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Figure 1: Intrinsic flow simulations on deforming surfaces via a semi-Lagrangian closest point method. At a resolution

corresponding to a 3203 Cartesian grid, simulation and rendering takes less than 120 ms per time step.

Abstract

We present an Eulerian method for the real-time simulation of intrinsic fluid dynamics effects on deforming

surfaces. Our method is based on a novel semi-Lagrangian closest point method for the solution of partial

differential equations on animated triangle meshes. We describe this method and demonstrate its use to com-

pute and visualize flow and wave propagation along such meshes at high resolution and speed. Underlying

our technique is the efficient conversion of an animated triangle mesh into a time-dependent implicit repre-

sentation based on closest surface points. The proposed technique is unconditionally stable with respect to the

surface deformation and, in contrast to comparable Lagrangian techniques, its precision does not depend on

the level of detail of the surface triangulation.

Categories and Subject Descriptors (according to ACM CCS): Simulation and Modeling [I.6.8]: Types of
Simulation——Parallel ComputerGraphics [I.3.7]: Three-DimensionalGraphics andRealism——Raytracing
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1. Introduction

Solving partial differential equations (PDEs) on surfaces
embedded in three-dimensional space is an important
ingredient in many computer graphics applications, in-
cluding, for instance, texture synthesis [Tur91], fluid sim-
ulation [Sta03] or gradient-domain image processing
[CLB∗09]. While most existing techniques consider only
static surfaces, in some recent works it was raised the
importance of solving PDEs on deforming surfaces. A
practical example can be found in the context of fluid
simulation, where free boundary surfaces resulting from
coarse simulations are enriched in a post-process by
high-frequency details [KTT13]. These details are either
to costly to be simulated in 3Dor they cannot be captured
by the underlying physical model. Up-resing techniques
can considerably increase the apparent resolution, and
they give a high degree of control over the resulting sim-
ulations because they preserve the coarse flow features.
Since the post-process only requires keeping track of the
free surface part of the fluid, this also has the beneficial
side effect that the problem size is vastly reduced.

Considering a deforming simulation domain, it is
worthwhile to classify the available algorithms for solv-
ing PDEs on such domains according to the time depen-
dence of the employed discretization. On one side of the
spectrum there are purely Eulerian methods, based on
a sampling that remains fixed in the three-dimension-
al embedding space. These techniques often employ im-
plicit surface representations and provide a very natural
coupling to fully three-dimensional Eulerian simulations
[KTT13]. On the other side there are purely Lagrangian
methods, employing a dynamic sampling that follows the
surface movement and the evolution of the simulated
properties on the surface at the same time. Most exist-
ing techniques are hybrids, however, which employ, for
example, an Eulerian fluid simulation on a Lagrangian
grid [ATBG08,TWGT10].

The algorithm we propose utilizes semi-Lagrangian
discretization schemes and a Lagrangian representation
of the surface deformation. We still consider it an Eule-
rian technique, because it carries out the simulation on
a static simulation grid. To the best of our knowledge,
it is the first real-time Eulerian method for the solution
of PDEs involving intrinsic differential operators on de-
forming surfaces. It is based on the closest point method
(CPM) [RM08], a so-called embedding technique for the
solution of PDEs on surfaces, which recently gained at-
tention in the computer graphics community.

Building upon the work of Hong, Auer, Kim and co-
workers [HZQW10, AMT∗12, KTT13], we contribute a
semi-Lagrangian closest point method (SLCPM) for the
interactive simulation of fluid effects on deforming sur-
faces. Thismethod has somebeneficial properties for up-
resing. In particular, it works on a closest point repre-

sentation into which the surface deformation can be em-
bedded. As a consequence, themethod can run indepen-
dent of the specific fluid simulation used. We especially
demonstrate this by simulating fluid effects on arbitrary
animated surface meshes, which do not result from fluid
simulations, and which motion is only known from a se-
quence of time-varying triangle meshes. Thus, our pro-
posed technique supports a wide range of widely used
animation techniques, including keyframing, skinning,
rigid or soft body simulation, and fluid simulation with
mesh-based surface tracking.

