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Visualizing the Variability of Gradients
in Uncertain 2D Scalar Fields

Tobias Pfaffelmoser, Mihaela Mihai and Rüdiger Westermann

Abstract—In uncertain scalar fields where data values vary with a certain probability, the strength of this variability indicates
the confidence in the data. It does not, however, allow inferring on the effect of uncertainty on differential quantities such
as the gradient, which depend on the variability of the rate of change of the data. Analyzing the variability of the gradient
is nonetheless more complicated, since, unlike scalars, gradients vary in both strength and direction, requiring initially the
mathematical derivation of their respective multivariate distributions, and then the development of effective analysis techniques
for these distributions.
This paper takes a first step into this direction: Based on the stochastic modeling of uncertainty via multivariate Gaussian
distributions, we start by deriving uncertainty parameters, such as the mean and the covariance matrix, for gradients in uncertain
discrete scalar fields. Then, for the first time to our best knowledge, we develop a mathematical framework for computing
probability distributions for both the gradient orientation and the strength of the derivative in the mean gradient direction. While
this framework generalizes to 3D uncertain scalar fields, we concentrate on the visualization of the resulting distributions in 2D
fields. We propose a novel color mapping scheme using diffusion to visualize the variability of the derivative strength, and we
introduce a special family of circular glyphs to convey the orientation distribution of uncertain vector quantities. For a number of
synthetic and real-world data sets, we demonstrate the use of our approach for analyzing the stability of iso-contours in uncertain
2D scalar fields, with respect to both position and orientation. We further discuss possibilities to extend these visualization
techniques to 3D and emphasize problems that arise in higher dimensions.

Index Terms—Uncertainty visualization, gradient variability, structural uncertainty, glyphs.
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1 INTRODUCTION

I N an uncertain scalar field where each probability density func-
tion of data values at a certain spatial point can be approximated

by a Gaussian probability density function, standard deviations
are primary indicators for the degree of variation of these values.
Thus, standard deviations are a means to classify the confidence in
the data values, and, to this purpose, are often visualized directly,
for instance, via confidence regions, uncertainty glyphs, or specific
color or opacity mappings [1], [2].

The standard deviation, nonetheless, is of limited use for a
rigorous analysis of uncertain data, because it does not allow
inferring on the relative variability of data values at different
points. This means, in particular, that the effect of uncertainty on
differential quantities, which depend on the rate of change of the
data, cannot be analyzed. Such quantities, however, play a major
role in data analysis, to indicate the location and orientation of
important geometric features, such as object boundaries or iso-
contours.

In this work, we analyze the effect of uncertainty on the
variability of gradients in scalar fields, with respect to both
magnitude and orientation. Such an investigation helps answer
primary questions on the stability of features in scalar fields. For
instance, if a feature classifier depends on the gradient magnitude
and a point has been classified as belonging to the feature, a low
variability of the gradient magnitude indicates with a high level
of certainty the point’s membership to the feature. Then, a low
variability in gradient orientation shows that the shape of the iso-
contour passing through the respective spatial point is very likely
to remain unchanged, even if the standard deviation shows a high
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spread in the data values. On the contrary, a high uncertainty in
gradient orientation indicates a likely change in the orientation
of the contour, even though a low standard deviation might be
observed.

Assessing the variability of gradients can therefore reveal the
stability of features and their geometric structures in scalar fields.
It is, however, considerably more complicated than determining
the data variability via the standard deviation, because no stochas-
tic model describing the spread in magnitude and orientation is
available initially. Thus, one first has to derive the random dis-
tributions of both quantities analytically, before effective analysis
techniques for these distributions can be developed.

This paper takes a first step into this direction: Based on
the stochastic modeling of uncertainty via multivariate Gaussian
distributions, we first derive uncertainty parameters, such as the
mean and the covariance matrix, for gradients in uncertain scalar
fields. The Gaussian distribution serves as a placeholder for the
more general class of uni-modal distribution functions that can
be characterized by the parameters mean and standard deviation.
Using Gaussian distributions to model uncertainty stochastically
is prevalent in the field of uncertainty visualization, although so
far Gaussian distributions have mostly been used to model the
local uncertainty, which can be completely characterized by the
standard deviations. Our work is thus a natural extension that
strives for an analysis of the effects of uncertainty on derived
quantities that depend on data values at more than one spatial
point. Multi-modal distributions, on the other hand, for which
means and standard deviations do not serve as reliable character-
istic parameters, would require first an adequate stochastic model
to visualize the uncertainty of the data values themselves, before
going further to analyze possible effects on differential quantities
like gradients.

Building upon uncertainty parameters, we then develop a math-
ematical framework to analytically derive probability distributions
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for both the gradient orientation and the strength of the derivative
in the mean gradient direction. To the best of our knowledge, this
is the first time that analytic expressions for such distributions in
uncertain scalar fields have been derived. Separating the derivative
strength from the gradient orientation gives rise to an effective
analysis of the gradient uncertainty with respect to slope, as
well as orientation. The resulting framework generalizes to 3D
uncertain scalar fields, but, due to page limitations, in this paper
we only provide the mathematical derivation in 2D. The 3D case
is discussed in a technical report available online at [3].

Our ultimate goal is to develop visualization techniques to
qualitatively assess the gradient variability in uncertain 2D scalar
fields. This is challenging, because both the data values and
the gradients’ probability distributions need to be represented
graphically in one single view. We address this issue by separately
visualizing the distribution of the derivative strength and the
orientation distribution. For the first case, we introduce a novel
color mapping scheme involving color diffusion. The fundamental
idea is to continually diffuse the colors of a base pattern, revealing
the distribution of data values in the initial field, with preselected
colors representing different degrees of uncertainty. By controlling
the diffusion strength via the degree of derivative uncertainty, a
clear differentiation between geometric features of high and low
stability is obtained. For the second case, we propose a special
family of circular glyphs, where a glyph’s pattern and color convey
the spread in direction and the uncertainty degree, respectively. We
also sketch possible extensions of these methods to 3D, although,
due to the inherent occlusions in 3D, some more specifically
tailored techniques are required.

In summary, the particular contributions of our paper are:

• A derivation of uncertainty parameters like the mean and
covariance for gradients in uncertain scalar fields given on
discrete grid structures.

• Analytic expressions of the probability distributions describ-
ing the gradients’ magnitude and orientation variability in
Gaussian distributed uncertain scalar fields.

• A visualization technique using color diffusion to indicate
the stability of the slope along the gradient direction in 2D
scalar fields.

• A family of patterned and colored glyphs to quantitatively
depict the uncertainty in the orientation of iso-contours in
2D scalar fields.

To validate our techniques, we apply them to visualize the
gradient uncertainty in a number of data sets. We use a synthetic
data set to illustrate how our approaches convey additional infor-
mation that cannot be obtained from the mean values and standard
deviations alone. In several real-world data sets we further confirm
the strength of our approaches to analyze important geometric
features with respect to their possible changes due to uncertainty.

