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Introduction & Related Work

« (Goal: Large-scale liquid simulation
— Adaptive octree grid
—  Effective resolutions > 10243

« Challenges
—  Memory consumption
—  Consistent, adaptive discretization
—  Performance (bottleneck: pressure solve)

Our method combines
— Adaptive octree grid
—  Multigrid solver (for irregular, adaptive grid)
—  FEM discretization (hexahedral elements):
Element matrix based formulation

Losasso et al., 2004

Multigrid

McAdams et al., 2010
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Adaptive Octree Grid TUTI

 Refinement strategy

—  Symmetric refinement band around surface (~5 cells wide)
— Interior is held as coarse as possible
—  Octree is restricted to make resolution degrade smoothly towards interior

« Grid adapted after every surface advection step

Slice of 3D Grid



G rid Example Center Slice of 3D Grid

« Uncoarsened
octree
(= uniform grid),
Resolution: 2563

 Octree,
Effective
resolution: 2563




Outline TUT

« Adaptive Octree Grid

* | FEM Discretization & element matrices
* Hanging Vertices

« Second Order Boundary Conditions

* Multigrid Solver

* Results




Discretization um

 Navier-Stokes Equations
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 Pressure Poisson Equation
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« Time splitting:
— Advection: Semi-Lagrange
—  Diffusion (Optional): FEM
—  External forces: FEM
—  Projection: FEM

« Liquid surface tracked with (particle-) level-set




Finite Element Discretization

« Tri-linear ansatz functions ¢; for u and p
- Co-located grid with all DOFs at cell vertices
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Lp =Du* + B(u* — ur)
* Entries of linear operators FEM

are given by integration over
ansatz functions, e.g. for L:

“Hat function” (in 2D)
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FEM Element Matrices TUT

 Every FEM operator can be expressed as a sum of element matrices:
I = z fe |= z 1e| sum of symmetric
8x8 matrices (in 3D)
e e
« Lissparse

- The L are sparse and equal (up to a cell-size scaling factor and
row/column permutation)

«  Element matrices L? € R83*8
— A single representative can be analytically pre-computed
— Entries of L can be assembled on the fly from this representative
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Hanging Vertices TLUT

 Hanging vertices at grid level transitions are constrained to
tri-linearly interpolated values
— New basis functions are linear combinations of original basis functions
—  Formally:
- I Interpolation operator (hon-hanging vertices to all vertices)
- L': “unconstrained FEM operator” (treating hanging vertices as DOFs)
- Hanging vertex elimination: L =I7L'I
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Hanging Vertices TLUT

- Hanging vertex elimination: L = ITL'I

* This can be done on element matrix level!
—  Lf': relates the geometrically adjacent vertices of its cell
- Le=(®)TLeIe (all 8x8 matrices in 3D)
— L : relates the logically adjacent vertices of its cell

« Different hanging vertex configurations possible
— Instead of one precomputed L¢, lookup table with 512 precomputed L°s
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Second Order Boundary Conditions TUTI

« Second order accurate BCs are essential for animation
« Ghost fluid method not applicable to the FEM discretization

Qur solution: An embedded interface method
— Second order accurate
—  Currently only I'y;,- treated with second order accuracy

First order Second order Ty;,

o] | |

I‘Air

Q| |




Boundaries: Formulation

Do not fix pressure at any vertices

Add penalty term to enforce p = 0 at ['y;, in a variational sense
Restrict integration to fluid filled portion of cells and the
corresponding boundary:

i ([
(L)) = j.qui vyl [ 1) Bj=[  []
l-‘Air l-‘Wall
First order Second order Ty;,

) )

@ Pressure DOF @ Pressure Fixed



Boundaries: Computation TUTI

« Changes only affect element matrices in boundary cells

« Compute those at runtime
— Triangulate / tetrahedralize boundary cells using an extended, marching
cubes style lookup table
—  Numerically integrate terms over the resulting tets / triangles

« Store element matrices explicitly (only) for boundary cells

First order Second order Ty;,

() .Q++

@ Pressure DOF @ Pressure Fixed



Second Order Boundaries TUT




Outline TUT

« Adaptive Octree Grid

 FEM Discretization & element matrices
* Hanging Vertices

« Second Order Boundary Conditions

* | Multigrid Solver

* Results




Multigrid Solver

« (Galerkin-based coarsening

—  Define coarse grids

Level O Level 1 Level 2 Level 3

—  Define interpolation operators Ié‘h (tri-linear interpolation)
—  Compute coarse grid operators according to

Lyp = (Igh)TLh I}

« Solver performs standard V-Cycles
—  Gauss-Seidel smoother, PCG on coarsest level
— MG efficient and stable if used as standalone solver,
but even faster if used as preconditioner for CG



Element Matrix Coarsening

TUTI

Galerkin-based coarsening can be done on element matrix level!
All coarse grid operators can be written as sum of element matrices L{
On coarser levels, these are purely mathematic constructs

Each coarse grid element matrix can be computed

from its children fine grid element matrices

T T T
LY =1 Lyl° + 1" LoI" + 17 LgI?

Level O

Level 1



A few more things... TLUT

« Optional MG extension: Cell duplication
—  Complex, branching domains are often represented poorly on coarse grids
(= bad solver convergence)

— Duplicate cells (and vertices) where necessary using a connectivity graph
to track topology

« Parallelization: 90% parallelized (in terms of run-time on a single-
core)
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Solver Convergence

« Simple Domain:
Standing water
in a box

« Complex Domain:

Residual Reduction [|7(t) [l /|| 7(0)]lo

Residual Reduction || 7(t)[lo /| (0) [l
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More Results

«  Fountain: up to 34M adaptive cells, 25GB memory,
effective resolution 10242 x 3072, < 5 min per time-step

« 4000 Drops: up to 33M adaptive cells, 22GB memory,
effective resolution 10243, < 5 min per time step




Conclusion

* Liquid simulation:
— Adaptive octree grid
—  Multigrid solver
—  FEM discretization

 Limitations &

future work
— Accurate wall boundaries
—  Grid refinement strategy

Additional example: FLIP simulation (over
100M particles) with octree background grid
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