
Eurographics Conference on Visualization (EuroVis) 2013
B. Preim, P. Rheingans, and H. Theisel
(Guest Editors)

Volume 32 (2013), Number 3

Progressive High-Quality Response Surfaces
for Visually Guided Sensitivity Analysis

I. Demir1 and R. Westermann1

1Computer Graphics & Visualization Group, Technische Universität München, Germany

Abstract
In this paper we present a technique which allows us to perform high quality and progressive response surface
prediction from multidimensional input samples in an efficient manner. We utilize kriging interpolation to estimate
a response surface which minimizes the expectation value and variance of the prediction error. High computational
efficiency is achieved by employing parallel matrix and vector operations on the GPU. Our approach differs
from previous kriging approaches in that it uses a novel progressive updating scheme for new samples based on
blockwise matrix inversion. In this way we can handle very large sample sets to which new samples are continually
added. Furthermore, we can monitor the incremental evolution of the surface, providing a means to early terminate
the computation when no significant changes have occurred. When the generation of input samples is fast enough,
our technique enables steering this generation process interactively to find relevant dependency relations.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

In many areas of science and engineering, multivariate scalar
functions f : Rn → R arise, where the values depend on
many independent variables. In many such applications the
objective is to monitor the sensitivity of a process and the
generated results to the choice of parametrization over the
input variables, and to finally optimize the result taking into
account the observed dependency relations.

Very often multivariate functions are not given analyti-
cally, but values are available only at a discrete set of sam-
pling points in the n-dimensional parameter domain. While
often the generation of results is a time-consuming prepro-
cess, sometimes the result can be updated at very high rates
from a given new parametrization. This later possibility be-
comes more and more feasible in numerical experiments due
to the ever increasing capacities of computing architectures.
As already recognized by van Wijk and van Liere [vWvL93],
it is particular appealing because it gives rise to a visual navi-
gation in high dimensional parameter space and allows steer-
ing towards an optimal solution by interactive variable mod-
ifications.

However, the visual analysis of multivariate data in an in-
tuitive way is challenging, since it is virtually impossible for

humans to recognize visual representations beyond three di-
mensions. Thus, multivariate data analysis, in general, re-
quires to reduce the dimensionality of the multidimensional
data set and, thus, to enable visualizations using common
techniques for data with less than 4 dimensions.

A popular approach for dimensionality reduction is to
slice the data or to orthogonally project it onto some two-
dimensional subspace of the n-dimensional parameter space,
and then to view the resulting value distributions in these
subspaces. Since in general the sample positions are sparse
in the selected subspaces, dimensionality reduction requires
interpolation between samples to compute a continuous rep-
resentation in the used 2D sampling structures. This gives
rise to an effective prediction of the values at unobserved
sites and the (non-linear) dependencies between parameters
and function values.

Especially if the continuous approximation is visualized
as a response surface, which is the graph of the continu-
ous objective function plotted over the two-dimensional sub-
space, an improved analysis of the relationships between pa-
rameters and objective is possible. In particular the possi-
bility to take into account the surface’s topography such as
extreme points, gradients, or ridges, can greatly enhance the
understanding of the dependency relations.

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.



I. Demir & R. Westermann / Progressive High-Quality Response Surfaces

mpg

horsepower acceleration

mpg

horsepower model year

mpg

model year origin

mpg

acceleration origin

mpg

origincylinders

mpg

displacement horsepower

mpg

model yearcylinders

mpg

accelerationcylinders

mpg

weightcylindershorsepower

mpg

cylinders

mpg

displacement weight

mpg

horsepower origin

displacement

mpg

acceleration

mpg

displacement model year

mpg

displacement origin

mpg

horsepower weight

mpg

acceleration model year

mpg

weight origin

mpg

weight model year

mpg

accelerationweight

mpg

cylinders displacement

Figure 1: Visualization of response surfaces for all pairs of parameters of a multivariate scalar function. Incremental update
and visualization of the surfaces is performed at less than 5 ms.

Unfortunately, computing response surfaces with prov-
ably optimal fairness from multivariate input samples is
computationally expensive, since it requires scattered inter-
polation at points in the sampling structure over which the
surface is formed. For large sets of input samples a time
consuming initial preprocess is required to obtain the inter-
polation weights for surface reconstruction. Even more im-
portantly, when input samples are generated progressively,
for instance by user-driven parameter space navigation, ev-
ery new sample requires to repeat the exhaustive preprocess,
prohibiting an in-turn visual analysis of the evolving surface.

1.1. Contribution

We present a method which enables an interactive visual ex-
ploration of multivariate scalar functions via high-quality re-
sponse surfaces (see Fig. 1 for an example). The surfaces are
computed via kriging interpolation [Kri51], a Gaussian pro-
cess regression model for inference from scattered samples
in multidimensional parameter space. Kriging determines
the interpolation weights entirely by the data configuration
and the covariance model, and it finds the least squares es-
timate of a stationary random function which minimizes the
variance of the random function increments. The contribu-
tions we make to the field of multivariate scalar data inter-
polation and visualization are as follows:

• Fast incremental updates of kriging calculations: To
make kriging suitable for an interactive exploration of
large sets of multivariate scalar samples, we propose a
progressive updating scheme for the kriging interpolation
weights. This scheme builds upon incremental matrix in-
version [Ban37], and it enables updating the interpola-
tion weights with only minor computational effort when
new samples are added. We employ a similar principle as

underlying so-called online learning algorithms [Opp98],
where only the last example is used for updating a learn-
ing network’s parameters. For data sets being so large that
the construction of a response surface takes unacceptably
long, the scheme enables to construct the surface incre-
mentally by considering only one new sample at a time.
Since kriging requires exhaustive use of matrix-vector
and vector-vector operations to compute the interpolation
weights and data estimates, we have implemented the en-
tire scheme on the GPU, including incremental update of
the inverse kriging matrix and interpolation.