Our technique can overcome some major restrictions
and limitations of previous techniques which have ap-
plied the CPM to deforming surfaces. While the method
by Hong et al. [HZQW10] requires an additional level-set
representation of the surface onwhich the 2D simulation
is carried out, Kim et al. [KTT13] relies on the existence
of an external velocity field in whichMacCormack advec-
tion can be performed.

In addition to techniques using the CPM, Angst et
al. [ATBG08] have performed interactive fluid effects on
animated trianglemeshes directly. In comparison, an Eu-
lerian embedding grid and implicit surface representa-
tion, as required by our proposed SLCPM, may seem as
an unnecessary overhead in the first place. The resulting
advantage, however, is a simulation methodology which
is decoupled from the surface topology, level of detail and
other properties of the input triangulation, and which
adapts automatically to deformationswhich alter the sur-
face geometry and topology.

This work is structured as follows: In Section 2 we re-
view previous work that is related to ours. The begin-
ning of Section 3 motivates the integration of the semi-
Lagrangian scheme into the CPM and gives a high-level
overview of our approach. In Section 3.1 we summarize
the basis techniques and detail the aspects relevant to
their combination. Section 3.2 describes the implicit rep-
resentation of the deforming surface. In Sections 4 and 5
we conclude our work with a presentation of the results
and an outlook at future work.

2. Related Work

In a number of previous works, fluid-related phenom-
ena have been simulated numerically on deforming sur-
faces. The majority of the presented techniques uses an
unstructured tessellation of the surface as a Lagrangian
spatial discretization. Bargteil et al. [BGOS06] developed
amethod for texturing fluid surfaces which contours and
re-initializes a zero level set in each time step. They advect
the triangle mesh in the velocity field of the background
fluid simulation,which thereby transports per-vertex tex-
ture coordinates or attributes of a reaction-diffusion sim-
ulation [Tur91]. Their simulation is very sensitive to the
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motion of the surface, so that even small perturbations
can cause large changes in the resulting surface texture.
Angst et al. [ATBG08] discretize the wave equation on an
animated character mesh, based on a mixed finite vol-
ume / finite element method. Their interactive simula-
tion is very robust because of the implicit time integra-
tion scheme and the fixed topology of the Lagrangian dis-
cretization grid. However, because the computation of an
additional well conditioned triangulation at runtime is
avoided, the discretization does not adapt to deforma-
tions affecting the triangle sizes. Thürey et al. [TWGT10]

also discretize the wave equation on a Lagrangian mesh

in order to simulate capillarywaves drivenby surface ten-

sion. Their simulation employs a finite element method

similar to the one of Angst et al., yet it transforms the sur-

face tessellation into a height field on a lower resolution

grid in each time step of the background simulation. The

numerical analysis of methods based on Lagrangian sur-

face meshes is difficult, because unstructured deforming

grids in combination with approximate differential sur-

face characteristics lead to non-trivial discretizations of

the intrinsic differential operators [BCOS01,RM08].

An alternative approach for simulating fluid effects on

surfaces is to solve for the differential equations in the 3D

embedding space in such a way that the restriction to the

surface provides a solution to the intrinsic surface equa-

tions. In contrast to techniques working in a 2D surface

parametrization or the surface directly, such embedding

methods usually employ an Eulerian spatial discretiza-

tion, often in the form of a regular 3D grid [BCOS01,

Bur05,Gre06,RM08]. This simplifies the numerical analy-

sis considerably, because thediscretization is not affected

by the deformation of the surface. As with all Eulerian

techniques, the explicit handling of advection requires

special care, especially when movements and deforma-

tions of the surface have to be considered.

Among the embedding techniques, the closest point

method [RM08, MR08, MR09, MM12] stands out for its

simplicity and generality. It employs the unmodified

three-dimensional Cartesian counterparts of the intrin-

sic surface differential operators in the embedding PDE,

and it restricts the calculations to a narrow band around

the surface without enforcing any non-physical bound-

ary conditions. Hong et al. [HZQW10] apply the CPM to

the level set equation in order to simulate the spreading

of fire on an animated surface. Since they also treat the

movement of the surface itself as a level set evolution,

they can only handle advections in directions normal to

the surface. Kim et al. [KTT13] suggest to increase the ap-

parent resolution of a simulated liquid surface by simu-

lating additional wave propagation on this surface via the

CPM in a post-process. They use a level-set to re-initialize

the closest point function and an extended velocity field,

generated by the low-resolution volumetric simulation,

to advect the simulation attributes with the deforming

surface.