The remainder of the paper is as follows: In the next section
we discuss previous work that is related to ours. Next, we derive
the uncertainty parameters for gradients in uncertain scalar fields,
given on discrete grids. Then, we introduce stochastic models for
the gradient variability in magnitude and orientation. Two methods
for visualizing the gradient uncertainty are proposed in section 4,
starting with the visualization of the derivative uncertainty in the
mean gradient direction, and then addressing the visualization of
the variability of the gradient orientation. Results and a discussion
of the relevance and usefulness of our approaches are given in the
following section. We conclude the paper with an overview of the
contributions and some remarks on future work and challenges
for an adaption to 3D.

2 RELATED WORK

Uncertainty visualization has been acknowledged as one of the
principal research topics in visualization for more than a decade
now [2], yet the visual indication of uncertainties in scientific
data sets is still far from standard. Most of the efforts in this
area have been restricted to particular fields, such as geographical
information systems [4], seismology [5], and astrophysics [6],
to give just a few examples. An overview and taxonomy of
uncertainty visualization techniques is given in [1], [7], [8]. The
web-library at [9] provides a list of references to the major
publications in the field.

One method to represent uncertainty is overloading, whereby
uncertainty is treated as secondary data that is visualized in
addition to the primary data. Here, the standard deviation from
a given mean value is often visualized directly via specific color
and opacity mappings, animations, texture, glyphs, or additional
surface structures [10], [11], [12], [13], [14]. Although such
approaches can provide a good indication of the local uncertainty
strength, inferring how the position and structure of specific
features in the data are affected by the uncertainty is nonetheless
difficult.

Alternative techniques visually encode the positional variation
that is caused by the uncertainty on specific features, for instance,
the positional variability of surfaces in space. Methods include the
visualization of confidence surfaces [2], [15] and flowlines [16],
surface diffusion techniques [17], as well as surface animations
[18]. The most recent approaches [19], [20], [21] model the
uncertainty stochastically and derive probability distributions for
particular stochastic events associated to iso-surfaces. [22] and
[23] give qualitative insight into possible structural variations of
salient features in scalar fields, by visualizing positive and inverse
global and local correlation structures in uncertain Gaussian
distributed 2D and 3D scalar fields. Then, [24] puts forward a
numerical technique to show locally the covariance and cross-
covariance fields of a 2D stochastic simulation. As far as we are
aware of, however, none of these techniques allows quantitative
inferring on the stability of structural properties of particular
features in the data.

This kind of insight into the variability of features can be
obtained by going beyond uncertainty indicators like the mean and
the variance, and analyzing derived quantities, such as gradients.
In the context of feature variability as treated in this paper,
examining gradients is appealing because these quantities pertain
to the uncertainty at multiple values in the data, rather than just
at one local position. On the contrary, methods proposed up to
this moment have mainly considered uncertainty given by a scalar
value, e.g., the standard deviation. To our best knowledge, no such
investigations addressing the variability of gradients in uncertain
scalar fields have been performed so far.

Nevertheless, several visualization techniques have been de-
veloped to represent uncertainty in magnitude and orientation of
the individual vectors in vector fields generally. Different glyph
techniques are presented in [25], where the authors experiment
with various arrow glyphs that use the width of the arrow head to
indicate uni-modal angular uncertainty and additional arrow heads
for the range of possible magnitudes. Rectangular glyphs, together
with additional less emphasized lines to encode the uncertainty,
are used for bidirectional vector fields in [26]. The applicability of
the approach is nonetheless limited to the chosen scalar geological
model parameters, which are approximated to follow a Gaussian
distribution.

In the tractography domain, [27] introduces a so-called “cone
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of uncertainty” 3D glyphs to visualize the orientation and corre-
sponding uncertainty of brain fibers. The directional information
is approximated by the principal eigenvector of the diffusion
tensor, while the associated uncertainty, stemming from noise in
MR images, is estimated via bootstrap methods. [28] combines
patterns with glyphs to map an anisotropic reaction-diffusion
model to vector magnitude and orientation, by producing spot
patterns of various shapes, sizes, orientations, and densities, where
uncertainty in orientation can be qualitatively incorporated in the
amount of anisotropy that gives the shape of the spot.

[29] uses cross-advection and error diffusion in a texture-
based flow visualization, where uncertainty in flow direction
arising during data acquisition is revealed by changing the spatial
frequency orthogonal to the flow direction. A modified LIC
approach is presented in [30], to convey uncertainty in 2D steady
flow fields. Here, the magnitude and direction of vector fields are
taken to be described by presumably existent probability density
functions. Probabilistic numerical integration in uncertain vector
fields is also performed in [31], [32], where the vector fields
are assumed to be Gaussian distributed. The normal distribution
supposition, however, does not extend to the vector magnitude and
orientation, and no distinction is made between the two quantities.
Furthermore, like all other approaches based on numerical inte-
gration, the method suffers from the accumulation of errors during
integration. In [33], the local distribution functions of uncertain
vector quantities are computed via Monte Carlo sampling, the
stochastic properties being derived from a set of realizations of
the uncertain vector data via a computationally expensive process.
These methods differ from our approach, in that we analyze
the variability of vectors locally via an analytical mathematical
derivation of the probability density functions. Moreover, we
distinguish between vector magnitude and orientation, rather than
combine the two in one representation.

3 GRADIENT UNCERTAINTY

This section introduces the mathematical foundations necessary
to define gradients in a scalar field and corresponding stochastic
parameters to model their associated uncertainties in magnitude
and orientation.

In the following, we assume a discrete sampling of a 2D domain
on a Cartesian grid structure1 with grid points Sm,n = {xi, j : 1≤ i≤
m,1≤ j ≤ n}. The data uncertainty at every point is modeled by
a multivariate random variable Y with scalar-valued components
Y (xi, j). We further assume that the random variables follow a
multivariate Gaussian distribution, so that the distribution at point
xi, j is characterized by a mean value µ(xi, j) and a standard
deviation σ(xi, j). Moreover, the correlation values between any
pair of random variables, ρ(Y (xi, j),Y (xk,l)), can be computed.

3.1 Uncertainty Parameters
In a Gaussian distributed random field, gradients also have an
associated probability distribution. We derive these distributions
by first approximating the gradients from the given random
variables via a linear operator, and then using this operator to
approximate the uncertainty parameters, i.e., the means and co-
variance matrices, from the uncertainty parameters of the random
variables.

The gradient at a point xi, j can be approximated via central
differences (one-sided differences at the domain boundaries) on
the random variables as

∇Y (xi, j) = As(xi, j). (1)

1. In the Appendix we describe the extension to arbitrary grid structures.

Here, the 4-element stencil s contains the random variables
s(xi, j) = [Y (xi+1, j),Y (xi−1, j),Y (xi, j+1),Y (xi, j−1)]

>, and the 2×4
matrix A contains the inverse point distances

A1,1 =
∥∥xi+1, j−xi−1, j

∥∥−1
,A1,2 =−A1,1,

A1,3 = A1,4 = A2,1 = A2,2 = 0,

A2,3 =
∥∥xi, j+1−xi, j−1

∥∥−1
,A2,4 =−A2,3.

