hat function” (in 2D)

FEM Element Matrices

• Every FEM operator can be expressed as a sum of element matrices:

𝐿 =

𝑒

 𝐿𝑒

• 𝐿 is sparse

• The 𝐿𝑒 are sparse and equal (up to a cell-size scaling factor and

row/column permutation)

• Element matrices 𝐿𝑒 ∈ ℝ8×8

 A single representative can be analytically pre-computed

 Entries of L can be assembled on the fly from this representative

𝐿1 𝐿2 𝐿4𝐿3

𝐿5 𝐿6
𝐿 = 𝐿1 + . . . +𝐿6

=

𝑒

𝐿𝑒 sum of symmetric
8x8 matrices (in 3D)

• Adaptive Octree Grid

• FEM Discretization & element matrices

• Hanging Vertices

• Second Order Boundary Conditions

• Multigrid Solver

• Results

Outline

Hanging Vertices

• Hanging vertices at grid level transitions are constrained to

tri-linearly interpolated values

 New basis functions are linear combinations of original basis functions

 Formally:

- 𝐼: Interpolation operator (non-hanging vertices to all vertices)

- 𝐿′: “unconstrained FEM operator” (treating hanging vertices as DOFs)

- Hanging vertex elimination: 𝐿 = 𝐼𝑇𝐿′𝐼

0.50.5

0.5

0.5

1

1 1

1

1

1111

1

1

1
𝐼

Split cell

Hanging Vertices

• Hanging vertex elimination: 𝐿 = 𝐼𝑇𝐿′𝐼

• This can be done on element matrix level!

 𝐿𝑒′: relates the geometrically adjacent vertices of its cell

 𝐿𝑒 = (𝐼𝑒)𝑇 𝐿𝑒
′
𝐼𝑒 (all 8𝑥8 matrices in 3D)

 𝐿𝑒 : relates the logically adjacent vertices of its cell

• Different hanging vertex configurations possible

 Instead of one precomputed 𝐿𝑒, lookup table with 512 precomputed 𝐿𝑒s

𝐿𝑒′ 𝐿𝑒

0.5

0.5

0.50.5

1

1

𝐼𝑒

• Adaptive Octree Grid

• FEM Discretization & element matrices

• Hanging Vertices

• Second Order Boundary Conditions

• Multigrid Solver

• Results

Outline

Second Order Boundary Conditions

• Second order accurate BCs are essential for animation

• Ghost fluid method not applicable to the FEM discretization

• Our solution: An embedded interface method

 Second order accurate

 Currently only Γ𝐴𝑖𝑟 treated with second order accuracy

𝚪𝐀𝐢𝐫

𝚪𝐖𝐚𝐥𝐥

𝛀
𝚪𝐀𝐢𝐫

𝚪𝐖𝐚𝐥𝐥

𝛀
First order Second order ΓAir

𝚪𝐀𝐢𝐫

𝚪𝐖𝐚𝐥𝐥

𝛀

Boundaries: Formulation

• Do not fix pressure at any vertices

• Add penalty term to enforce 𝑝 = 0 at ΓAir in a variational sense

• Restrict integration to fluid filled portion of cells and the

corresponding boundary:

𝐿 𝑖,𝑗 =
Ω

𝛻𝜙𝑖 ⋅ 𝛻𝜙𝑗 +
ΓAir

[…] , 𝐵 𝑖,𝑗 =
ΓWall

[…]

Pressure DOF Pressure Fixed

𝚪𝐀𝐢𝐫

𝚪𝐖𝐚𝐥𝐥

𝛀
First order Second order ΓAir

Boundaries: Computation

• Changes only affect element matrices in boundary cells

• Compute those at runtime

 Triangulate / tetrahedralize boundary cells using an extended, marching

cubes style lookup table

 Numerically integrate terms over the resulting tets / triangles

• Store element matrices explicitly (only) for boundary cells

𝚪𝐀𝐢𝐫

𝚪𝐖𝐚𝐥𝐥

𝛀
𝚪𝐀𝐢𝐫

𝚪𝐖𝐚𝐥𝐥

𝛀
First order Second order ΓAir

Pressure DOF Pressure Fixed

Second Order Boundaries

• Adaptive Octree Grid

• FEM Discretization & element matrices

• Hanging Vertices

• Second Order Boundary Conditions

• Multigrid Solver

• Results

Outline

Multigrid Solver

• Galerkin-based coarsening

 Define coarse grids

 Define interpolation operators 𝐼2ℎ
ℎ (tri-linear interpolation)

 Compute coarse grid operators according to

𝐿2ℎ = 𝐼2ℎ
ℎ 𝑇

𝐿ℎ 𝐼2ℎ
ℎ

• Solver performs standard V-Cycles

 Gauss-Seidel smoother, PCG on coarsest level

 MG efficient and stable if used as standalone solver,

but even faster if used as preconditioner for CG

Level 0 Level 1 Level 2 Level 3

Level 0

𝐿1
1𝐿0

3

𝐿0
1𝐿0

0

𝐿0
2

𝐿1
0

Level 1

Element Matrix Coarsening

• Galerkin-based coarsening can be done on element matrix level!

 All coarse grid operators can be written as sum of element matrices 𝐿𝑙
𝑒

 On coarser levels, these are purely mathematic constructs

• Each coarse grid element matrix can be computed

from its children fine grid element matrices

𝐿1
0 = 𝐼0

𝑇
𝐿0
0𝐼0 + 𝐼1

𝑇
𝐿0
1 𝐼1 + 𝐼2

𝑇
𝐿0
2𝐼2

=

A few more things…

• Optional MG extension: Cell duplication

 Complex, branching domains are often represented poorly on coarse grids

(bad solver convergence)

 Duplicate cells (and vertices) where necessary using a connectivity graph

to track topology

• Parallelization: 90% parallelized (in terms of run-time on a single-

core)

• Adaptive Octree Grid

• FEM Discretization & element matrices

• Hanging Vertices

• Second Order Boundary Conditions

• Multigrid Solver

• Results

Outline

Solver Convergence

• Simple Domain:

Standing water

in a box

• Complex Domain:

More Results

• Fountain: up to 34M adaptive cells, 25GB memory,

effective resolution 1024² x 3072, < 5 min per time-step

• 4000 Drops: up to 33M adaptive cells, 22GB memory,

effective resolution 1024³, < 5 min per time step

Conclusion

• Liquid simulation:
 Adaptive octree grid

 Multigrid solver

 FEM discretization

• Limitations &

future work

 Accurate wall boundaries

 Grid refinement strategy

 …

Additional example: FLIP simulation (over
100M particles) with octree background grid

Thats all, thanks!