• Response Surface Selection: To enable an interactive vi-
sual analysis of multivariate scalar functions, we have em-
bedded the progressive update scheme for kriging inter-
polation into a slice-based navigation interface similar to
scatterplots and HyperSlice [vWvL93]. We propose us-
ing parallel coordinates to interactively select the 2D sub-
spaces of the high-dimensional sample space for which
response surfaces should be computed and visualized. As
we provide immediate visual feedback about the structure
of the response surfaces in all subspaces, if new sample
values can be generated in turn the user can steer the loca-
tion of these samples interactively to further refine regions
of interest.

The remainder of this paper is organized as follows: Next,
we discuss work that is related to ours. In section 3 we in-
troduce the concept underlying kriging and outline its use
for scattered data interpolation. Our progressive scheme (in-
cluding a complexity analysis and GPU aspects) is presented
in section 4.2. Then, we discuss approaches for selecting re-
sponse surfaces via slicing and projection. We finally present
results using a real-world data set as well as a detailed per-

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



I. Demir & R. Westermann / Progressive High-Quality Response Surfaces

formance statistics, and we conclude the paper with a dis-
cussion of future extensions of our work.

2. Related Work

Our approach uses common techniques for dimensionality
reduction of multivariate data, such as orthogonal projec-
tion and slicing [Asi85, FB94, vWvL93]. An overview of
techniques in multivariate data visualization can be found
in work by Scott [Sco92] and Grinstein et al. [GTC01].
The particular model we use for displaying the reduced data
is that of a response surface, i.e., a continuous surface that
predicts the objective values from given samples over a se-
lected 2-dimensional domain [MM95, Mon06]. Unlike scat-
ter plots [Cle85], by using response surfaces we aim at dis-
playing continuous regions from which the user can see
correlations more easily and estimate values at unmeasured
sample positions. A different approach is parallel coordi-
nates [Ins85,Weg90], were the data are mapped to 1D graphs
rather than points in a 2D subspace. Parallel coordinates per-
form a dimensionality reduction and enable findings of the
existence of linear dependencies between variables, how-
ever, spatial relationships are lost and topographic properties
as for response surfaces cannot be determined.

For computing a continuous approximation of a discrete
multivariate function on a selected sampling structure we
employ techniques for scattered data interpolation [FN91,
Wen05]. Radial basis functions (RBFs) are commonly used
for scattered data interpolation problems [Buh03], since they
are able to interpolate arbitrary constraints in a smooth man-
ner. While compactly supported radial basis functions lead
to sparse linear systems and hence can be used to efficiently
interpolate large amounts of data samples, they do not pro-
vide the same approximation quality as basis functions of
global support. Globally supported RBFs, on the other hand,
result in dense matrix structures and far less efficient solu-
tion methods thereof. Even though improved methods exist,
such as multipole methods [CBC∗01] and incremental least-
squares solutions [BK05], such methods require a consider-
able amount of preprocessing when new samples arrive.

An alternative class of (statistical) methods for predict-
ing a latent function from a given set of discrete samples are
Gaussian processes models [OK78,Nea99]. In such models,
a Gaussian process is used to describe the a priori uncer-
tainty about the function based on empirical observations.
Such models attempt to describe the dependency of an ob-
servation on a corresponding input via a conditional distri-
bution. If the observation (or objective) is a one dimensional
scalar, then the distribution is called a regression model.
In geostatistics, regression with Gaussian processes to pre-
dict a spatial phenomenon at unobserved sites is known as
kriging or BLUE (best linear unbiased estimator) interpola-
tion [Kri51, MB62, Mat63].

In data visualization, only few approaches so far have

adopted statistical prediction of continuous representations
from discrete sets of multi-dimensional samples for sensi-
tivity analysis. Examples include the work by Pieringer et al.
[PBK10], where surface plots of multivariate functions have
been used to analyze the sensitivity of surrogate models.
Torsney-Weir et al. [TWSM∗11] employed Gaussian pro-
cess models for predicting quality metrics in image segmen-
tation based on selected parameter settings. They also em-
ployed the concept of response surfaces to display the vari-
ation of the used objective function. Berger et al. [BPFG11]
have used nearest-neighbor and model-based statistical pre-
diction for deriving objectives at unobserved locations in pa-
rameter space. The later approach performs statistical sam-
pling in parameter space to obtain a set of training data from
which a response function can be trained. Recently, Schlegel
et al. [SKS12] shed light on the interpolation properties of
Gaussian process regression (including kriging interpola-
tion) for data interpolation and provided analytical descrip-
tions of the underlying spatial basis functions.

To the best of our knowledge, in none of the previous ap-
proaches was the problem addressed to perform continuous
statistical predictions efficiently from discrete sets of multi-
dimensional samples which are updated progressively. Cur-
rent approaches usually assume a static set of observations at
known locations in parameters space. The possibility to han-
dle progressive updates of the internal representations, for
instance when new observations arrive, has not been consid-
ered. Thus, we see our approach as an important addition to
these works, opening new ways for interactive multivariate
data exploration.

3. Kriging Interpolation

Kriging interpolation is a probabilistic method to describe a
quantity at unobserved sites from a discrete set of observa-
tions at given locations. The principles underlying kriging
interpolation were introduced by Krige [Kri51] in the con-
text of geostatistics, and later put into a formal concept by
Matheron and Blondel [MB62, Mat63]. Underlying kriging
is the notion of a random function, which describes a quan-
tity over a spatial domain as a set of random variables at
the given locations. The spatial relations between the given
observations is expressed by the covariance structure for all
pairs of variables, often represented by the variance of the
observed increments over distance, ie. the so called vari-
ogram.

In short, kriging methods first perform a structural analy-
sis of the given observation to derive the dependency struc-
ture, and then estimate interpolation weights for each given
location by solving a least squares minimization of the es-
timated error variance. A thorough introduction to kriging
is given by Cressie [Cre93]. Even though the interpolation
properties of kriging are well known, its use outside geo-
statistics is limited. In our opinion this is mainly because
of the inherent computational complexity for calculating the

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



I. Demir & R. Westermann / Progressive High-Quality Response Surfaces

linear interpolation weights. Solving the kriging equations
directly for n observations involves inversion of an n×n ma-
trix.