Since the stencil s(xi, j) forms a 4-component subset of the
multivariate random variable Y, its probability distribution is
multivariate Gaussian as well. Furthermore, due to the linear
relation between ∇Y and s, the gradient follows a bivariate
Gaussian distribution. In order to fully describe this distribution,
we first need to compute the mean gradient µ∇ and the covariance
matrix Σ∇ of ∇Y . From Equ. (1), these quantities relate to the
means and covariances of the random variables via

µ∇(xi, j) = Aµs(xi, j), (2)

Σ∇ = AΣsA>, (3)

where the k-th component of µs(xi, j) contains the mean of the k-th
component of s(xi, j), i.e., (µs(xi, j))k = µ(s(xi, j)k), and the com-
ponents of the covariance matrix Σs of the random stencil vector
are (Σs(xi,j))m,n = σ(s(xi, j)m)σ(s(xi, j)n)ρ(s(xi, j)m,s(xi, j)n).

From the given mean gradient and covariance matrix, the
bivariate probability distribution function of ∇Y for a vector g
is then derived as

p∇(g) =
1

2π
√

detΣ∇

exp(−0.5(g−µ∇)
>

Σ
−1
∇

(g−µ∇)). (4)

Since p∇ describes the likelihood that the gradient takes on a given
magnitude or direction, it expresses the uncertainty of the gradient
in both strength and orientation. In the following subsections, we
separate these two properties, and derive analytic expressions of
the distributions for each of them. These distributions are then
used to visualize the gradient uncertainty.

3.2 Uncertainty in Derivative
Because the derivative at a spatial point xi, j in a 2D scalar
field is dependent on direction, we first have to select a suitable
direction into which to estimate the uncertainty of the derivative.
We therefore choose the direction at the respective point into
which the derivative is most likely maximum, namely the mean
gradient direction in a Gaussian distributed data set.

The uncertainty of the derivative in the mean gradient direction
can itself be modeled by a scalar random variable, where the
values in the range of this variable are obtained by projecting the
gradient random variable onto the mean gradient direction

D(xi, j) :=
µ∇(xi, j)

>∇Y (xi, j)∥∥µ∇(xi, j)
∥∥ . (5)

For the fixed mean gradient direction, D(xi, j) describes the
random variation of the derivative along this direction. Because
∇Y is bivariate Gaussian distributed and D is obtained by applying
a linear operator to it, D also obeys a Gaussian distribution, with
the mean and standard deviation given by

µD(xi, j) =
∥∥µ∇(xi, j)

∥∥ , (6)

σD(xi, j) =

√
µ∇(xi, j)>Σ∇µ∇(xi, j)∥∥µ∇(xi, j)

∥∥ . (7)

Thus, the mean derivative in the mean gradient direction is the
magnitude of the mean gradient. The standard deviation indicates
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the variability of the derivative and serves as an uncertainty
indicator. We will subsequently call this uncertainty the derivative
uncertainty.

3.3 Uncertainty in Orientation
To study the variability of the gradient direction and, thus, to
derive further insight into the stability of geometric features in
the data, we now quantify the uncertainty in direction. Therefore,
we make use of Equ. (4), which represents the uncertainty in
direction, as well as magnitude. In order to isolate the uncertainty
in direction, we first perform a coordinate transformation from
Cartesian to polar coordinates, and then integrate over the radius
coordinate to eliminate the gradient magnitude.

In polar coordinates, the distribution function becomes

p∇(θ ,r) =
r

2π
√

detΣ∇

exp(E(θ)), θ ∈ [0,2π], r ∈ [0,∞[,

(8)

E(θ) =

(
−1

2

(
r
(

cosθ

sinθ

)
−µ∇

)>
Σ
−1
∇

(
r
(

cosθ

sinθ

)
−µ∇

))
.

For every angle θ , a probability density value can be obtained
by integrating the bivariate gradient distribution along a line from
radius r = 0 to r = ∞, i.e., by evaluating the θ -marginal

pθ

∇
(θ) =

∫
∞

0
p∇(θ ,r)dr, θ ∈ [0,2π]. (9)

The line of integration in the 2D density function is illustrated in
Fig. 4 (a). The closed form solution of this integral is2

pθ

∇
(θ) =

exp(−H(µ∇x,µ∇y))
(
1−
√

π t exp(t2)(1− erf(t))
)

4π
√

detΣ∇ H(cosθ ,sinθ)
,

(10)
with the auxiliary terms

H(x,y) =
1

2(1−ρ2
∇
)

(
x2

σ2
∇x

+
y2

σ2
∇y
−2ρ

xy
σ∇xσ∇y

)
, (11)

t =
−µ∇xσ2

∇y cosθ −µ∇yσ2
∇x sinθ

2detΣ∇

√
H(cosθ ,sinθ)

(12)

+
ρ∇σ∇xσ∇y(µ∇x sinθ +µ∇y cosθ)

2detΣ∇

√
H(cosθ ,sinθ)

.

Here, µ∇x and µ∇y are the components of the mean gradient
vector µ∇, while σ∇x and σ∇y are the standard deviations of the
gradient components (square roots of the diagonal entries of Σ∇),
and ρ∇ = Σ∇xy/(σ∇xσ∇y) is the corresponding correlation value.
These values can be computed at every grid point (cf. Equ. (2)
and (3)).

In 3D, the uncertainty in the gradient orientation is obtained
similarly to the 2D case, by performing a change of variables
from the Cartesian coordinates, x, y, and z, to the spherical
coordinates, radius r, polar angle θ , and azimuthal angle φ , and
integrating over the radius to isolate the gradient orientation from
the magnitude. The derivation, available online at [3], is done
by first writing the θ ,φ -marginal like the product of a second-
order polynomial and a Gaussian function, and then integrating
the resulting function over the radius from r = 0 to r = ∞. Unlike
in the 2D case (cf. Appendix), the polynomial is no longer linear,
but quadratic, due the Jacobian of the coordinate transformation.

Equ. (10) expresses the probability distribution of the gradient
direction. As we are interested in using the probability distribution
for assessing the stability of the orientation of certain geometric

2. The derivation of the closed form solution is given in the Appendix.

structures in the data (e.g., the orientation of an iso-contour at a
certain location), the probability of occurrence of angle θ should
include the probability of occurrence of θ + π . To account for
this, we introduce the function

p↔(θ) = pθ

∇
(θ)+ pθ

∇
(θ +π), θ ∈ [0,π], (13)

which adds the two probability distributions of the positive and
negative gradient direction, and, thus, expresses the probability
distribution of the undirected orientation uncertainty.

To obtain a single parameter indicating the degree of orientation
uncertainty, we have built upon the concept of circular variance
(cf. [34]) to introduce the following scalar measure for the
orientation uncertainty

ς = 1−
∥∥∥∥∫ π

0
p↔(θ)

(
cos2θ

sin2θ

)
dθ

∥∥∥∥ ∈ [0,1]. (14)

For a low orientation uncertainty of the gradient, the unit vectors
(cos2θ ,sin2θ)T pointing into the likely direction are weighted by
high values of p↔ and ς approaches zero. On the contrary, for a
high orientation uncertainty, the distribution p↔ tends to become
uniform and all vectors obtain the same weight. In this case, the
circular variance approaches one. Thus, the circular variance acts
as a normalized indicator of the spread in gradient orientation.

4 VISUALIZATION

The gradient uncertainty at a certain point in the domain comprises
the derivative uncertainty and the uncertainty in the gradient
orientation. So far, we have derived the probability distributions
describing the spread in both quantities. In the following, we
propose separate visualization techniques for these distributions.

