
Visualization of Big SPH Simulations via Compressed Octree Grids

Florian Reichl, Marc Treib, and Rüdiger Westermann
Computer Graphics & Visualization Group

Technische Universität München
Munich, Germany

Email: reichlf@in.tum.de, {treib,westermann}@tum.de

Abstract—Interactive and high-quality visualization of spa-
tially continuous 3D fields represented by scattered distri-
butions of billions of particles is challenging. One common
approach is to resample the quantities carried by the par-
ticles to a regular grid and to render the grid via volume
ray-casting. In large-scale applications such as astrophysics,
however, the required grid resolution can easily exceed 10K
samples per spatial dimension, letting resampling approaches
appear unfeasible. In this paper we demonstrate that even
in these extreme cases such approaches perform surprisingly
well, both in terms of memory requirement and rendering
performance. We resample the particle data to a multireso-
lution multiblock grid, where the resolution of the blocks is
dictated by the particle distribution. From this structure we
build an octree grid, and we then compress each block in the
hierarchy at no visual loss using wavelet-based compression.
Since decompression can be performed on the GPU, it can
be integrated effectively into GPU-based out-of-core volume
ray-casting. We compare our approach to the perspective grid
approach which resamples at run-time into a view-aligned grid.
We demonstrate considerably faster rendering times at high
quality, at only a moderate memory increase compared to the
raw particle set.

Keywords-SPH; volume rendering; data compression;

I. INTRODUCTION

In particle-based simulation techniques such as smoothed
particle hydrodynamics (SPH), a volume covering a con-
tinuous field is reconstructed from a discrete set of particles
carrying physical quantities. Since the particles are scattered
irregularly over the 3D spatial domain, the reconstruction
process requires determining at every spatial domain point
the set of particles having influence on this point, and
weighting their contributions to form the resulting value.
Rendering SPH data can be done via volume ray-casting,
by determining at every sampling point along the rays
the influencing particle set and accumulating the respective
values. This, however, requires huge numbers of search
queries per ray to determine these sets locally.

A different approach is to resample the particle data into
a grid in a pre-process and use cell-wise interpolation for
reconstructing the values along the rays during rendering.
This approach results in a view-independent volume repre-
sentation and does not require any overlap queries at run-
time. If the data is resampled to a uniform grid, 3D texture-
based volume rendering on the GPU can be used.

This resampling grid introduces a significant memory
overhead, especially when the particle density dictates a high
resolution to capture all simulation details. For instance, in
the gas dynamics simulation addressed in the current work—
the Millennium Run—more than 10 billion particles were
used to trace the evolution of the matter distribution in a
cubic region of the universe. The spatial resolution of this
simulation corresponds to an effective uniform grid size of
about 100,0003.

To overcome the memory overhead of a uniform grid in
object space, a non-uniform discretization of the view frus-
tum was introduced by Fraedrich et al. [1]: the perspective
grid. In every frame, the particles affecting the data values at
points in the view frustum are resampled into this grid. This
work also relies on a particle level-of-detail (LoD) structure
to effectively reduce the number of resampled particles with
decreasing sampling frequency. This structure represents the
particle set at ever coarser resolutions with fewer and fewer
particles, and it is computed in a pre-process based on
specific particle merging rules. The perspective grid is very
memory-efficient, but it requires resampling large sets of
particles in every frame; this process vastly dominates the
rendering times and limits the performance significantly.

A. Contribution

In this work we shed light on the question whether the per-
formance limitations of the perspective grid approach can be
overcome by resampling to a uniform grid in a pre-process
and using volume ray-casting on this grid. While this seems
possible because at runtime any resampling of the particle
data to a grid can be avoided, it is unclear whether bandwidth
limitations due to the tremendous memory requirement of a
uniform grid can be overcome.

We address this problem in two ways: Firstly, we con-
struct an octree grid which adapts locally to the resolution
necessary to capture all simulation details. In this way, the
memory requirement of the grid structure can be reduced
considerably. Furthermore, standard GPU LoD ray-casting
can be employed to lower the memory requirement per
frame. Secondly, we embed a compression layer into our
out-of-core volume ray-casting system to further reduce the
octree’s size in memory and to reduce bandwidth require-
ments when streaming the data from disk. Because we

Figure 1. Cosmological structures in the Millennium Run at different resolutions. Rendering to a 1200×800 viewport took 213 ms and 79 ms per frame,
respectively, using multiresolution volume ray-casting. The working sets in GPU memory were 2120 MB and 109 MB, respectively.

use a wavelet-based compression scheme which allows fast
decoding on the GPU, very large parts of the data set can
be cached on the CPU and bandwidth limitations caused by
CPU-GPU data transfer can be reduced.