To overcome this limitation, acceleration schemes have
been proposed, like so called ad-hoc methods [Haa95] us-
ing locally adaptive covariance prediction, fixed rank krig-
ing [CJ08] using empirical low-rank variances and covari-
ances estimates, or a GPU implementation which intertwines
the calculation of kriging weights and interpolation in a very
efficient way [HCL∗11]. To the best of our knowledge, pos-
sibilities to recompute kriging weights progressively upon
the arrival of new samples on the GPU has not been pro-
posed until now.

3.1. Main Principles

The main idea behind kriging is to spatially interpolate the
quantity at a point x∗ by finding linear weights λi of the k
collected data points (xi, f (xi)) ,1 ≤ i ≤ k, yielding the in-
terpolated value

f̂
(
x∗
)
=

k

∑
i=1

λi
(
x∗
)

f (xi) . (1)

In this work we consider what is called ordinary kriging,
since, aside from the samples, it only needs a covariance
function to accomplish the interpolation. The covariance is a
probabilistic measurement which specifies to which degree
two random variables change together. More formally, it is
defined as

Cov(x,y) = E [(x−E [x]) · (y−E [y])] ,

where E denotes the expectation value operator. Intuitively
the covariance should increase when two points of the ran-
dom field are closer together. Assuming that the underlying
random field is stationary, ie., expectation value µ and vari-
ance σ

2 are constant, and covariance depends only on the
distance between two points, we can use a simple model to
estimate the unknown covariance. In this work we use the
Gaussian model given by

Cov(x,y) =

{(
σ

2−n
)

exp
(
−‖x−y‖2

a·r2

)
x 6= y

σ
2 x = y

,

where σ
2 denotes the sill to which the covariance tends if the

distance between x and y decreases, and r denotes the range
which determines how rapidly the covariance decreases with
a larger distance. Note that the sill is also equal to the vari-
ance, since the covariance equals the variance if x = y. A
nugget effect is modeled by n to prevent oscillatory results
when sample points with different values lie close together.
The value of a allows further adjustment of the impact of the
range and is typically set to a = 1/3.

3.2. Ordinary Kriging

We now briefly introduce the ordinary kriging method. In
order to calculate the linear interpolation weights λi (x∗)
at the interpolation point x∗, let us consider the covari-
ances between all sample points Cov

(
xi,x j

)
, and the covari-

ances between the interpolation point and all sample points
Cov(xi,x∗), where 1≤ i, j ≤ k. To begin with we try to find
weights λi (x∗) such that

Cov
(
xi,x
∗)= k

∑
j=1

λ j
(
x∗
)

Cov
(
xi,x j

)
holds for every i ∈ {1, . . . ,k}. In other words, the covariance
between any sample point xi and the interpolation point x∗ is
equal to the linear combination of the covariances between
xi and every sample point x j weighted by λ j.

However, one obstacle needs to be overcome, namely the
fact that the weights do not necessary sum up to 1, which is
generally required for the interpolation value to be unbiased.
Therefore we introduce a Lagrange multiplier ν(x∗) such
that

C ·λ
(
x∗
)
+1 ·ν

(
x∗
)
= c
(
x∗
)
,λT (x∗) ·1 = 1.

By defining the extended matrix and vectors

C+ =

(
C 1
1T 0

)
, c+

(
x∗
)
=

(
c(x∗)

1

)
, λ+

(
x∗
)
=

(
λ(x∗)
ν(x∗)

)
the problem can be rewritten as

C+ ·λ+
(
x∗
)
= c+

(
x∗
)

yielding the solution

λ+
(
x∗
)
=C−1

+ · c+
(
x∗
)
. (2)

In addition, we calculate the kriging variance to obtain a
measure for the uncertainty in the current sampling

σ
2
k
(
x∗
)

= σ
2− cT

+

(
x∗
)
·C−1

+ · c+
(
x∗
)

= σ
2− cT

+

(
x∗
)
·λ+

(
x∗
)
. (3)

This uncertainty tells where the density of observations is
too low such that no reliable estimate of the response sur-
face is possible. In our current tool the uncertainty is used to
guide the user towards regions in the parameter space where
additional samples should be retrieved.

4. Progressive GPU Kriging

To perform ordinary kriging interpolation, the inverse of the
extended covariance matrix C+ is required. Since C+, and
thus its inverse, have to be updated every time new samples
are added, kriging can be very time- and memory-consuming
when implemented naively. To address this problem we pro-
pose a method which enables us to update the kriging ma-
trix incrementally, meaning that the previous inverse matrix
can be reused and only a small matrix has to be inverted.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



I. Demir & R. Westermann / Progressive High-Quality Response Surfaces

This method is based on blockwise matrix inversion pro-
posed by [Ban37].

In blockwise inversion one assumes that the (k+ l)× (k+
l) matrix to be inverted is in block form, i.e., it consists of
an upper left k× k and lower right l× l matrix P and S, and
a lower left l× k and upper right k× l matrix R and Q. It
is assumed that the block P is invertible. Then, the matrix
inverse can be computed as(

P Q
R S

)−1

=

(
W X
Y Z

)
, with

Z =
(

S−RP−1Q
)−1

, X =−P−1QZ, Y =−ZRP−1

W = P−1−P−1QY = P−1−XRP−1.