4.1 Uncertainty in Derivative

Our goal is to provide a visualization that shows simultaneously
the shape of iso-contours in the initial mean values, the distri-
bution of the mean gradient magnitudes (µD), and the derivative
uncertainty at every point in the domain. In particular, we are
interested in a visualization that allows classifying points ac-
cording to their respective lower confidence boundaries µD−σD.
The rationale is that a gradient is likely to disappear or even to
invert, depending on whether µD−σD is close to zero or negative,
classifying the slope along the gradient direction at this point
as rather unstable. Only for a strongly positive µD − σD � 0
can this characteristic be regarded as stable. The visualization
of iso-contours, on the other hand, gives important contextual
information regarding the orientation of gradients in the mean
values.

4.1.1 Derivative Diffusion Mapping

To convey the basic shapes of the iso-contours in the mean scalar
field, as well as the spatial differences in the mean derivative, we
use patterns that are oriented according to the iso-contours, and
vary with a frequency indicating the derivative strength. To this
purpose, we start by partitioning the range of mean values into a
number of N equally spaced intervals. Each interval has a width
of (µmax− µmin)/N, where µmin and µmax are the smallest and
largest mean value, respectively. Each interval is assigned either
the black or white color, in alternating order. At a grid point xi, j ,
the mapping of the data value to color is performed via

κ(xi, j) :=
⌊

µ(xi, j)N
µmax−µmin

⌋
mod 2, (15)
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where µ(xi, j) is the mean value at this point. An example showing
the resulting black and white pattern is given in Fig. 1 (a). In
regions where the derivative in mean gradient direction is low,
the white and black bands are stretched, narrowing with increasing
derivative. The principal shape of the iso-contours reflects in the
shape of the bands.

To visually encode the confidence intervals [µD−σD,µD+σD]
into the contour map, we introduce a diffusion process that smears
out the sharp transitions between the black and the white bands.
Over time, the colors diffuse, so that, in the limit, the bands turn
into gray and no contrast can be seen anymore. We show later
how to use the diffusion time as a parameter to locally control
the amount of diffusion depending on the confidence intervals.

The simulated diffusion process is anisotropic, meaning that the
diffusion takes place along a particular direction (and its inverse
direction) through the bands and, possibly, through the boundaries
between two neighboring bands. The diffusion at a certain point
occurs along the normal curve, which is the curve passing through
the point and oriented along the gradient direction. Thus, a normal
curve crosses the boundary between two bands orthogonally (see
the blue curve in Fig. 1 (a)).

Fig. 1. (a) A 2D scalar field is shown. The data range is
partitioned into equally spaced intervals, colored black and
white. The thickness of the resulting bands reveals the local
gradient magnitude. The blue normal curve is everywhere
tangential to the gradient field. (b) The gradient magnitude
is also encoded as color diffusion (high and low diffusion in
regions with low and high gradient magnitudes).

Because of the diffusion, the color at a certain point can change
over time, from only black or white (no diffusion), to a mixture
of 50% black and 50% white (full diffusion). The fraction of
the initial black or white color, respectively, is called diffusion
value. By varying the diffusion time, we can control the degree
of diffusion. Note that the fraction of the initial color (diffusion
value) is 1, if no diffusion takes place (low degree of diffusion),
and approaches 0.5 for higher diffusion degrees. Low and high
degrees of diffusion are associated with high and low diffusion
values. Furthermore, only in the limit are the diffusion values
homogenous along the normal curve within one band. For small
degrees of diffusion (low diffusion time), the diffusion values are
lower close to the band boundaries.

Instead of simulating a physical diffusion process at run-time,
we pre-compute a 2D diffusion texture, and look up the actual
diffusion value at a certain spatial point and for a certain diffusion
degree from this texture. The 2D texture contains diffusion values
between 1 (no diffusion) and 0.5 (full diffusion). These values
model the fraction of the initial color in the final color mix after
the diffusion time has passed. The texture T is parameterized over
the relative position u of a point between the two boundary lines

of the band containing this point (from 0 to 1), and the degree of
diffusion v (from 0 to 1).

T is obtained in two steps. First, an intermediate 2D texture
τ is created, parameterized over the diffusion time vτ from 0 to
a selected maximum vτmax , and over the relative point position
(uτ = u). The values of τ at the texture coordinates (uτ ,vτ ) are
computed by a convolution of the periodic box function

β (x) := dxe mod 2 , x ∈ R (16)

with a Gaussian kernel Gvτ
with standard deviation vτ :

τ(uτ ,vτ ) = (Gvτ
∗β )(uτ ) = (17)

=
1

vτ

√
2π

∫
∞

−∞

exp
(
− (x−uτ )

2

2v2
τ

)
β (x)dx.

Here, β describes the periodic black and white pattern along the
normal curve in the data domain, independent of the concrete
frequency of the black and white pattern along this curve in the
spatial domain.

The greater vτ is in Equ. 17, the larger the extent of the filter
kernel and the more β is smoothed, simulating an increasing
diffusion time. For a constant vτ , the closer the points are
to the boundaries between two bands, the more values from
the respective other band will be integrated, introducing lower
diffusion values at the boundaries.

The next step performs a parameter transformation, so that the
v texture coordinates are ∈ [0,1] instead of ∈ [0,vτ max]. This is
achieved via the mapping

λ (vτ ) = 2
∫ 1

0
τ(uτ ,vτ )duτ −1, (18)

which is strictly monotonic from 1 to 0 for vτ ∈ [0,vτ max]. Because
we need to map from v ∈ [0,1] to vτ ∈ [0,vτ max], the inverse
function λ−1 is needed. While this does not have a closed form,
it can be obtained using a back-mapping strategy between the
domain [0,vτ max] and its image λ ([0,vτ max]). The values in the
diffusion texture T , shown in Fig. 2 for u ∈ [0,1] and v ∈ [0,1],
are finally computed as

T (u,v) = τ(u,λ−1(v)), u ∈ [0,1], v ∈ [0,1]. (19)

Fig. 2. The diffusion texture T . Diffusion values from 0.5
to 1 are mapped to a grayscale color map. The x-axis
represents the relative position u of a point between two band
boundaries. The y-axis represents the degree of diffusion v.

As stated before, the parameter v should control the degree
of diffusion depending on the strength of the derivative in the
mean gradient direction. Thus, we finally make v dependent on the
random variable D (cf. Equ. 6), which models the derivative in the
mean gradient direction. For a point xi, j, the texture coordinates
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are now computed as

u(xi, j) =
µ(xi, j)N

µmax−µmin
−
⌊

µ(xi, j)N
µmax−µmin

⌋
, (20)

v(xi, j) = max

(
min

(
D(xi, j)

maxx∈Sm,n µD(x)
,1

)
,0

)
. (21)

The u-component determines the position within one band be-
tween the band boundaries, and the v-component maps D to the
degree of diffusion. Because it uses the relative position between
the maximum mean derivative in mean gradient direction and
zero, high and low diffusion degrees are assigned to low and high
derivative values, respectively.

One diffusion value T (u,v) is obtained for each point xi, j in
the data field. To smear out the black and white bands, the value
1−T (u,v) is either subtracted from (white) or added to (black)
the intensity value. Thus, in regions with a low derivative D, the
bands turn into gray, whereas in regions with strong derivatives,
the black and white bands remain well separated.