Based on the aforementioned concepts we have designed
a system which first converts large SPH particle sets into
a compact adaptive multiresolution representation and then
renders the data from this representation on the GPU.

The remainder of this paper is organized as follows: First,
we review existing work in the context of the Millennium
Run and SPH visualization as well as general high-resolution
volume rendering in section II. Section III gives a high-
level overview of our system, while sections IV and V detail
the efficient implementation of the necessary preprocess and
our GPU-based compression scheme. We then describe our
volume rendering system in section VI. Results and com-
parisons to existing approaches are provided in section VII,
before we conclude the paper with a short discussion and
outlook into the future in section VIII.

II. RELATED WORK

A. The Millennium Run

The centrepiece of our evaluations is a cosmological
N-body/SPH simulation known as the Millennium Run,
presented in detail in the work of Springel et al. [2], [3].
The Millennium Run stands as a representative for the
class of gas dynamics simulations where gas expansion
and contraction is simulated via SPH. Application areas of
such simulations range from chemically reacting flows to
molecular dynamics and cosmological structure formation.
The Millennium data set consists of 1010 particles with
varying radii of influence, reaching a spatial dynamic range
of 105 per dimension in a 3D simulation domain.

SPH has been introduced by Monaghan [4], and since
then a vast body of literature related to this field has
been published. A comprehensive review of this literature
is beyond the scope of this paper.

B. SPH Visualization

The majority of previous approaches for rendering SPH
data has been focussed on rendering iso-surfaces in such
data, i.e. to render the liquid surface in fluid simulations.
Most commonly this is performed by resampling particle
quantities to a Cartesian proxy grid [5], [6], and then
using iso-surface extraction or direct volume rendering. To
avoid the memory consumption of a proxy grid, SPH data
can be rendered directly by evaluating the SPH kernels at
sampling points along the view rays [7], [8]. An iso-surface
extraction technique that works directly on the particle set
was introduced in [9].

To also render the fluid body, order-independent splatting
of transparent particle sprites has been used [10]–[13]. This
approach is fast because it does not require any time-
consuming evaluation of the SPH kernels. Yet it can only
produce an approximate visual representation because it
blends together particle footprints in screen space and does
not reconstruct a spatially continuous 3D field in object
space. Volume attenuation can only be simulated when the
particle set is sorted in every frame, but even in this case
the technique is not able to faithfully represent surface-like
structures as shown in [1].

To achieve high-quality rendering of large SPH data sets,
Fraedrich et al. [1] introduced the perspective grid. This
methods employs GPU resampling of particle quantities
into a 3D grid [8]. Yet, instead of using a uniform grid
discretizing the object space, it uses a perspective grid
discretizing the view frustum. Thus, the grid moves with the
camera position, requiring only those particles contributing
to points in the view frustum to be resampled. Even though a
LoD particle hierarchy can reduce the number of particles to
be resampled in every frame significantly [13], the per-frame
cost of resampling is still too high to allow for interactive
rates for simulations as large as the Millennium Run.

C. Volume Rendering

A number of GPU-based volume ray-casting systems for
large data sets have been proposed over the last years.
These systems employ texture mapping hardware for vol-
ume interpolation and make use of the GPU’s design for
massively parallel workloads to traverse many view rays
in parallel [14]. The most recent approaches have shown
the efficiency of GPU volume ray-casting when paired with
hierarchical octree data structures for LoD rendering and
GPU-CPU out-of-core strategies for handling data sets too
large to be stored on the GPU [15]–[18].

An important topic related to our method is volumetric
data compression using transform coding. The recent survey
by Balsa Rodriguez et al. [19] provides a focused treatment
of compression techniques used in the context of volume
visualization. We use the wavelet-based method described
by Treib et al. [20], [21] for the compression of 3D scalar
fields, which decodes the data directly on the GPU from a
Huffman-encoded wavelet coefficient stream.

III. OVERVIEW

Our proposed visualization system for very large SPH data
takes as input a set of particles, each given by a position in
the 3D simulation domain, a smoothing length specifying
the particle’s support, and additional scalar attributes like
density. In a preprocess, the simulation domain is parti-
tioned adaptively into blocks of different size using octree
subdivision, and each block is discretized into a 163 grid.
As a criterion for steering the subdivision process we use
the particles’ smoothing lengths: It indicates the size of
the structures that are resolved by a single particle, which
is up to 100,000× smaller than the domain extent in the
Millennium Run. We subdivide the domain so that the cell
size of a grid is equal to the smallest smoothing length of
all particles influencing the grid’s values.