Besides the fact that our proposed method works di-

rectly on the embedded surface and does not require

knowledge about the 3Dbackground simulation, another

major difference to Kim et al. lies in the handling of nu-

merical dissipation due to interpolation. Similar to both

approaches is the use ofWENO interpolation in the semi-

Lagrangian surface advection step. In the closest point ex-

tension step, however, Kim et al. employ a vastly differ-

ent strategy: For grid points in the vicinity of the surface

they do not perform any extension at all, and for all other

grid points they perform nearest-neighbor interpolation.

Thus, the method trades numerical dissipation for loss

of accuracy in the embedding step. Our method, in con-

trast, does not rely on a special treatment of near surface

points, since it requires only one interpolation in a com-

bined advection-extension step. Concerning the amount

of dissipation, our approach is thus en par with the semi-

Lagrangian approach for fluid advection in tetrahedral

meshes by Feldmann et al. [FOKG05]. To reduce dissipa-

tion they trace backwards from the current mesh veloc-

ities, instead of first resampling the old velocities in the

current mesh and tracing back using these velocities.

3. A Semi-Lagrangian Closest Point Method

Our proposed technique is based on an efficient CUDA

implementation [AMT∗12] of the explicit closest point

method [RM08] for the numerical solution of initial value

problems. It discretizes a narrow spatial band around the

surface with a 3D Cartesian grid and runs two phases in

each time iteration. In the evolution phase, it solves an

embedding PDE, containing only Cartesian differentials

using standard finite difference methods. In the exten-

sion phase, it replaces the solution at each grid vertex

with the value obtained from the closest point on the sur-

face. Through the equivalence principles of the CPM, it is

ensured that the resulting volumetric solution solves the

surface PDE for all points on the surface.

In existing applications of the explicit CPM to deform-

ing surfaces, the advection of simulation attributes with

the surface is handled in an additional, decoupled step.

Either level-set advection [HZQW10] or MacCormack ad-

vection in an external velocity field [KTT13] have been

employed. We instead propose to integrate the advection

step directly into the CPM.

Our algorithm is based on the observation that the ex-

plicit CPM and the backward semi-Lagrangian method

exhibit remarkable similarities. The former finds the clos-

est point of a computational nodeon the surface,whereas

the later integrates the position of a node backward in

time to find the foot of a characteristic curve in a velocity

field. Bothmethods obtain updated nodal values through
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Figure 2: SLCPM overview. The semi-Lagrangian CP extension step advects the flow field with the deforming surface.

interpolation at the found position. We propose a com-
binedmethod,whichfirst finds the closest point and then
integrates this position backward in time along the char-
acteristics defined by the motion and deformation of the
surface.

Integrating the closest point extension with a semi-
Lagrangian backtrace in a single step has three main ad-
vantages: First, the approach is unconditionally stable
with respect to the surface deformation, which is impor-
tant when the input animation is not under our control
and may therefore exhibit arbitrary deformation rates.
Second, we reduce the number of spatial interpolations,
which are computationally expensive and introduce nu-
merical dissipation [AMT∗12, KTT13]. Third, if the back-
trace starts at a closest point ona triangulated surface, the
foot of the trajectory can be found efficiently by consider-
ing only themovement and deformation of an individual
triangle.

Figure 2 gives an overview of our algorithm for the in-
teractive simulation of fluid flows on deforming surfaces
based on these ideas. The steps in the left panel solve the
incompressible Navier-Stokes equations

∂ v

∂ t
=−(v ·∇S )v −

1

ρ
∇S p +ν∇2

S v + f and

∇S ·v =0

on the surface, using a method similar to the one de-
scribed by Auer et al. [AMT∗12] for static surfaces. They
combine an adaptive multiblock CPM with a standard
splitting technique. In the first step, velocity sources are
injected by applying Dirichlet boundary conditions in
user-defined regionson the surface.User-definedbound-
ary conditions can also be employed to simulate obsta-
cles within the flow or to control the behavior at the bor-
ders of open surfaces. The second step addresses the con-
vective acceleration term (v ·∇S )v by performing stan-
dardfirst-order semi-Lagrangianadvectionalong the sur-
face, followed by a tangential projection of the velocities.
We skip the viscosity term ν∇2

S v because we do not in-
tend to simulate highly viscous fluids andbecause a small

amount of numerical dissipation is already introduced by
the interpolation steps.