This process is simulated by introducing normalized diffusion
values

T̃ (u,v) := 2T (u,v)−1 ∈ [0,1], (22)

and computing the final color c(xi, j) at each grid point by blending
an RGB diffusing color cd over a background color cb:

c(xi, j) = (1− T̃ (u,v))cd(xi, j)+ T̃ (u,v)cb(xi, j). (23)

Fig. 1 (b) shows an example where the variable D in Equ. (21)
was replaced by the mean derivative µD. The background color is
either black or white, depending on which band xi, j belongs to,
and the diffusing color is gray (cd = (0.5,0.5,0.5)). Even though
this visualization does not reveal any new information, because µD
is now encoded twice, once as stripe pattern and once as diffusion,
it illustrates the use of diffusion as an additional means for data
classification. We will later show how to select the diffusion colors
(and diffusion values) locally at each point depending on the mean
gradient magnitude and the confidence interval. In this way we can
simultaneously encode the three characteristic confidence values
µD−σD, µD, and µD +σD in one single view.

4.1.2 Diffusion Coloring

To encode the uncertainty of the derivative in mean gradient
direction (cf. 3.2), we use the proposed diffusion scheme in
combination with a set of three different diffusion colors. The
goal is to use the degree of color diffusion over the black and
white bands for classifying regions with respect to the following
four categories: a) strong mean derivative and low uncertainty,
b) strong mean derivative and high uncertainty, c) low mean
derivative and low uncertainty, and d) low mean derivative and
high uncertainty.

To encode the confidence interval of the derivative into dif-
fusion, the variable D in Equ. (21) is replaced by the three
characteristic confidence values µD−σD, µD, and µD+σD. Thus,
one obtains the normalized diffusion values

T̃−D (xi, j) = T̃

(
u(xi, j),max

(
µD(xi, j)−σD(xi, j)

maxx∈Sm,n µD(x)
,0

))
, (24)

T̃ 0
D(xi, j) = T̃

(
u(xi, j),

µD(xi, j)

maxx∈Sm,n µD(x)

)
, (25)

T̃+
D (xi, j) = T̃

(
u(xi, j),min

(
µD(xi, j)+σD(xi, j)

maxx∈Sm,n µD(x)
,1

))
. (26)

These values are encoded into the visualization via three different
color mappings, and a special blending and interpolation scheme.

We use the blending equation (23) to assign a specific color to
each grid point. Because we are interested in identifying regions
where the lower confidence boundary µD − σD is significantly
positive — indicating a stable positive derivative in the mean
gradient direction — the diffusion value in Equ. (23) is replaced
by T̃−D (xi, j). Thus, the final color induced by the lower confidence
boundary derivative is

c(xi, j) = (1− T̃−D (xi, j))cd(xi, j)+ T̃−D (xi, j)cb(xi, j), (27)

where cd is a selected diffusion color. In regions where the lower
confidence boundary derivative has a low value (e.g., close to
zero), cd diffuses over the black and white bands. On the other
hand, in regions with a significantly positive lower boundary, the
diffusion is low as well, and the black and white bands are not
affected.

The diffusing color cd encodes the relative position of the values
µD−σD, µD, and µD +σD with respect to the zero derivative.
Therefore, the color maps CMb = [cyan→ blue→ magenta] and
CMw = [yellow→ red→ magenta] are defined for the black and
white band, respectively. The RGB colors CMb(i) and CMw(i)
are obtained from each map using an index i ∈ [0,1], where i = 1
corresponds to magenta.

The colors are used to indicate the characteristics of the
confidence intervals in three levels: Cyan and yellow correspond
to the lower confidence boundary (level 1), blue and red to the
mean derivative (level 2), and magenta to the upper boundary
(level 3). At first, the position of the mean derivative is encoded.
If µD is significantly positive, only the level-1 color is used, while
for a low µD value, the level-2 color dominates. The index i1/2
used to retrieve the color interpolated between the level-1 and
level-2 colors is computed from the diffusion value of the mean
derivative as follows

i1/2 = 0.5(1− T̃ 0
D(xi, j)). (28)

The level-3 color encodes the position of the upper confidence
boundary µD +σD. If it is strongly positive, the color does not
change. If, on the other hand, µD +σD also approaches zero, the
color is shifted towards magenta via the diffusion value of the
upper boundary. Thus, the final index to map into the diffusion
color is

i = T̃+
D (xi, j)i1/2 +(1− T̃+

D (xi, j)). (29)

The diffusing color cd is then set to either CMb(i) or CMw(i),
depending on the background color, and the final color is ob-
tained by using the diffusing color in the blending equation (27).
Note that using the diffusion values associated to the respective
confidence values, instead of using these values directly for the
color coding, generates a smooth visualization of the derivative
confidence intervals.

Fig. 3 shows four examples demonstrating the proposed color
mapping using different mean derivatives and derivative uncertain-
ties. On the left, the mean derivative values (blue) are plotted on
a linear 1D scale, the zero derivative being marked by the black
circle. Furthermore, the confidence regions between the upper
and lower boundaries are visualized as red bands, and the two
boundary derivatives as red dots.

On the right hand side, we show the cross section along a
normal curve through two neighboring black and white bands. In
(a), the mean derivative in mean gradient direction is significantly
positive, while the standard deviation is relatively low. Therefore,
the black and white color is not covered by the level-1 colors, as
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the lower confidence boundary is significantly greater than zero.
In (b), the mean value is the same as in (a), but the standard
deviation is higher. This results in the coverage of the black and
white stripes by the level-1 colors (cyan and yellow). In (c), the
mean value is close to zero. Thus, the level-2 colors dominate. The
black and white pattern is completely covered, because the lower
confidence boundary is also close to zero. The strong diffusion
of the level-3 color (magenta) indicates that the upper confidence
boundary is also close to zero and, thus, the uncertainty is low. In
(d), the uncertainty is larger than in (c), resulting in a significantly
increased upper confidence boundary and a lower diffusion of
the level-3 color. This reveals a low mean derivative, yet, due to
the high uncertainty, stronger positive and negative derivatives are
likely to occur. For further illustration of the specific color coding
we propose, including different settings for µD and σD, we refer
the reader to the video accompanying this manuscript.

Fig. 3. Color maps for diffusion coloring of confidence
intervals. Four different maps are used to classify different
combinations of µD and σD. On the right, for each of the
intervals, the respective coloring and diffusion along a nor-
mal curve through two adjacent black and white bands are
illustrated.

4.2 Uncertainty in Orientation
To visualize the uncertainty in orientation, the orientation prob-
ability density and the circular variance (cf. Equ. (13) and (14))
are encoded into a circular glyph representation. Each glyph is
represented by a triangle fan, comprising a number of equally
sized triangles that are arranged around the glyph center-point
(see Fig. 4). For each triangle, color and transparency values are
assigned to the two off-center vertices, while the center vertex
is assigned the mean color and transparency of these vertices.
Starting with θ0 = 0 at the east vertex, each off-center vertex i is
assigned an angle θi = 2π(i/N) in counterclockwise order, where
N is the number of off-center vertices. This ordering is illustrated
in Fig. 4 (b). An orientation probability density value is computed
at every off-center vertex by evaluating Equ. (13) at the assigned
θi for θi ≤ π and at θi−π for θi > π . The gradient uncertainty
parameters µ∇ and Σ∇, which are assumed to be constant for the
entire glyph, are computed at the data point at which the glyph
is centered.