The preprocess generates an adaptive octree structure,
where the leaf nodes represent the blocks at different reso-
lution levels. The particle attributes are then resampled into
the grids at these nodes, and the grids at the inner nodes
are generated bottom-up via averaging the data values at the
grids of the respective child nodes. Upon construction of its
parent grid, the grid values are compressed and written to
disk. The preprocess is illustrated in figure 2.

GPU ray-casting is then used to visualize the octree data
structure. The blocks are traversed on the GPU in front-
to-back order. If the compressed representation of the data
values of the current block is not residing in CPU memory,
it is loaded from disk and cached in RAM. The values are
then streamed to the GPU, where a CUDA kernel is executed
to decompress the data. Our system leverages GPU texture
memory to take advantage of hardware-supported texture
filtering. Streaming to the GPU works asynchronously,
meaning that the transmission stalls neither the CPU nor
the GPU.

Figure 2. Schematic overview of the preprocessing pipeline: The particle
domain is adaptively subdivided based on the smoothing length and
distribution of the particles binned to it, until a predefined brick size is
reached. Bricks are arranged in an octree data structure, where the data at
inner nodes is created by averaging the respective child node data.

IV. PREPROCESS

The preprocess required to convert the particle data into
the adaptive octree hierarchy is specifically tailored to ex-
ploit the highly parallel nature of modern CPUs and CPU
clusters as well as GPUs. It is divided into two major steps:
In a first step, the simulation domain is subdivided into cubic
subdomains of fixed spatial extent, with a side length of 1

64
of the domain in each dimension. We will refer to these
subdomains as superbricks. All particles are binned on disk
into their respective superbricks depending on their position
and smoothing length. Particles at superbrick borders are
duplicated in this process.

In a second step, for each of the superbricks we create
an octree structure—a subtree—as explained in detail in
section IV-A. The subtrees store an adaptive multiresolution
representation of the 3D scalar fields encoded in the par-
ticle attributes. Each subtree is then inserted into the final
octree at the respective position given by the superbrick’s
coordinates. The level of the root node of each subtree is
determined by the extent of each superbrick—level 6 in
our case, with 0 being the coarsest level. All bricks are
compressed using a fast wavelet-based GPU compression
scheme, which will be detailed in section V.

After each subtree has been built and inserted into the final
tree, the coarsest levels are created from the finer levels by
recursively merging 83 subtree root bricks into a single brick
and averaging the corresponding voxel values.

A. Subtree Creation

With the domain divided into reasonably-sized super-
bricks, each subtree can be created individually, either on a
single PC or distributed on a larger cluster. In combination
with the LoD metric proposed in this section, the required
particle data as well as the output volume data is usually
small enough to be processed completely in-core. However,
it is worth noting that this process is built upon the same
out-of-core octree data structure as our rendering system
described in section VI, and thus scales well to systems with
limited memory or data sets with very large superbricks.

The subtree creation is based on the observation that the
particle distribution and smoothing lengths exhibit very high
variance over the entire domain. This allows us to adapt

Figure 3. Subtree creation: A particle’s position and smoothing length
indicate the leaf node at which the particle is stored. The tree is traversed
top-down until this leaf node is reached and the particle is stored; missing
nodes along the path are generated. The particles of each leaf node are
then sampled into the discrete grid, and coarser levels of detail are created
bottom-up. Green nodes were created via subdivision but do not contain
any particles of correct resolution, and they are deleted finally.

the effective sampling resolution on a per-brick basis: The
distance between two grid points is chosen to be less or
equal to the smallest smoothing length h, assuring that no
particle contributions get “lost”. Given the desired grid size
of a brick b and the domain extent d, the required octree
level l can then be determined as

l =

⌈
log2

(
d

h · b

)⌉
with l = 0 being the coarsest level with a grid size of b.

For each particle, the subtree is traversed top-down until
the according level is reached. All intermediate nodes are
created during traversal. To create the hierarchy, each non-
leaf node is always subdivided into eight children. Child
nodes which do not contain any particles at the required
level are marked as oversampled and will not be inserted
into the final octree. With each octree leaf node, a list
of particles overlapping this node is stored. This whole
process is parallelized over the particle data to maximize
performance. An illustration is provided in figure 3.