In our scenario, since both C and C+ are symmetric due
to the fact that Cov(x,y) = Cov(y,x), we can assume P =
PT , R = QT , S = ST . Thus, we arrive at the following sim-
plified formula(

P Q
QT S

)−1

=

(
W X
XT Z

)
, with

Z =
(

S−QT P−1Q
)−1

, W = P−1−P−1QXT . (4)

Our method for incrementing the inverse of the extended
covariance matrix is now split into two stages: From the
given previous sample positions xi,1 ≤ i ≤ k, the previous
covariance matrix C and its inverse C−1, and the added
sample positions x′j,1 ≤ j ≤ l, the new inverse covariance
matrix C′−1 is calculated in the following way. Let P :=
C, (Q)i j := Cov

(
xi,x′j

)
, and (S) j j̃ := Cov

(
x′j,x
′
j̃

)
, where

1≤ i≤ k, 1≤ j, j̃ ≤ l. Then we have

C′ =
(

P Q
QT S

)
which enables us to calculate C′−1 by blockwise inversion.
Here it is worth noting that it is not necessary to store C since
it is not required in order to calculate C′−1. Only C−1 has
to be stored. Also note that the only matrix which needs be
inverted is of dimension l× l, where l equals the number of
added samples.

In the second stage we calculate C′−1
+ by a similar proce-

dure. We now set P :=C′, Q := 1, S := 0 and obtain

C′+ =

(
P Q

QT S

)
.

By applying the blockwise inversion, we finally obtain C′−1
+ .

Again, C′ is not required in the computation, and only C′−1

has to be stored. The matrix to be inverted is of dimension
1×1. Also note that most operations in this process are ma-
trix multiplications which can be efficiently parallelized on
the GPU.

4.1. Computational complexity

In the progressive kriging approach, the matrix C′−1 is ob-
tained by first calculating V := P−1Q, Z, X , and W , and
then putting these intermediate results together. The rea-
son for calculating V explicitly is that it is used in sub-
sequent steps. Since it takes O (pqr) floating point opera-
tions to compute the matrix multiplication of one p× q and
one q× r matrix, O (pq) operations for adding two p× q

matrices, and O
(

p3
)

operations for inverting a p× p ma-

trix, calculating V , Z, X and W respectively takes O
(

k2l
)

,

O
(

kl2 + l3
)

, O
(

kl2
)

, and O
(

k2l
)

operations. This gives

a total of O
(

k2l + kl2 + l3
)

operations for increasing the
inverse covariance matrix by l new samples. A similar con-
sideration leads to O

(
k2
)

operations for computing C′−1
+ .

Let us now consider a state-of-the-art GPU matrix in-
version method as proposed by Ezatti et. al. [EQOR11].
Their algorithm takes Θ

(
p3
)

operations to invert a matrix of

size p× p, i.e. Θ

(
(k+ l)3

)
operations for calculating C′−1

+ .
Compared to the progressive approach this yields a signifi-
cantly higher run-time complexity when l is small compared
to k, ie. l = o(k). In this case our method has a complexity of

O
(

k2
)

as opposed to Θ

(
k3
)

for the conventional method.
In section 6.1 we verify this result in practice.

4.2. CUDA Parallelization

The capabilities of recent GPUs are employed via the CUDA
programming language to perform both the calculation of
the kriging interpolation weights and the final interpolation
of the initial data samples in a highly efficient way. The first
step when a new sample arrives and has to be considered in
the kriging interpolation is the calculation of the covariance
vector with respect to the new sample position. This process
is carried out in a straight forward way by computing each
element of the covariance vector by one CUDA thread in
parallel. In all our examples we used the Gaussian model
with nugget effect as the covariance function. Even for large
sets of samples, the overall time for performing this step is
so small that it does not affect the overall runtime.

From the discussion of (progressive) kriging it becomes
clear that all time-critical computations which are required
when new samples are added and have to be considered
in the interpolation step are matrix multiplications. Matrix-
matrix multiplication can be parallelized quite effectively on
the GPU by computing each entry in the result matrix in par-
allel. This concept can be further improved by a technique
called tiling, which reduces redundant memory accesses (see
Kirk and Hwu [KH10]). In our current implementation we
use CUBLAS for virtually all matrix operations, a highly
optimized GPU matrix library available in CUDA. One of
the great achievements of CUBLAS is that it makes efficient

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



I. Demir & R. Westermann / Progressive High-Quality Response Surfaces

use of the GPU memory hierarchy, trying to best utilize the
fast memory segments which are shared by certain groups of
threads.

Updating the kriging matrices C−1 and C−1
+ is done in a

straightforward way by restating Eq. 4 with CUBLAS func-
tions. To calculate the weight vectors λ+ (x∗) at the interpo-
lation points all at once with a single call to the CUBLAS
library we utilize the fact that we can combine all matrix-
vector products of Eq. 2 to a single matrix-matrix product.
That is to say we define

Ĉ+ =
(

c+ (x∗1 ) c+ (x∗2 ) · · ·
)

as a matrix containing all interpolation points, leading to

Λ̂+ =C−1
+ ·Ĉ+

where each column of Λ̂+ contains the weight vector of the
corresponding interpolation point.

The only exception where we do not make use of
CUBLAS is for computing the kriging variance (see Eq. 3)
as we need to calculate a dot product at each interpolation
point. Since CUBLAS does not provide a routine which al-
lows parallelized computation of many dot products at once
we implemented a CUDA method for this task. It is based
on the most efficient parallel reduction method presented by
Harris [Har07].

5. Visualizing Response Surfaces

Let X ⊆ Rn,n ≥ 2 denote a discrete multidimensional data
set with a given scalar value assigned to each element via
the mapping f : X→R. We call every tuple (x, f (x)) a sam-
ple, where x ∈ X indicates the position and f (x) the value of
the sample. Our goal is to visualize this data set by a set of
surfaces such that each surface represents the scalar values
over two distinct dimensions. For each selected parameter
pair we define a two-dimensional planar sampling grid and
interpolate the scalar values at the sample points in this grid
via kriging. These values are then used to form a surface.
Each surface is rendered as a triangle mesh on the GPU, us-
ing colors in HSL space to indicate differences in value and
uncertainty. The hue of a surface point is determined by its
altitude, ie. the scalar value at the corresponding grid point,
while its saturation is set inversely proportional to the un-
certainty. Additionally we draw contour lines to provide the
user a better classification of the surface points.