All vertices of a glyph have the same color, which encodes the
degree of uncertainty. The color of a glyph is obtained by mapping
the circular variance ς at the glyph center point to color via a pre-
defined color map. In our example, we use the mapping [0,1]−→
[green→ cyan→ blue→magenta→ red]. Thus, glyphs in regions
with very low and very high gradient orientation uncertainty tend
to green and red, respectively. To allow the user to distinguish
between points at which the orientation distribution is more or
less uniform, i.e., to show the individual distributions per glyph,

Fig. 4. (a) 2D Gaussian probability density of a vector
quantity. The red arrow and green ellipse indicate the mean
direction and confidence region, respectively. The gradient
direction probability pθ

∇
(θ) for an angle θ is obtained by

integrating the 2D probability density function along the blue
line from 0 to ∞. (b) Triangle-based glyph representation.
Each off-center vertex at angle θi is assigned a transparency
according to the probability density function p↔ of the an-
gular orientation. The color is constant for all vertices and
determined by the circular variance of p↔.

the transparency of the glyphs is modified accordingly. By setting
the transparency of a vertex to

α(θ) =
p↔(θ)

maxθ∈[0,π] p↔(θ)
, (30)

glyphs representing a uniform distribution become fully opaque.
On the other hand, varying transparencies causes a clear color
contrast between orientations with high and low likelihoods.

Fig. 6 shows four examples of bivariate gradient distributions
and the corresponding uncertainty glyphs. The mean gradient µ∇

is shown as a red vector, the green ellipse, related to Σ∇, indicates
the 2D confidence area around the mean vector, and the black
line represents the mean orientation of the vector. The glyphs are
colored according to the color map for the circular variance.

In (a), the orientation uncertainty is low, because the gradient
variation mainly alters the magnitude. In (b), there is a significant
uncertainty in orientation. The transparency mapping further in-
dicates a multi-modal orientation distribution, i.e., two significant
different orientations are equally likely. Note that the orientation
of the mean vector has a low likelihood and is, therefore, unstable.
In (c), the zero correlation between the gradient’s components in
(a) and (b) was changed to a negative value. This resulted in
an asymmetric orientation distribution with respect to the mean
vector. In (d), the mean gradient is the zero vector. Although the
glyph indicates a strong uncertainty, it becomes apparent that the
gradient is most likely directed vertically.

Because the user is interested in the orientation stability of the
gradients, the mean data set is displayed as a contour represen-
tation. A user-specified number of iso-lines is displayed for iso-
values equidistantly positioned within the data range.

A glyph-based visualization, such as the one in Fig. 8 (b),
facilitates a rapid understanding of the way uncertainty affects
the orientation of the gradients, especially in the regions with
lower uncertainty, where the glyphs become less opaque and the
geometry of the iso-contours can be visualized concurrently with
its uncertainty. This happens irrespective of the placement of the
glyphs, because the pattern of the glyphs is typically orthogonal
to the iso-contours of the scalar field, making the contours clearly
discernible. An alternative would be to consider the orientation
uncertainty of the tangent line, rather than that of the gradient,
but this would not only produce no new information, it would
also lower the contrast in coverage of the iso-contours between
low and high uncertainty regions.
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Fig. 5. (a) Mean values in a synthetic 2D ensemble data set. Data values at vertices of a triangular grid are generated via
Gaussian distributed random variables Hi, data interpolation is used in between. (b) The standard deviation of each variable
is constant over the entire domain, but different correlations where enforced between the variables Hi. (c) One particular
ensemble member (realization) is shown. Even though every random variable has the same standard deviation, one can
observe vastly different data distributions, and gradient variations thereof. (d) Visualization of derivative uncertainty via color
diffusion. Upper left cell: Strong mean derivative and low derivative uncertainty is indicated by black and white striping. Lower
left cell: Diffusing cyan and yellow indicates strong mean derivative and high derivative uncertainty. Upper right cell: Diffusing
magenta over red and blue color indicates low mean derivative and low derivative uncertainty. Lower right cell: Vanishing
magenta indicates low mean derivative and strong derivative uncertainty.

Fig. 6. 2D gradient distributions and corresponding circular
glyphs. A black line encodes the mean gradient orientation.
(a) High gradient magnitude and low orientation uncertainty.
(b) Multi-modal probability distribution. Two orientations are
equally likely, the mean orientation is very unlikely and
therefore unstable. (c) Asymmetric spread of the orientation.
(d) Zero mean gradient, but strong likelihood of a vertical
gradient orientation.

5 RESULTS AND DISCUSSION

To evaluate our techniques, we first use a synthetic 2D scalar
field, which was designed to specifically demonstrate the kind of
insights these techniques provide (see Fig. 5). The 2D domain
is divided into 2× 2 quadratic cells. Scalar values are given at
grid points of a triangular grid (cf. transparent grid lines in (a)).
The values at the cell corners and cell centers (grid points) are
modeled via a multivariate Gaussian random variable H. The
first component, H1, models the values at all corners of the
four cells, its mean being set to µ(H1) = 0. The values at the
centers of the upper and lower cells, respectively, are modeled
via four components H2,H3,H4, and H5, with means µ(H2) = 1,
µ(H3) = 1, µ(H4) = 0.3, and µ(H5) = 0.3. Inside each cell and
triangle, C1-interpolation between the values at the corner points
and the center point is performed. In (a), the mean data values
are shown.

The standard deviation of all random variables is set to the
constant value σ(Hi) = 1, as shown in (b). A strongly positive
correlation is modeled between the random variables H1 and H2,

and between H1 and H4. All other pairs are uncorrelated (pairwise
correlation equals zero). An ensemble of realizations for H can
now be generated at the corner and center points via a multivariate
Gaussian random generator. One realization (ensemble member)
for H and its interpolation is shown in (c).

In (d), the technique proposed in subsection 4.1 was used to
visualize the derivative uncertainty. In the upper left cell, the mean
gradient magnitude is high. As H1 and H2 are strongly correlated3,
i.e., the random values go up and down simultaneously, the
derivative is stable. This stability is indicated by our approach,
as the black and white stripes are not covered by the level-
1 colors. The corresponding confidence interval relates to the
one in Fig. 3 (a). Then, because H1 and H3 are uncorrelated,
the strong derivative in the lower left cell is not stable. Thus,
the bands are completely covered by the level-1 colors. The
corresponding confidence interval relates to the one in Fig. 3 (b).
Furthermore, the low mean derivative in the upper right cell is
conveyed by a strong diffusion of the level-2 colors. As there is
also a significant diffusion of the level-3 color magenta, the upper
confidence boundary is close to the mean derivative and, therefore,
the derivative uncertainty is low (cf. configuration (c) in Fig. 3).
The zero correlation between H1 and H5 causes a high derivative
uncertainty in the lower right cell. This results in a low diffusion
of the level-3 color, as shown in Fig. 3 (d).