Once the nodes have been created, an empty buffer is
allocated for each leaf node to store the grid values at this
node, and the particle list for the node is transferred to the
GPU. Particle resampling is then performed in a CUDA
kernel with one thread associated to each grid vertex—
due to the small average number of particles per node,
this gathering approach exhibited superior performance to
particle scattering as it can be implemented without any
write-conflicts. Each thread block first loads a portion of
the particle list into shared memory to speed up the process.
For each grid vertex, the contribution of each particle is then
determined by evaluating a cubic spline kernel based on the
particle’s smoothing length.

Once all leaves of an octree have been created, coarser
levels are generated by recursively merging each node’s
children, where the value of each voxel is averaged from
the respective child voxels. All non-oversampled bricks are
then compressed and stored within the final octree on disk.

V. GPU DATA COMPRESSION

To reduce the total data size and, consequently, the
disk bandwidth required during rendering, all bricks are
compressed using a discrete wavelet transform (DWT) fol-
lowed by entropy coding. We employ the GPU for both
compression and decompression, as it has been shown to
achieve superior throughput compared to CPUs [20]. Our
GPU compression scheme for volumetric data is similar
in spirit to the one proposed by Treib et al. [21]: First,
the input floating point values are quantized with a user-
defined quantization step. A 2-level 3D reversible integer
DWT using the CDF 5/3 wavelet is then performed on each
brick by applying the lifting scheme [22]. More than 2 levels
do not significantly improve the compression rate. Finally,
the wavelet coefficients are compressed using Huffman
coding. The decompression performs the inverse operations
in reverse order.

In order to efficiently use the parallel processing power of
the GPU, our compression layer processes multiple bricks
in parallel (up to 256 in the current implementation). The
brick-wise 3D DWT is implemented in a CUDA kernel. For
each brick, we launch one thread block consisting of 256
threads which performs the following operations:

• Cooperatively load one brick consisting of 163 16-bit
integer values (corresponding to 8 KB of memory) from
global into shared memory.

• Perform the first-level 163 DWT. In this step, the
threads are grouped into a 16×16 grid, i.e. each thread
processes one row of data along each dimension.

• Shuffle the low-pass and high-pass coefficients from
interleaved order (due to the lifting scheme) into sub-
band order: Each thread loads 16 values from shared
memory into registers and, after a block sync, stores
them to their target positions. In this way, no additional
“staging buffer” in shared memory is required.

• Perform the second-level 83 DWT, with the threads
grouped into an 8×8×4 grid.

• Shuffle the 83 coefficients into subband order.
• Store the final result to global memory.

This approach is very efficient because each element is
read from and written to global memory exactly once. The
decoder writes directly into the volume ray-caster’s 3D
texture using 3D surface writes to avoid an extra memcpy.

When using larger bricks (e.g. 323), a brick is too large
to fit into shared memory at once. In this case, we fall back
to a three-pass algorithm, i.e. we run three CUDA kernels
sequentially:

1) Each thread block loads a 32×32×1 slice from global
to shared memory, does a DWT in the X and Y di-
mension, and stores the result back to global memory.

2) Each thread block loads a 32×1×32 slice, does a
DWT in the Z dimension, and stores the result back
to global memory.

Figure 4. Quality comparison between the uncompressed (left) and
compressed (right) data. The difference image is scaled by a factor of 20.

3) Each thread block loads a 16×16×16 block of low-
pass coefficients, does a DWT in all 3 dimensions, and
stores the result back to global memory.

For the final entropy coding stage, we employ a Huffman
coder as in [20]. However, we skip the preceding run-length
encoding step, as it does not improve the compression rate
in our case.

To justify the use of lossy compression, figure 4 shows
images created from compressed and uncompressed data,
where the particle quantities are stored as 32-bit floating
point values. This coincides with the precision of the input
data. As can be seen, the compression introduces no visual
artefacts. For bricks of size 163, decompression is performed
at an average output rate of 2.4 GB/s, yielding a decompres-
sion time of 3.18 µs per brick.

VI. MULTIRESOLUTION VOLUME RENDERING

Rendering is performed using an out-of-core ray-guided
ray-caster running on the GPU. For an in-depth description
of similar systems, we refer the reader to [17], [15] and [16].
The whole system is outlined in figure 5.