5.1. Response Surface Selection

For selecting the response surfaces which should be visu-
alized, we utilize the HyperSlice method. Given a user-
selected center point, for each pair of parameter space axes
a 2D slice parallel to the plane spanned by the two axes and
going through the selected point is defined. For every slice a
separate response surface is computed.

HyperSlice allows the user to interactively change the

center point and thereby steer through the whole data set.
In the original work this was performed by pressing a mouse
button while the cursor points to a slice, and then dragging
the center point according to this slice. In contrast, we em-
ploy an approach which makes use of parallel coordinates to
indicate the sample density in the region in which the cen-
ter point is actually positioned. In this way, the center point
can be adjusted towards those parameter intervals which are
already well resolved, or, for instance in a visual steering
application, those intervals which are poorly resolved can be
prioritized for point selection. The proposed selection pro-
cedure is demonstrated in Fig. 2, where each sample is rep-
resented by a polyline which has its vertices aligned at the
parallel coordinate axes. To support the user in choosing the
position of the center point, every axis is color-coded from
blue to red according to decreasing sample density.

cylinders

displacement

horsepower

weight

acceleration

model year

mpg

origin

5.45

217.79

98.47

3246.93

14.82

75.83

27.80

1.06

Figure 2: Utilizing parallel coordinates to adjust the center
point (indicated by circles) in HyperSlice. Parallel coordi-
nates are color coded to show the sample density on each
parameter axis.

Besides visualizing the response surfaces of all selected
slices in a structure similar to a scatterplot matrix (see Fig. 1
for such a visualization according to the selected center point
in Fig. 2), the use of parallel coordinates for center point se-
lection gives rise to an alternative visualization strategy: The
user changes the coordinate of the center point along one se-
lected parameter axis interactively, while keeping all other
coordinates fix. Thus, the response surfaces for every pair of
axes involving the selected axis remain unchanged, and only
for every other pair a change of the surface is triggered.

This is demonstrated in Fig. 3, where we analyze data de-
scribing the fuel efficiency of automobiles in miles per gal-
lon (mpg) [Aut93]. It contains a total of 398 samples where
each sample corresponds to one specific car, comprising the
values mpg, cylinders, displacement, horsepower, weight,
acceleration, model year, car name, and origin, a discrete
value representing different states (note here that the use of
kriging for nominal data like origin is for demonstration pur-
poses only, and that in general any interpolation of nominal
data requires some data-specific rational). Figs. 1 and 2 show
visualizations of this data. By choosing three center points
with distinct values for horsepower and weight, one obtains

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



I. Demir & R. Westermann / Progressive High-Quality Response Surfaces

three response surfaces displaying the fuel efficiency accord-
ing to origin and model year as shown in Fig. 3a,b,c.

mpg

model yearorigin

mpg

model yearorigin

mpg

model yearorigin

mpg

model yearorigin

(a) (b)

(c) (d)

Figure 3: HyperSlice is used to display the fuel efficiency
(mpg) according to origin and model year for three differ-
ent tupels of horsepower and weight: (a) (50,1900), (b)
(80,2500), (c) (150,3600). Note that there is virtually no
impact of origin. (d) All samples are projected to the selected
subspace and smoothly interpolated. Now one can see that
cars from one origin tend to have low fuel efficiency, mean-
ing that they generally differ in other attributes like horse-
power or weight.

In Fig. 3d, all automobile samples are projected to the
subspace represented by the same axes used in HyperSlice
before, and a response surface is computed from the pro-
jected samples. The advantage of projection over HyperSlice
is that all samples are visualized simultaneously, giving an
immediate overview of the whole data set without requiring
the user to adjust a focal point. The corresponding response
surface shows that cars from one origin generally have low
fuel efficiency. But for now we do not know if this is really
caused by the origin or just by the fact that cars from other
countries tend to differ in other attributes, for instance they
might generally have less horsepower. This difficulty arises
because the distances between sample positions in the high-
dimensional sample space get lost due to the projection. This
leads to the false impression that some distant samples lie
close together.

When HyperSlice was used in Fig. 3a,b,c, the center point
was placed at three different positions, with vastly different
values of horsepower and weight. In contrast to projection,
HyperSlice shows that the value of origin does not have a
significant impact on the fuel efficiency even if entirely dif-
ferent values for horsepower and weight are chosen, which
generally have the greatest influence. For other slices not

shown here we obtain similar views. We can thus conclude
that the origin influences certain other attributes, for instance
horsepower, which on their part affect the fuel efficiency.
This example also demonstrates the difference between the
surface projection and the HyperSlice method. Especially
in an interactive session, where the user moves the center
point coordinate along the selected parameter axis, the cor-
responding changes of the response surfaces can effectively
reveal more subtle dependencies.

From the example we can conclude, that it might be a
good practice to first use projection and then HyperSlice
to visualize a multi-dimensional data set. The projection
method gives the user a general overview of the whole data
set, even when only a small but representative subset of all
samples is considered. For instance, such a subset can be
generated by randomly selecting samples from the initial
set. Relevant features can then be further analyzed using Hy-
perSlice, by incrementally adding those samples which are
close to the currently selected center point in all but two vari-
ables. Whenever the user changes the center point, new sam-
ples will always be selected according to this new position.
Due to the specific selection strategy of the next samples to
be considered, even for very large data sets a rather small
subset of the given samples might already suffice for an ac-
curate analysis.

5.2. Slice-based Interpolation

Our next step is to apply kriging interpolation to Hyper-
Slice and projection. Since all slices visualized in Hyper-
Slice share the same space, the method requires only one
kriging matrix containing the covariances of the actual mul-
tidimensional sample positions. This matrix needs to be up-
dated only when new samples are added, because it does not
depend on the position of the currently selected slices. As
the inverse kriging matrix is required to perform the interpo-
lation, it has to be updated as well if the kriging matrix was
changed. For each interpolation point, ie. the grid points of
the sampling structures used to represent the selected slices,
the covariance vector is calculated and used to determine the
interpolation weights of every other point via Eq. 2. These
weights are finally used to compute the interpolation values
via Eq. 1.