The artificial viscosity can be reduced considerably
with high-order stability-preservingWENO interpolation
[AMT∗12, KTT13]. We also do not use the external forces
term f in our current examples, in order to demonstrate
the pure in-surface evolution of the intrinsic flow. If de-
sired, viscous flows can be integrated explicitly and exter-
nal forces canbeused to integrate extrinsic effects suchas
inertia, as suggested by Angst et al. [ATBG08]. To enforce
the continuity equation, we use the pressure term 1

ρ∇S p

of the momentum equation to project the velocity field
onto a space of solenoidal functions. This third step uti-
lizes a conjugate gradient method and an artificial Neu-
mann boundary condition to solve a Poisson problem of
the form∇·∇p (x )=∇· ṽ

 

cp (x )
�

, in which the right-hand
side is the closest point extension of the divergence.

After the pressure correction, the method of Auer et
al. [AMT∗12] obtains a closest point extension of the ve-
locity field. We replace this final sub-step with a semi-

Lagrangian closest point extension which additionally
advects the velocity field togetherwith thedeforming sur-
face, as detailed in Section 3.1.

As an alternative to the intrinsic flow simulation, we
also consider the simulation of intrinsic waves which
propagate along a deforming surface membrane. There-
fore, we replace the velocity field with a height field, and
instead of the Navier-Stokes equations we solve the sur-
face PDE version of the classic wave equation

∂ 2u

∂ t 2
= c 2∇2

S u .

An embedding PDE is obtained by replacing the Laplace-
Beltrami operator on the right-hand side with the stan-
dard Cartesian Laplace operator and an explicit Verlet in-
tegration scheme is employed as discretization method.
In contrast to Auer et al. [AMT∗12], we again obtain
a semi-Lagrangian closest point extension instead of a
standard closest point extension at the end of each time
integration step.

Before a semi-Lagrangian extension can be embedded
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xG

xt
= 

cp(xG)

xt-Δt

Figure 3: The animation has deformed the triangulated

surface and moved it to the right. For each grid vertex xG in

the narrow band at time t , we determine the closest point

on the surface x t and its previous position x t−∆t . To ob-

tain the closest point extension at xG , we interpolate the

values stored in the narrow band of the previous time step.

into our simulation method, however, we must first de-
form the triangulated surface and update its implicit rep-
resentation, as depicted in the right panel of Figure 2. Our
algorithm considers the animation of the triangle mesh,
i.e. the update of the vertex positions, to be an external
input onwhich it does not impose any restrictions: Topo-
logical changes of the surface are supported without spe-
cial treatment and the precision of the simulation is un-
affected of strongly varying triangle sizes. The animation
may be key-framed, come from an interactive technique
such as skinning, or it may be the output of some real-
time physics simulation. If the animation technique itself
does not support access to arbitrary time steps, we keep
the vertex positions of the last time step in a buffer. The
implicit surface representation and its generation from
the deformed triangle mesh are discussed in Section 3.2.

3.1. Semi-Lagrangian Closest Point Extension

The closest point extension is a core concept in the equiv-
alence principles which form the basis of the CPM. For
a surface S embedded in three-dimensional Euclidean
space, the equivalence of gradients principle, for exam-
ple, states that the intrinsic surface gradient∇s u and the
Cartesian gradient∇v agree if the volume function v is a
closest point extension of the surface function u :

v (x ) =u
 

cp (x )
�

⇒ ∇s u (x ) =∇v (x ), x ∈S .