The back-end of our system is an out-of-core octree
structure which stores the volume data and the LoD pyramid.
All data is organized in pages a few megabytes in size to
minimize the impact of disk seek times on the data transfer
rate. Bricks are grouped into pages during the preprocess in
a breadth-first manner, and each page is treated as one entity
in terms of disk transfer and main memory caching.

Whenever a brick needs to be rendered, the corresponding
page is requested and asynchronously loaded from disk if
it is not yet available in the LRU page cache in main
memory. After loading has completed, it is added to the

page cache and all required bricks are inserted into the
decompression queue in GPU memory. Whenever this queue
is full or rendering of a new frame starts, decompression is
performed, and the decompressed bricks are added to an
LRU brick cache. We call the bricks available in this GPU
cache resident.

The octree structure of all resident bricks is maintained
in GPU memory, where each node contains—if available—a
pointer to its eight children, a pointer to the volume data, the
scalar range of the contained data and two flags indicating
whether volume data and/or children are available on hard
disk. This structure is traversed in a single pass on the GPU,
where each brick that contains data in the range of a user-
defined transfer function is rendered using transfer function
preintegration [23] and quadrilinear filtering, using data from
the brick’s parent.

In contrast to the mentioned previous systems, our pre-
process refines only those octants of a brick which require
a higher resolution due to the determined per-particle LoD.
Always creating all 8 children at once would increase the
total number of bricks by more than a factor of 3. Whenever
a child node is not available during rendering, we fall back
to rendering the corresponding octant of its parent brick.
To make this possible, the data manager ensures that a
brick’s volume data is always uploaded to the GPU before
descending further.

The decisions to descend or render are driven by a
user-defined desired maximum error in screen space. In
addition—as is common when rendering this type of astro-
physical data—a focus distance along with a region of
interest can be defined to reduce the amount of displayed in-
formation. We also employ a variant of β-acceleration [24]:
Depending on the currently accumulated opacity α, a ray
may decide to not further descend down the hierarchy if the
screen space error induced by rendering the current brick is
less then es ·(1+α ·k), where es is the desired screen space
error and k is a user-defined factor ≥ 0. In our experiments,
choosing k = 1.0 increased the rendering performance by

HDD

CPU: Page Cache

Data Loader

Page request

GPU

Decompression Queue

 Ray-caster Brick Cache

Decompressor

Subdivision request

Data request

Upload

Data Manager

Figure 5. Rendering system overview: Bricks of the octree are fetched
asynchronously from the hard drive and cached in main memory. Required
bricks are uploaded to the GPU as soon as they are available. Once
a fixed number of compressed bricks reside in GPU memory, they are
decompressed and cached. The octree is traversed in a single-pass compute
shader which signals the missing volume data and child bricks to the CPU.

about 20%, with minimal effect on the output quality.
Due to the asynchronous loading and caching of bricks,

brick misses can happen during ray traversal in the following
situations:

1) A brick’s children need to be rendered, but their nodes
have not been inserted into the GPU octree.

2) A brick needs to be rendered, but its data is not
resident.

To handle these cases, we follow the procedure suggested
in [17]. In the first case, a subdivision request is generated
and the brick is rendered instead of its children. In the second
case, a data request is generated, and instead of the requested
brick the corresponding octant of its parent is rendered in
the current frame. Requests are written to a GPU buffer
which provides a slot for each resident brick. These write
operations can be performed in a non-atomic way, since in
each frame the buffer is first cleared to zero and then set to
a constant value for each request. The request buffer is read
back to the CPU in every frame. Finally, the CPU updates
the LRU caches in CPU and GPU memory as requested, and
the process restarts. To further reduce the latency introduced
by low disk bandwidth, whenever the data loader is not
busy waiting for data, the data in a spherical region [25]
is prefetched.

VII. RESULTS

We have evaluated the performance and memory con-
sumption of our Direct3D 11 rendering system and the
preprocessing pipeline on a single desktop PC equipped
with an Intel Xeon X5560 processor (quad-core, 2.80 GHz),
24 GB of main memory and an NVidia GeForce GTX Titan
with 6 GB of video memory. Timings and working set sizes
always refer to a viewport of 1200×800 pixels with a desired
screen-space pixel error of 1.0, though some images have
been cropped for layout reasons. Two data channels were
sampled from the particle data: Dark matter density and
density-weighted velocity dispersion, both quantized using
a quantization step of 0.01 after logarithmic rescaling, thus
each channel can be stored using 2 bytes per voxel. Our
variant of β-acceleration was enabled with k = 1.0. All

Table I
PREPROCESSING TIMES FOR ONE TIMESTEP OF THE MILLENNIUM RUN.