The interpolation step can be fully parallelized since every
interpolation can be computed independently of each other.
In order to calculate the covariance vectors at the interpo-
lation points we need to embed the 2D sampling structures
into the multidimensional sample space. This is performed
by setting the coordinates of the interpolation points along
the two spanning parameter axes according to their relative
position in the respective 2D subspace, and filling the re-
maining coordinates with the values of the center point. This
also implies that each time the center point is moved or the
resolution of the sampling grid is changed the interpolation
process has to be repeated.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



I. Demir & R. Westermann / Progressive High-Quality Response Surfaces

f2rotY

f2rotX

Calcar stress

f2rotY

f2rotX

Calcar stress

f2rotY

f2rotX

Calcar stressCalcar stress

f1rotX

f1rotY

Calcar stress

f1rotX

f1rotY

Calcar stress

f1rotX

f1rotY

f2rotY

f2rotX

Lateral stress

f2rotY

f2rotX

Lateral stress

f2rotY

f2rotX

Lateral stressLateral stress

f1rotX

f1rotY

Lateral stress

f1rotX

f1rotY

Lateral stress

f1rotX

f1rotY

(a) (b)

F = 2000F = 1500F = 1000F = 2000F = 1500F = 1000

F = 2000F = 1500F = 1000F = 2000F = 1500F = 1000

Figure 4: (a) Simulation setting, including arrow glyphs indicating the simulated forces. (b) Response surfaces for different
force magnitudes depending on force direction.

The projection method requires a procedure that differs
mainly in the computation of the covariances. Since in this
case every sample is projected to a 2D subspace, we have
to maintain a separate kriging matrix and its inverse. For
the kriging matrix we use a covariance function that takes
only those components of each sample position into account
that correspond to the respective subspace. The same holds
for the computation of the covariances at the interpolation
points. Unlike embedding the grid points into the multidi-
mensional space we project the sample positions to the se-
lected subspace and then calculate the covariance between
the projected sample positions and the grid points.

6. Results

In addition to the data we have used so far for demonstrat-
ing the potential of response surfaces for sensitivity analysis,
we have used our approach in a computational steering en-
vironment for analyzing material stresses depending on ex-
erting forces. The underlying application is implant planning
for hip joint replacements, where in a pre-operative planning
phase a surgeon tries to find the patient-specific optimal im-
plant shape, size and position [DGBW08]. The steering tool
is designed in such a way that external forces can be issued
at the surface of an implant which has been inserted into the
bone, and the resulting stresses in the bone interior can be
simulated and visualized. To realistically simulate stresses
which occur during walking, we consider an additional force
of constant magnitude which is applied by the muscles. Fig.
4a shows the simulation setting, including arrow glyphs in-
dicating the simulated forces.

The simulation system computes the internal stresses, ie.,
the scalar von Mises stress norm, in less than 200 millisec-
onds once the external forces have been specified. The vol-
ume rendering in Fig. 4a shows the simulated scalar field.
In our particular scenario we have analyzed the sensitivity to
the inserted forces of the stresses at two critical points P1 and
P2 in the calcar region and the lateral femoral wall, marked
by green crosses in Fig. 4a. Therefore, we have integrated the
response surface approach into the simulation tool, enabling

the user to interactively change the points at which the forces
are acting and the force magnitude via a navigation tool sim-
ilar to the one shown in Fig. 2. We specify a force direction
in polar coordinates of two virtual spheres enclosing the re-
gions of contact, always acting towards a sphere’s center,
and compute the intersection points between the force vec-
tors and the implant and bone. Overall, we have 5 free pa-
rameters (2 angles for each point and a force magnitude),
and we obtain stress values for the points P1 and P2.

Upon simulating the stresses, the simulation module ex-
ports the values at P1 and P2, and these values are then con-
sidered in the computation of new response surfaces. Fig.
4b shows the response surface visualization using Hyper-
Slice after approximately 7000 different parameter combi-
nations have been performed. In an interactive session the
user would now start refining the parameter setting in lo-
cal extremum regions to further analyze the stress sensitiv-
ity, or the response surfaces for a different implant posi-
tion would be compared. As we will show next, by using a
conventional method for response surface construction from
all given samples, an interactive parameter space navigation
would be impossible.

6.1. Performance Analysis

The performance analysis is structured in two parts. First we
measure the performance of incrementally constructing the
covariance matrices when new samples are added, and then
we measure the time to perform the kriging interpolation at
different grid resolutions. All measurements were performed
with HyperSlice on an NVIDIA GeForce GTX 580 graphics
card.

Fig. 5 shows the times in milliseconds for computing
the inverse of a covariance matrix, when the inverse for a
given number of samples is given and one new sample ar-
rives. In our tests we have considered samples of different
dimensions d ∈ {4,6,8,10}, and we have made distinguish-
able the respective graphs by different colors. Note that for
a particular d we compute

(d
2
)

surfaces and, therefore, the
same number of covariance matrices are required. These are

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



I. Demir & R. Westermann / Progressive High-Quality Response Surfaces

0 2000 4000 6000 8000 10000 12000 14000 16000
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Samples

T
im

e 
p

er
 n

ew
 s

am
p

le
 (

m
s)

 

 

d = 4

d = 6

d = 8

d = 10

d = 4 (ref.)

d = 6 (ref.)

d = 8 (ref.)

d = 10 (ref.)

Figure 5: Computation times in ms for inverting the covari-
ance matrix when samples are added incrementally. Times
for different numbers of dimensions d are considered and
compared with a direct non-incremental approach as refer-
ence.