The example illustrates that our diffusion technique can be
used to analyze the stability of certain features in the data with
respect to their derivative strength. Comparing the left two cells,
only the strong increase of the mean data values towards the
center point is stable in the upper left cell. On the other hand,
in the lower left cell, the increase could be, due to uncertainty,
considerably lower or even negative. Notably, this information
cannot be revealed by visualizing only the standard deviation, as
shown in Fig. 5 (b). Because it is constant over the whole 2D
domain, the standard deviation does not provide any information
on the different gradient uncertainties of the data in the cells.
Obviously, the diffusion mapping in (d) can provide additional
information on the derivative stability, which cannot be revealed
by the mean (a) and standard deviation (b), that are usually used

3. A detailed interpretation of correlation in the context of relative
uncertainties can be found in [23] and [22].
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in uncertainty visualization scenarios.
In the next example, we demonstrate the use of our techniques

for analyzing the gradient uncertainty in a geophysics ensemble
data set, showing material variations at a certain depth in the
earth’s crust. The data set was obtained using seismic tomography
and contains an ensemble of relative velocity values for shear
waves, originating from earthquake source locations. For details
on how the data was acquired and the information contained in
this data, we refer the reader to [35]. Fig. 7 (a) and (b) show
the mean values and the standard deviations at each point in the
covered 2D domain. The mean values are mapped linearly from
blue (negative) to red (positive). Two important circular features
can be observed in the mean values, but the standard deviations
in both regions are almost constant. Thus, an uncertainty analysis
using only mean values and standard deviations would not reveal
any significant differences between the two features.

Fig. 7. Mean values (a) and standard deviations (b) in an
ensemble of 2D seismic tomography shear wave velocity
variations. Two circular features with very similar occurrences
can be distinguished. One member (realization) of the en-
semble is shown in (c).

In Fig. 8 (a), diffusion coloring was used to visualize the
derivative uncertainty. The visualization indicates in the left region
a high variation of the derivative in mean gradient direction
towards the feature center; the black and white stripes are much
more covered by the level-1 colors. This is supported by the
visualization of one ensemble member in Fig. 7 (c), which
shows strongly positive gradients in the right region, but negative
gradients in the left region, i.e., the derivative in the left region
is more or less inverted. Diffusion coloring shows this strong
derivative uncertainty directly. Fig. 8 (b) illustrates, on the other
hand, that the gradient orientation is quite stable in both regions.
Thus, both features have a circular structure, yet only for the right

feature can the positive gradient magnitude be assumed stable. In
the left circular region it could be possible that the values decrease
towards the feature center.

From an application point of view, the visualization helps to
identify regions where significant material anomalies are present
with respect to the surrounding structures. In the presented ex-
ample, the data contains relative velocity values for earthquake
shear waves. These values are characteristic for certain material
structures in the earth’s crust. The user is interested to identify
local and global maxima and minima of the relative velocity
values, because they can serve as indicators for material anomalies
(minerals, sediments, ores, oil, etc.) in the earth. Since seismic
tomography data sets are always affected by uncertainty, the user
is interested in analyzing the respective critical areas (maxima,
minima, strong gradients, etc.) with respective to their stability. As
demonstrated, the techniques proposed in this work can effectively
enable such an analysis.

Fig. 8. Visualization of the gradient uncertainty in the en-
semble shown in Fig. 7. a) The two circular features can be
classified as stable (right feature) and unstable (left feature)
with respect to their derivative uncertainty, i.e., strong color
diffusion towards level-1 colors cyan and yellow in the left
region. b) Glyph-based visualization conveys high stability
of the gradient orientation for the left and right features. In
contrast, the small circular feature in the bottom left part is
significantly affected by orientation uncertainty, indicating a
very likely change in the orientation of iso-contours passing
through this region.

In our second example, we use uncertainty visualization to
identify stable features in the mean values of an ensemble of
temperature fields. The ensemble was simulated by the European
Center for Medium-Range Weather Forecast (ECMWF) for two
different forecast periods and pressure levels above Europe. Mean
temperature values, as well as standard deviations and correla-
tions, were computed from the ensemble members.

The mean temperature is shown in Fig. 9 (a). Values are linearly
mapped from blue to red (cold-to-warm mapping). In (b), the
standard deviation is shown in temperature units, linearly mapped
from blue (low) to red (high). Diffusion coloring and glyph-
based visualization of the orientation uncertainty are shown in (c)
and (d), respectively. The first interesting observation is the high
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Fig. 9. Mean values (a) and standard deviations (b) of a temperature ensemble forecast. Diffusion coloring is shown in
(c). Strong mean gradients with low derivative uncertainty are identified in regions (1), (2) and (4). Color diffusion towards
cyan and yellow reveals a strong derivative uncertainty in (3). Strong diffusion towards magenta in (5) indicates a low mean
derivative with low uncertainty. The visualization of the uncertainty in gradient orientation (d) reveals stable orientations of
iso-contours in (1), (2) and (4).

stability of the strong temperature incline in region (1), which
is indicated by the narrow bands and almost no color diffusion
on these bands in (c), as well as by the green glyph pattern in
(d). Thus, the temperature difference between the blue and cyan
region is well resolved, affected by a relatively low uncertainty
and significantly different from zero. Interestingly, the standard
deviation is relatively strong in this region (cf. (b)). Consequently,
the standard deviation does not necessarily allow drawing any
conclusion on the variability of derivative strengths, which is also
affected by correlation effects. By analyzing in Fig. 9 (c) the
transition zone between cyan and red as shown in Fig. 9 (a),
one can observe that only the derivatives in (2) and (4) are stable.
Although region (3) is affected by a similar mean derivative, the
significant diffusion by the level-1 colors indicates with a high
probability that the derivative becomes zero. Reliable assumptions
on the temperature difference can only be made for the regions of
strong derivatives (1), (2) and (4). The strong appearance of the
level-3 color in region (5) indicates not only low mean derivatives,
but also low uncertainties.

In (d), the uncertainty glyphs, together with the circular variance
color mapping, are shown. The orientation of the gradients and
therefore the iso-lines are stable in regions (1), (2) and (4).
Although in region (3) a similar gradient strength and a clear
orientation can be perceived in the mean data (a), the gradient
orientation is affected by higher uncertainty and the structure of
the transition zone is not well resolved.

The fourth example shows another ECMWF forecast, with the
difference that on this occasion it was simulated using a shorter
forecast period and a different pressure level. In Fig. 10 (a), the
mean data is shown. The uncertainty visualizations in (c) and (d)
reveal a very prominent structure in region (1), which is stable
with respect to derivative strength and gradient orientation. This
stable structure cannot easily be identified using only the mean and
the standard deviation. Another interesting region is the transition
zone between blue and red in (2), where the standard deviation
in (b) shows a significant strong uncertainty. This uncertainty in

the scalar values affects the uncertainty in the derivative: The
confidence region around the strong mean derivative almost goes
down to zero and results in level-1 color coverage (cf. Fig. 3
(b)). Interestingly, the uncertainty in gradient orientation is almost
unaffected in region (2). Thus, the orientation of the transition
zone is stable, although the scalar standard deviation is quite high.
For other prominent structures in the mean data in regions (3),
(4) and (5), the glyphs indicate a strong orientation variability.
Furthermore, the relatively low diffusion of the level-3 color
and the strong presence of blue and red stripes indicate a high
derivative uncertainty in region (3) (cf. Fig. 3 (d)).