Action Time (h:m)

Superbrick creation 00:34
Octree creation 04:41
Particle resampling 19:40
Subtree merging 00:44
Compression 07:28
Disk I/O 02:13

Total 35:20

I/O was performed on a RAID-0 configuration of two hard
drives with a maximum throughput of 190 MB/s.

A. Preprocessing

Preprocessing times for one timestep of the Millennium
Run simulation are given in table I. The size of each brick
was chosen to be 163 voxels, including an overlap of one
voxel at the borders to ensure correct interpolation between
bricks. The timings include all data transfers between main
memory and GPU memory.

The selected brick resolution has proven to be a good
trade-off between rendering speed and memory require-
ments: Small bricks result in a better adaption to the local
feature sizes. They can thus approximate larger regions with
coarser resolutions, greatly reducing the overall memory
requirement. On the other hand, they increase the overhead
of overlaps—for bricks of resolution 163 with one voxel
of overlap, only 67% of the voxels contain non-redundant
information—and reduce the effectiveness of per-brick com-
pression. They also diminish rendering performance due
to the octree traversal overhead and the more incoherent
layout of the volume data in GPU memory. Table II com-
pares compressed and uncompressed file sizes as well as
frame rendering times for different brick sizes. Rendering
performance is given for the screenshot in figure 1 (left).
As can be seen, a brick resolution of less than 163 voxels
even increases the total file size as the effectiveness of the
compression decreases drastically.

To show the effectiveness of adaptive subdivision, table III
shows statistics for the different octree levels, starting from
the “superbrick level” 6 up to the finest level.

B. Rendering

We compare the rendering quality and performance to
particle splatting [13] and perspective grid ray-casting [1].
In all comparisons, we will refer to the presented system
as multi-resolution direct volume rendering (MRDVR). For
MRDVR, we present the rendering times as well as the
required GPU memory for the visible uncompressed bricks,
which we denote as the working set size.

While the existing approaches have been evaluated on an
older GeForce GTX 280, experiments have shown a speedup

Table II
INFLUENCE OF DIFFERENT BRICK SIZES ON FILE SIZE AND RENDERING
SPEED. FOR COMPARISON, THE SIZE OF THE ORIGINAL PARTICLE DATA

IS 225 GB (FOR REFERENCE, [13] REQUIRED 198 GB). Frame GIVES
THE RENDERING TIMES FOR FIGURE 1, LEFT.

File size

Brick size Raw (GB) Comp (GB) Ratio Frame (ms)

83 1,655.56 540.47 0.33 276
163 2,916.85 512.61 0.18 213
323 7,967.81 998.34 0.13 168

Figure 6. Comparison between unordered splatting (left, 18 ms) and
MRDVR (right, 122 ms). Unordered splatting can not reconstruct fine,
surface-like structures, and the lack of occlusion hinders depth perception.

of both techniques of a factor of about 3 on the target GPU
(GeForce GTX Titan). While the compute and rasterization
performance has experienced a massive increase over the
last years, the limiting factors have shown to be the texture
fill rate and memory bandwidth due to the high amount
of overdraw and blending, which have only increased by
a factor of 4 and 2, respectively. Thus, the particle splatting
approach performs with an average of about 30 ms per
frame, while the perspective grid ray-caster can only achieve
hardly interactive rendering times of over 3 seconds per
frame for this data set.

Figure 6 shows the differences in quality and render-
ing time between the unordered splatting approach and
MRDVR. The dominant structures are visible in both ap-
proaches, yet MRDVR allows for much more complex
transfer functions.

Figure 7 displays the results with and without β-
acceleration. Small features in the background are well
preserved while the rendering time exhibits a speed-up of
about 20%. The working set size is reduced by 30%.

Finally, we performed a trip through the data set and
recorded rendering times, working set sizes and memory
transfer sizes. The flight features a wide range of speeds as
well as close-up and distant views all across the domain.

Table III
PER-LEVEL STATISTICS. AVERAGE Children ARE GIVEN PER INTERNAL
(NON-LEAF) NODE. Oversampled BRICKS ARE NOT CONTAINED IN THE

FINAL OCTREE. # Particles IS THE NUMBER OF PARTICLES WHOSE
SMOOTHING RADII DICTATE SAMPLING ON THE RESPECTIVE LEVEL.