Like all embedding methods, the CPM further assumes
that the surface function is a restriction of the volume
function to the surface. In a discrete integration scheme,
it therefore enforces the precondition of the equivalence
principles by projecting the volumetric solution to the
space of closet point extensions. In each integration step,
the simulation attributes stored at the grid verticeswithin

the narrow band are updated with values interpolated
at the respective closest points. To ensure the consis-
tency and accuracy of the method, high-order WENO
schemes can be used to interpolate values in the three-
dimensional grid.

Another crucial aspect in the realization of the SLCPM
is the semi-Lagrangian scheme which is used to advect
quantities through an Eulerian simulation grid. The clas-
sical scheme traces a pathline beginning at a grid vertex
backwards in time trough the velocity field. At the foot
of this characteristic curve, the attribute fields of the last
time step are sampled using an interpolation technique
to obtain the updated values for the grid vertex. The ac-
curacy of this approach depends on the order of the time-
integration employed for the backtrace and the order of
the spatial interpolation. Raising only the accuracy of the
time integrator can have negative effects, since typically
multiple spatial interpolations are required in this case.

Our semi-Lagrangian closest point extension com-
bines the explicit closest point extension with a semi-
Lagrangianbacktrace along the characteristics definedby
the surfacemotion as depicted in Figure 3. In order to en-
sure a good performance and accuracy of our technique,
wedirectly utilize the triangle animation for thebacktrace
and employ a stabilizedWENO4 scheme [MR09,AMT∗12]
for interpolation. By this means the advection scheme
can achieve up to third-order accuracy, depending on the
smoothness of the surface and the accuracy of the input
animation.

For each grid vertex, we first compute the barycentric
coordinates of its closest point on the mesh with respect
to the closest triangle. The foot of the characteristic is
then obtained by applying barycentric interpolation to
the vertex positions in the last time step. Since the semi-
Lagrangian closest point extension typically needs to be
performed several times for multiple closest points per
triangle, we accelerate the process by pre-computing an
implicit surface representation in each time-step as dis-
cussed in the next section.

3.2. Extended Closest Point Representation

To facilitate an efficient CUDA implementation of the
semi-Lagrangian CPM, we convert the trianglemesh into
an implicit representation after each deformation of the
surface, i.e. usually once per time step of the simula-
tion. The implicit surface representation employed in this
work is anextensionof theadaptive closest point gridpre-
sented by Auer et al. [AMT∗12]. The embedding space is
discretized with a uniform Cartesian grid and the closest
points of the grid vertices within a narrow band around
the surface are stored in a sparse multi-block grid. For
the width of the narrow band we follow the suggestions
of Macdonald and Ruuth [MR08]. In addition to the clos-
est point, our extended implicit representation stores also

c© 2013 The Author(s)
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the indexof the closest triangle to enable a coupling to the
input animation.

For the grid generation and computation of closest
points, we employ a sort-middle strategy to calculate the
distances to the individual triangles directly [AMT∗12].
Since all computations are restricted to a narrow band
around the surface, we avoid approximative distance
transforms, which could affect the precision of the CPM.
We first determine the coarse-level blocks which over-
lap the narrow bands and allocate the resources in global
GPU memory required to store the closest points, clos-
est triangles, and the simulation attributes in the fine-
level subgrids. Additionally we determine for each over-
lapped block the triangles within the narrow band radius.
We then iterate over the fine-level vertices of each over-
lapped block, compute for each vertex the distances to
the respective triangles and store the index of the closest
triangle in global memory. Then we iterate over the fine-
level vertices a second time, compute for each of them
the closest point on the closest triangle and store it in
global memory. While this approach adds another ker-
nel call, a redundant calculation and an indirection over
global memory, we found it nevertheless to work faster
than the original algorithm [AMT∗12], because it requires
less sharedmemory to hold the index of the closest trian-
gle (4 byte) instead of the closest point (12 byte).