10 20 30 40 50 60 70 80 90 100
10

0

10
1

10
2

10
3

10
4

10
5

Resolution

T
im

e 
fo

r 
in

te
rp

o
la

ti
o

n
 (

m
s)

 

 

GPU, 100

GPU, 500

GPU, 1000

GPU, 2000

CPU, 100

CPU, 500

CPU, 1000

CPU, 2000

Figure 6: GPU/CPU Computation times for kriging inter-
polation at different resolutions and for different numbers of
samples.

computed and inverted in parallel on the GPU. We compare
the run-times to those being achieved with a state-of-the-
art GPU matrix inversion method as proposed by Ezatti et.
al. [EQOR11]. Here for each new sample the whole kriging
matrix has to be inverted at once. The timings are shown in
Fig. 5 as dashed lines. By using a logarithmic scale one can
observe that the progressive approach is by several magni-
tudes faster than the conventional GPU approach.

Before the kriging interpolation can be performed, the in-
verse kriging matrices have to be computed using the inverse
covariance matrices. This step needs to be carried out only
once before the interpolation takes place, and its time con-
sumption is negligible compared to that of the other parts.

The performance of the final interpolation of data es-

timates at the points of the discrete sampling grids has
been measured for different data sets comprising 100, 500,
1000 and 2000 samples, and at different grid resolutions of
10×10, 20×20, 50×50 and 100×100. The timing statis-
tics is shown in Figure 6. We compared the times of our
GPU-based implementation and its CPU counterpart, com-
puted on an Intel Xeon X5675 CPU at 3.07 GHz. It can
be clearly seen that the GPU method is significantly faster
and allows moving the center point nearly in real-time even
for a large number of samples. Since the resolution can be
changed at any time without affecting the kriging matrix,
it is possible to use a lower resolution grid while adding
new samples or moving the center point, and switching to
a higher resolution grid for analyzing the surfaces in more
detail.

7. Conclusion

In this paper we presented a novel progressive approach
for visualizing multidimensional data via response surfaces.
For computing high-quality response surfaces we employed
kriging interpolation on the GPU. In contrast to previous
approaches, our method enables progressive updates of the
surfaces at interactive rates. In this way, we do not rely on
any fixed sample set for which the surfaces are computed in
a preprocess, but we can handle newly arriving samples—
possibly retrieved based on user navigation—at very high
speeds. We have shown that our method can be integrated ef-
fectively into existing techniques for multidimensional data
visualization such as HyperSlices and projection.

In the future we will investigate the following aspects
in more detail: Firstly, we will consider integrating GPU-
kriging as proposed in Huang et al. [HCL∗11] to accelerate
the interpolation step. Even though this step is not the bot-
tleneck in our current implementation, it might become so
when interpolating on higher resolution sampling structures
or in 3D. Secondly, and most importantly, we will use our
tool to investigate whether the response surfaces’ topogra-
phy can guide the user towards specific features in the mul-
tivariate scalar functions. Even though it was observed by
Tory et al. [TSD09] that colored point plots in a 2D domain
can be remembered easier by the viewer than 2.5D visual-
izations such as response surfaces, the surface representation
can encode local features and their relative positions and el-
evations in a more effective way. Local fluctuations of the
surface, especially in regions where the sample set is sparse,
can be easier quantified. In the future we will in particular
analyze functions for which the locations of extreme points
are known, and for which we then examine the occurrence
of response surfaces in the vicinity of such points in order to
derive shape-based feature indicators. Ideally we would find
specific occurrences of response functions which guide to-
wards locally maximum or minimum locations, even though
the samples at which the extreme values occur have not yet
been generated.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



I. Demir & R. Westermann / Progressive High-Quality Response Surfaces

Acknowledgment

This work was supported by the European Union under the
ERC Advanced Grant 291372—SaferVis—Uncertainty Vi-
sualization for Reliable Data Discovery.

References
[Asi85] ASIMOV D.: The grand tour: a tool for viewing multi-

dimensional data. SIAM J. Sci. Stat. Comput. 6, 1 (Jan. 1985),
128–143. 3

[Aut93] Auto mpg data set. http://archive.ics.uci.
edu/ml/datasets/Auto+MPG, 1993. UCI Machine Learn-
ing Repository. 6

[Ban37] BANACHIEWICZ T.: Zur Berechnung der Determinan-
ten, wie auch der Inversen, und zur darauf basierten Auflösung
der Systeme linearer Gleichungen. Acta Astronomica, Serie C, 3
(1937), 41–67. 2, 5

[BK05] BOTSCH M., KOBBELT L.: Real-time shape editing us-
ing radial basis functions. In Computer Graphics Forum (2005),
pp. 611–621. 3

[BPFG11] BERGER W., PIRINGER H., FILZMOSER P.,
GRÖLLER E.: Uncertainty-aware exploration of continu-
ous parameter spaces using multivariate prediction. Published in
Computer Graphics Forum 30, 3 (2011), pp. 911 – 920. 3

[Buh03] BUHMANN M.: Radial basis functions theory and imple-
mentations. Cambridge University Press, Cambridge New York,
2003. 3

[CBC∗01] CARR J. C., BEATSON R. K., CHERRIE J. B.,
MITCHELL T. J., FRIGHT W. R., MCCALLUM B. C., EVANS
T. R.: Reconstruction and representation of 3d objects with radial
basis functions. In Proceedings of the 28th annual conference on
Computer graphics and interactive techniques (New York, NY,
USA, 2001), SIGGRAPH ’01, ACM, pp. 67–76. 3

[CJ08] CRESSIE N., JOHANNESSON G.: Fixed rank kriging for
very large spatial data sets. Journal of the Royal Statistical Soci-
ety: Statistical Methodology 70, 1 (2008), 209–226. 4

[Cle85] CLEVELAND W. S.: The elements of graphing data.
Wadsworth Publ. Co., Belmont, CA, USA, 1985. 3