Bricks

Level Stored Oversampled Children # Particles

6 262,000 0 7.9 2,855,365,100
7 2,074,646 21,290 5.5 2,797,593,157
8 10,487,783 4,789,657 3.2 2,227,115,066
9 22,747,376 33,640,354 2.3 2,282,715,327

10 27,027,644 65,031,897 2.0 2,105,993,312
11 20,636,515 60,094,086 1.9 1,335,442,527
12 9,015,712 28,574,277 1.9 474,714,085
13 1,208,903 3,953,823 – 45,567,944

Figure 7. Rendering results without (left, 268 ms) and with (right, 220 ms)
β-acceleration. The working set is reduced from 2.44 GB to 1.74 GB. The
bottom right shows a difference image, scaled by a factor of 20.

Results can be seen in figure 8. The dominant drops in the
working set size are due to rapid viewport changes, causing
a large number of GPU cache misses. As coarser levels of
detail are being rendered in these cases, the performance
improves temporarily at the cost of image quality. However,
the missing data is delivered within a few frames.

VIII. CONCLUSION

In this paper we have presented an out-of-core system
for the interactive visualization of very large SPH data sets.
The key conclusion of our work is twofold: Firstly, by
resampling the particle attributes to a regular, yet adaptive
hierarchical octree grid and compressing the resampled data
using a wavelet-based scheme, only a moderate increase
in memory is introduced. Compared to the compressed
particle data including a particle LoD hierarchy, a factor
of 2 could be demonstrated. Secondly, since any resampling
of particle attributes at runtime can be avoided, rendering
performance increases significantly. At the same quality, our
tests have shown a performance increase of about 10-15×
compared to the perspective grid approach. Compared to
order-independent particle splatting, our system is about
5-10× slower, yet it comes with significantly higher qual-
ity and more flexible visualization options like iso-surface
rendering or gradient shading.

0

500

1000

1500

0 10 20 30 40 50 60 70 80 90 100

Time (seconds)

Working Set (MB)

0

50

100

150

200
HDD (MB / s) Upload (MB / s) Decompression (MB / s)

0

100

200

300

400 Render time (ms / frame)

Figure 8. System performance during a flight through the data set.

In the future we will investigate the integration of our
desktop system into a remote, client/server-based visual-
ization infrastructure supporting astrophysicists in their ex-
plorations. Since our method avoids any time-consuming
processing of particles at runtime, it is especially suited for
multi-user scenarios, where at the same time images from
different perspectives are requested. Since it is not possible
in general to keep the working set of more than one user on
the GPU, the working sets of all users have to be swapped
in and out of the GPU periodically. The memory and, thus,
bandwidth-aware design of our system accommodates an
efficient realization of these operations.

ACKNOWLEDGMENT

We would like to thank Volker Springel from the Max
Planck Society in Garching for his support with the data set.
This publication is based on work supported by Award No.
UK- C0020, made by King Abdullah University of Science
and Technology (KAUST).

REFERENCES

[1] R. Fraedrich, S. Auer, and R. Westermann, “Efficient high-
quality volume rendering of SPH data,” IEEE Trans. Vis.
Comput. Graphics, vol. 16, no. 6, pp. 1533–1540, 2010.

[2] V. Springel, “The cosmological simulation code GADGET-2,”
Mon. Not. Roy. Astron. Soc., vol. 364, p. 1105, 2005.

[3] V. Springel, S. D. M. White, A. Jenkins, C. S. Frenk,
N. Yoshida, L. Gao, J. Navarro, R. Thacker, D. Croton,
J. Helly, J. A. Peacock, S. Cole, P. Thomas, H. Couchman,
A. Evrard, J. Colberg, and F. Pearce, “Simulating the joint
evolution of quasars, galaxies and their large-scale distribu-
tion,” Nature, vol. 435, pp. 629–636, 2005.

[4] J. J. Monaghan, “Smoothed particle hydrodynamics,” Rep.
Prog. Phys., vol. 68, pp. 1703–1758, 2005.

[5] D. Cha, S. Son, and I. Ihm, “GPU-assisted high quality
particle rendering,” Computer Graphics Forum, vol. 28, no. 4,
pp. 1247–1255, 2009.

[6] P. A. Navrátil, J. L. Johnson, and V. Bromm, “Visualization
of cosmological particle-based datasets,” IEEE Trans. Vis.
Comput. Graphics, vol. 13, no. 6, pp. 1712–1718, 2007.