Together with the time-dependent positions of the tri-
angle vertices, given by the input animation, this implicit
surface representation enables the efficient mapping be-
tween the grid vertices and the former positions of their
closest points, which is required for the semi-Lagrangian
closest point extension. As discussed in the section be-
fore, we need the barycentric coordinates of the clos-
est points within their respective triangles whenever we
perform this mapping. Since the semi-Lagrangian exten-
sion needs to be performed for a very large number of
grid vertices, the computation of the barycentric coor-
dinates can have a severe impact on the performance
of our method. If multiple semi-Lagrangian extensions
are required, for example for additional simulation at-
tributes, we could pre-compute the required data already
in the closest point calculation and store it in an addi-
tional buffer. This would considerably increase themem-
ory and bandwidth requirements of our method, how-
ever. We make instead use of the fact that the number
of triangles was always considerably below the number of
grid vertices in all of our test cases. For each triangle we
pre-compute a barycentric transformation whenever the
surface is deformed. This transformation allows us to ob-
tain thebarycentric coordinatesofmultiple closest points
on a triangle very efficiently.

To the best of our knowledge, the most efficient way
to compute barycentric coordinates for multiple points
x cp on a triangle with vertices xU ,x V ,x W was presented

Algorithm 1 Barycentric Transformation
Input

Triangle vertices xU ,x V ,x W ∈R3.

Output

Transformation vectors TV ,TW ∈R4 for Equation 1.

Procedure

t ←x V −xU , b ←x W −xU

t u ← t ·xU , bu ←b ·xU

t t ← t ·t , bb ←b ·b , t b ← t ·b
D ← t t ·bb − t b · t b

t t ← t t /D , bb ← bb /D , t b ← t b /D

TV .x y z ← t ·bb −b · t b , TV .w ← bu · t b − t u ·bb

TW .x y z ←b · t t −t · t b , TW .w ← t u · t b −bu · t t

by Schneider [Sch09] (page 121). The idea is to first
transform all vector components into a triangle coor-
dinate system with basis vectors t := x V −xU and b :=
x W −xU , and then to obtain the barycentric coordinates
αU ,αV ,αW by solving the linear 3×3 system





t ·xU t ·x V t ·x W

b ·xU b ·x V b ·x W

1 1 1



 ·





αU

αV

αW



=





t ·x cp

b ·x cp

1



.

Note that the inner products in the above equation
transform the covariant vector components from three-
dimensionalCartesiancoordinates into two-dimensional
triangle coordinates.

By taking advantage of matrix inversion and homo-
geneous coordinates, we pre-compute two transforma-
tion vectors TV ,TW ∈R4 for each triangle which allow us
to obtain the barycentric coordinates of a closest point,
given in homogeneous Cartesian coordinates, with only
16 floating point operations as

αV =x cp ·TV , αW =x cp ·TW , αU =1−αV −αW . (1)

The computation of TV and TW , which requires 61 float-
ing point operations, is described in Algorithm 1.

4. Results and Performance Analysis

The semi-Lagrangian CPM is able to produce high-
quality fluid effects on deforming surfaces as depicted
in Figure 1. Here, the flow is driven by several attached
sources in the form of Neumann boundary conditions,
and the appearance and shape of the surface is mod-
ulated to visualize the solution. In Figure 4 a high-
resolution simulation was interactively steered by a user,
who painted waves onto a flexing hand and thereby cre-
ated an visual effect in an exploratory way. The experi-
ment in Figure 5 investigates the accuracy of the semi-
Lagrangian closest point extension.

c© 2013 The Author(s)
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Figure 4: Snapshots of an interactive simulation session,

in which the user painted waves on a deforming surface.

At a resolution corresponding to a 3203 Cartesian grid and

a 1920×1177 viewport, simulation and rendering ran at 8

frames per second on a Geforce GTX 480 graphics card.

The backtrace along the characteristic is exact up
to floating point precision in our scenario, because of
the barycentric interpolation of vertex positions on the
piecewise-linear surface. The discretization error de-
pends therefore on the spatial interpolation technique.
The example clearly shows that higher-order WENO in-
terpolation introduces significantly less numerical dissi-
pation than tri-linear interpolation.