[Cre93] CRESSIE N.: Statistics for Spatial Data. Wiley Series in
Probability and Statistics. Wiley-Interscience, Jan. 1993. 3

[DGBW08] DICK C., GEORGII J., BURGKART R., WESTER-
MANN R.: Computational steering for patient-specific implant
planning in orthopedics. In Proceedings of the First Eurograph-
ics conference on Visual Computing for Biomedicine (2008),
pp. 83–92. 8

[EQOR11] EZZATTI P., QUINTANA-ORTÍ E., REMON A.: High
performance matrix inversion on a multi-core platform with sev-
eral gpus. In Parallel, Distributed and Network-Based Process-
ing (PDP), 2011 19th Euromicro International Conference on
(2011), pp. 87 –93. 5, 9

[FB94] FURNAS G. W., BUJA A.: Prosection views: Dimensional
inference through sections and projections. Journal of Computa-
tional and Graphical Statistics 3 (1994), 323–385. 3

[FN91] FRANKE R., NIELSON G. M.: Scattered data interpola-
tion and applications: A tutorial and survey. In Geometric Mod-
elling: Methods and Their Applications, Hagen H., Roller D.,
(Eds.). Springer, 1991, pp. 131–160. 3

[GTC01] GRINSTEIN G., TRUTSCHL M., CVEK U.: High-
dimensional visualizations. In Workshop on Visual Data Min-
ing (2001), 7th Conf. on Knowledge Discovery and Data Mining
(KDD), pp. 77–87. 3

[Haa95] HAAS T. C.: Local prediction of a spatio temporal pro-
cess with an application to wet sulfate deposition. American sta-
tistical Association 90, 432 (1995), 1189–1199. 4

[Har07] HARRIS M.: Optimizing parallel reduction in cuda,
2007. NVIDIA Developer Technology. 6

[HCL∗11] HUANG L., CHEN K., LAI Y., CHANG P., SONG
S.: Geological visualization system with gpu-based interpola-
tion. AGU Fall Meeting Abstracts (Dec. 2011), B1600. 4, 9

[Ins85] INSELBERG A.: The plane with parallel coordinates. The
Visual Computer 1, 2 (Aug. 1985), 69–91. 3

[KH10] KIRK D., HWU W.-M.: Programming massively parallel
processors : a hands-on approach. Morgan Kaufmann Publish-
ers, 2010. 5

[Kri51] KRIGE D. G.: A statistical approach to some basic mine
valuation problems on the witwatersrand. Journal of the Chemi-
cal, Metallurgical and Mining Society of South Africa 52, 6 (Dec.
1951), 119–139. 2, 3

[Mat63] MATHERON G.: Principles of geostatistics. Economic
Geology 58, 8 (1963), 1246–1266. 3

[MB62] MATHERON G., BLONDEL F.: Traité de géostatistique
appliquée, Tome I. Memoires du Bureau de Recherches Ge-
ologiques et Minieres 14 (1962). 3

[MM95] MYERS R. H., MONTGOMERY D. C.: Process Im-
provement with Steepest Ascent, The Analysis of Response Sur-
faces, Experimental Designs for Fitting Response Surfaces,
1st ed. John Wiley & Sons, Inc., New York, NY, USA, 1995,
pp. 183–351. 3

[Mon06] MONTGOMERY D. C.: Response surface method and
designs. John Wiley & Sons, New Jersey, 2006. 3

[Nea99] NEAL R. M.: Regression and classification using Gaus-
sian process priors (with discussion). Bayesian Statistics 6
(1999), 475–501. 3

[OK78] O’HAGAN A., KINGMAN J. F. C.: Curve fitting and
optimal design for prediction. Journal of the Royal Statistical
Society. Series B (Methodological) 40, 1 (1978), 1–42. 3

[Opp98] OPPER M.: On-line learning in neural networks. 1998,
ch. A Bayesian approach to on-line learning, pp. 363–378. 2

[PBK10] PIRINGER H., BERGER W., KRASSER J.: Hypermoval:
Interactive visual validation of regression models for real-time
simulation. Computer Graphics Forum 29, 3 (2010), 983–992. 3

[Sco92] SCOTT D. W.: Multivariate Density Estimation: The-
ory, Practice, and Visualization (Wiley Series in Probability and
Statistics), 1 ed. Wiley, Sept. 1992. 3

[SKS12] SCHLEGEL S., KORN N., SCHEUERMANN G.: On the
interpolation of data with normally distributed uncertainty for vi-
sualization. IEEE Transactions on Visualization and Computer
Graphics 18 (2012), 2305–2314. 3

[TSD09] TORY M., SWINDELLS C., DREEZER R.: Comparing
dot and landscape spatializations for visual memory differences.
IEEE Transactions on Visualization and Computer Graphics 15,
6 (2009), 1033–1040. 9

[TWSM∗11] TORSNEY-WEIR T., SAAD A., MÖLLER T., HEGE
H.-C., WEBER B., VERBAVATZ J.-M.: Tuner: principled pa-
rameter finding for image segmentation algorithms using visual
response surface exploration. IEEE Transactions on Visualiza-
tion and Computer Graphics 17, 12 (2011), 1892–1901. 3

[vWvL93] VAN WIJK J. J., VAN LIERE R.: Hyperslice: visual-
ization of scalar functions of many variables. In Proceedings of
the 4th conference on Visualization ’93 (1993), pp. 119–125. 1,
2, 3

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

http://archive.ics.uci.edu/ml/datasets/Auto+MPG
http://archive.ics.uci.edu/ml/datasets/Auto+MPG


I. Demir & R. Westermann / Progressive High-Quality Response Surfaces

[Weg90] WEGMAN E. J.: Hyperdimensional data analysis using
parallel coordinates. Journal of the American Statistical Associ-
ation 85 (1990), 664–675. 3

[Wen05] WENDLAND H.: Scattered data approximation. Cam-
bridge University Press, Cambridge, UK New York, 2005. 3

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.