[7] Y. Kanamori, Z. Szego, and T. Nishita, “GPU-based fast ray
casting for a large number of metaballs,” Computer Graphics
Forum, vol. 27, no. 2, pp. 351–360, 2008.

[8] R. Yasuda, T. Harada, and Y. Kawaguchi, “Fast rendering
of particle-based fluid by utilizing simulation data,” in Proc.
Eurographics 2009 - Short Papers, 2009, pp. 61–64.

[9] I. D. Rosenberg and K. Birdwell, “Real-time particle isosur-
face extraction,” in Proc. ACM SIGGRAPH Symp. Interactive
3D Graphics and Games (I3D), 2008, pp. 35–43.

[10] Y. Li, C.-W. Fu, and A. Hanson, “Scalable WIM: Effective
exploration in large-scale astrophysical environments,” IEEE
Trans. Vis. Comput. Graphics, vol. 12, no. 5, pp. 1005–1012,
2006.

[11] M. Hopf and T. Ertl, “Hierarchical splatting of scattered data,”
in Proc. IEEE Visualization, 2003, pp. 443–440.

[12] M. Hopf, M. Luttenberger, and T. Ertl, “Hierarchical splatting
of scattered 4D data,” IEEE Computer Graphics and Appli-
cations, vol. 24, no. 4, pp. 64–72, 2004.

[13] R. Fraedrich, J. Schneider, and R. Westermann, “Exploring
the “Millennium Run” - scalable rendering of large-scale
cosmological datasets,” IEEE Trans. Vis. Comput. Graphics,
vol. 15, no. 6, pp. 1251–1258, 2009.

[14] J. Krüger and R. Westermann, “Acceleration techniques for
GPU-based volume rendering,” in Proc. IEEE Visualization,
2003, pp. 38–43.

[15] E. Gobbetti, F. Marton, and J. Iglesias Guitián, “A single-pass
GPU ray casting framework for interactive out-of-core ren-
dering of massive volumetric datasets,” The Visual Computer,
vol. 24, no. 7–9, pp. 797–806, 2008.

[16] J. A. Iglesias Guitián, E. Gobbetti, and F. Marton, “View-
dependent exploration of massive volumetric models on large-
scale light field displays,” The Visual Computer, vol. 26, no.
6–8, pp. 1037–1047, 2010.

[17] C. Crassin, “GigaVoxels: A voxel-based rendering pipeline
for efficient exploration of large and detailed scenes,” Ph.D.
dissertation, Université de Grenoble, July 2011.

[18] M. Hadwiger, J. Beyer, W.-K. Jeong, and H. Pfister, “Interac-
tive volume exploration of petascale microscopy data streams
using a visualization-driven virtual memory approach,” IEEE
Trans. Vis. Comput. Graphics, vol. 18, no. 12, pp. 2285–2294,
2012.

[19] M. Balsa Rodriguez, E. Gobbetti, J. Iglesias Guitián,
M. Makhinya, F. Marton, R. Pajarola, and S. Suter, “A
survey of compressed GPU-based direct volume rendering,”
in Eurographics 2013 - STARs, 2013, pp. 117–136.

[20] M. Treib, F. Reichl, S. Auer, and R. Westermann, “Interactive
editing of gigasample terrain fields,” Computer Graphics
Forum, vol. 31, no. 2, pp. 383–392, 2012.

[21] M. Treib, K. Bürger, F. Reichl, C. Meneveau, A. Szalay, and
R. Westermann, “Turbulence visualization at the terascale on
desktop PCs,” IEEE Trans. Vis. Comput. Graphics, vol. 18,
no. 12, pp. 2169–2177, 2012.

[22] W. Sweldens, “The lifting scheme: A construction of second
generation wavelets,” SIAM J. Math. Anal., vol. 29, no. 2, pp.
511–546, Mar. 1998.

[23] K. Engel, M. Kraus, and T. Ertl, “High-quality pre-integrated
volume rendering using hardware-accelerated pixel shading,”
in Proc. ACM SIGGRAPH/Eurographics Workshop on Graph-
ics Hardware, 2001, pp. 9–16.

[24] J. Danskin and P. Hanrahan, “Fast algorithms for volume ray
tracing,” in Proc. Volume Visualization, 1992, pp. 91–98.

[25] C.-M. Ng, C.-T. Nguyen, D.-N. Tran, T.-S. Tan, and S.-W.
Yeow, “Analyzing pre-fetching in large-scale visual simula-
tion,” in Proc. Computer Graphics International (CGI), 2005,
pp. 100–107.