To validate the efficiency of the semi-Lagrangian clos-
est point method, we have performed a number of ex-
periments using simulation grids at different resolutions.
In all of our experiments, a key-frame animation of the
Laurent hand model was used, consisting of 15855 tri-
angles and 44 animation steps. Note that the surface
movements between two consecutive key frames are of-
ten an order of magnitude larger than the grid spacing.
This could be a problem for advection algorithms with a
stability criterion dependent on the Courant-Friedrichs-
Lewy condition. All measurements were performed on a
2.4 GHz Core 2 Duo processor and an NVIDIA GeForce
GTX 480 graphics card with 1536 MiB local video mem-
ory. A detailed memory and performance statistic of the
GPU SLCPM for the simulation of fluid flow and waves
is given in Table 1. Here, numbers separated by a slash
refer to the simulation using linear, respectively WENO4
interpolation exclusively. All timings are given inmillisec-
onds and renderingwas alwaysperformedona1280×720
viewport, using a raycasting technique for smooth sur-
face displacements similar to the one presented by Auer
et al. [AMT∗12].

The first line gives the resolution of the uniform Carte-
sian grid to which the simulation resolution corresponds.
The second line lists the number of closest points within
the computational band. The differences are due to dif-
ferently sized computational bands that are dictated by

Figure 5: The accuracy of the semi-Lagrangian closest

point extension depends only on the interpolation scheme.

One full animation cycle with disabled PDE solver is

shown from left to right. A semi-Lagrangian closest point

extension of the height field was computed for each of the

44 animation key-frames. We used linear interpolation in

the top panel and stabilized WENO4 interpolation in the

bottom panel.

the numerical stencils of the respective discretization
methods. The third line gives the GPU memory require-
ments of SLCPM. The Navier-Stokes simulation requires
more memory due to its larger computational band and
the additional buffers required to store the simulation at-
tributes. For comparison, the fourth line lists the simula-
tion times on the static surface, using linear and WENO4
interpolation in the closest point extension. The fifth line
gives the respective timings of the SLCPM on the ani-
mated surface. As expected, the increase in simulation
time between 15 and 50 milliseconds contains a con-
stant factor due to the generation of the extended closest
point representation, which scales mainly in the number
of triangles [AMT∗12]. The WENO4 interpolation there-
fore remains the most expensive operation at higher res-
olutions. The last two lines show the rendering times and
the total time for simulation and rendering.

5. Conclusion and Further Work

We have presented a real-time Eulerian method for the
simulation of fluid flow and wave propagation on de-
forming triangulated surfaces. Our approach successfully
combines the semi-Lagrangian method and the closest
point method, and rigorously exploits the synergies be-
tween the two. The method can simulate intrinsic fluid
effects at a high, constant and uniform resolution, and its
precision does not depend on the input geometry.

The Eulerian discretization of the surface sidesteps all
problemswith dynamic parameterizations in Lagrangian
methods. The embedding of the surface into a three-
dimensional Euclidean space also results in an extrinsic
notion of the surface topology, however. This especially
means that the simulation treats a deformation leading to
a self-intersection as a connection of the respective sur-
face parts. Depending on the goals of the user, this may
be seen as an advantage or a limitation.

The proposed method opens a number of future re-
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Table 1: Performance statistics for fluid simulation and rendering on the GPU.

Wave Equation Navier-Stokes

Resolution 1283 3203 1283 3203

# Closest Points 79k / 124k 524k / 860k 128k / 162k 884k / 1.2M
GPUMemory 4MiB / 5MiB 32MiB / 39MiB 13MiB / 15MiB 99MiB / 115MiB
CPM Solver 1.1ms / 3.9ms 2.4ms / 24ms 8.7ms / 41ms 54ms / 294ms
SLCPM Solver 15ms / 30ms 24ms / 75ms 27ms / 64ms 84ms / 312ms
Raycasting 14ms / 15ms 28ms / 30ms 18ms / 19ms 31ms / 32ms
SLCPM Total 29ms / 45ms 52ms / 105ms 45ms / 83ms 115ms / 344ms

search directions. By enabling support for level-of-detail
changes of both the input triangulation and the Eulerian
computational grid, the algorithm could run with a fixed
time budget, a requirement for the application in com-
puter games. We plan also to combine our method with
triangulation-based surface tracking [BGOS06, BHLW12]
in order to employ it for the up-resing of interactive, fully
three-dimensional fluid simulations, e.g. [CLT07, CM11].
The integration with techniques for free-surface flow
would also be an important step towards the real-time
simulation of surface tension [TWGT10] and the interac-
tive artistic control of fluid behavior [SY05].
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