In temperature forecasts, the proposed uncertainty visualiza-
tions help to identify regions where significant and stable tem-
perature differences are present. This information allows adapting
forecast probabilities of weather fronts with respect to the relia-
bility of the respective features. Furthermore, it can be used to
re-parameterize the numerical forecast simulations, for instance,
to reduce or even eliminate the observed instabilities in the
features. Such an analysis strives towards the use of uncertainty
for sensitivity analysis, and, herewith, the tuning of simulation
technologies towards more reliable and stable outputs.

6 CONCLUSION

In this work we presented two methods for visualizing the
variability of gradients in 2D uncertain scalar fields: a color
diffusion model for visualizing the derivative uncertainty and a
glyph-based approach for visualizing the uncertainty in gradient
orientation. At the core of these techniques are the probability
distributions of the gradient magnitude and orientation, which
we have derived in an analytic form in this paper. The proposed
methods allow a quantitative analysis of the gradient variability,
which is required for assessing the stability of geometric structures
like iso-contours in the mean data field. Even though we showed
that the derivation of uncertainty parameters and probability
distributions can be extended to 3D, we focused exclusively on
visualization techniques for 2D scalar fields.
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Fig. 10. Visualizations of mean values (a), standard deviations (b), derivative uncertainty (c), and orientation uncertainty
(d) for an ensemble of temperature forecasts. A prominent structure with strong mean gradients and low uncertainty can
be identified, for example, in (1). In (2), a strong standard deviation and therefore uncertainty in derivative is shown by the
color diffusion over the black and white bands in (c). The green narrow glyphs in (d) indicate, nonetheless, that the derivative
uncertainty does not affect the gradient orientation significantly. The orientation of the iso-lines is stable in (2), while in (3),
(4), and (5), a significant variability in orientation and structure is emphasized.

In the future, one challenging endeavor will be the development
of respective visualization techniques for 3D scalar fields. This,
however, is difficult, because the proposed approaches cannot be
transferred straightforwardly to 3D. For instance, the color diffu-
sion technique for visualizing the derivative uncertainty cannot
be embedded immediately into a volume rendering approach,
since, due to blending and occlusions, the stripe pattern cannot be
perceived anymore. An alternative approach would be to encode
the derivative uncertainty via colors on a selected iso-surface.
This, however, is dangerous, because it relates the derivative
uncertainty to a specific iso-value, whereas our approaches strive
for a visualization independent of the data value, but dependent
on spatial positions.

To show the orientation uncertainty in 3D, we can simply
map the 3D probability density values onto a sphere, and visu-
alize the distributions via 3D spherical glyphs. This extension is
demonstrated in Fig. 11 (b), where the distribution of the gradient
orientation is mapped onto the unit sphere. Fig. 11 (a) shows the
corresponding distribution parameters, with the mean represented
by the magenta-colored vector and the covariance matrix by the
yellow ellipsoid. The probability density is almost symmetric and
bimodal. It can be observed that the direction given by the mean
is rather unlikely.

Although the glyph-based approach for visualizing the orien-
tation uncertainty can, in principle, be easily transferred to 3D,
it introduces several specific problems: 3D glyphs have a spatial
extent and occlude each other, severely limiting the number of
glyphs that can be shown simultaneously. This problem could be
addressed by showing glyphs only at particular spatial regions,
but a specific interactive guidance functionality would then be
required in order to draw the user’s attention to those interesting
regions. Furthermore, the entire probability distribution encoded
in one glyph cannot be seen from a specific viewpoint, because its
“back-facing” part is always hidden. Ideally, a view-independent
mapping of the entire spherical distribution would be required.

Although our proposed 2D visualization approaches have to be
adapted to address the specific challenges in 3D, the mathematical
foundations we laid out for modeling stochastically the variability
of gradients in scalar fields are still valid, and can serve as
fundamental basis for further research in this area.
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APPENDIX A
IRREGULAR GRID STRUCTURE

We assume an irregular grid structure Im = {xi : 1 ≤ i ≤ m},
where each grid point is connected to a set of neighboring grid
points N(xi) via edges. The data uncertainty at every point is
modeled in exactly the same way as described in section 3. For a
given point xi, the derivatives along the edges in the random field
are approximated by one-sided differences, and they can also be
expressed by the projection of the (unknown) gradient at xi onto
the edges

∇Y (xi)
> x j−xi∥∥x j−xi

∥∥ =
Y (x j)−Y (xi)∥∥x j−xi

∥∥ , x j ∈ N(xi). (31)

For a vertex with n neighbors this can be written as a linear system

R∇Y (xi) = b (32)

R = [r1|r2|...|rn]
> , r j =

x j−xi∥∥x j−xi
∥∥ (33)

b j =
Y (x j)−Y (xi)∥∥x j−xi

∥∥ (34)

Because in a d-dimensional grid the gradient has d components,
d neighbors are required to solve for the gradient. However, as in
a d-dimensional grid, every grid point has typically more than d
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Fig. 11. (a) 3D Gaussian probability density of a gradient
vector; The mean vector is drawn in magenta in the XZ-
plane, and the tilted yellow ellipsoid indicates the confidence
region. The three ellipses colored in red, green, and blue,
respectively, are the corresponding ellipses having as semi-
major and semi-minor axes the semi-axes of the ellipsoid. (b)
The resulting bimodal probability density, mapped onto the
unit sphere, where the magenta-colored line starting at the
origin towards infinity has the direction of the mean vector.

neighbors, so that the system is over-determined, i.e., it is not
guaranteed that a gradient exists that solves the equations for
all neighbors. Thus, the system is solved using the least squares
approach and the respective normal equation

R>R∇Y (xi) = R>b (35)

∇Y (xi) =
(

R>R
)−1

R>b = Ãb (36)

As the random variables at the grid points appear linearly in
b, and Ã is a linear operator, the mean vector and the covariance
matrix for ∇Y (xi) can be obtained in more or less the same way
as described in section 3.

APPENDIX B
DERIVATION ORIENTATION UNCERTAINTY

To derive the formula for the distribution of the gradient direction
in Equ. (10), we first express the θ -marginal by the integral of
the product of a first order polynomial with an arbitrary Gaussian
function

pθ

∇
(θ) =C

∫
∞

0
r exp

(
−(ar2 +2br+ c)

)
dr,

with variables

C =
1

2π
√

detΣ∇

, a=H(cosθ ,sinθ), b= t
√

a, and c=H(µ∇x,µ∇y),

and the auxiliary terms

H(x,y) =
1

2(1−ρ2
∇
)

(
x2

σ2
∇x

+
y2

σ2
∇y
−2ρ

xy
σ∇xσ∇y

)

and t =
−µ∇xσ2

∇y cosθ −µ∇yσ2
∇x sinθ

2detΣ∇

√
H(cosθ ,sinθ)

+
ρ∇σ∇xσ∇y(µ∇x sinθ +µ∇y cosθ)

2detΣ∇

√
H(cosθ ,sinθ)

.

It follows that

pθ

∇
(θ) =C

∫
∞

0
r exp

(
−(ar2 +2br+ c)

)
dr =

=C exp
(

b2

a
− c
)∫

∞

0
r exp

(
−
(√

ar+
b√
a

)2
)

dr,

where the change of variables
√

ar+b/
√

a = u gives

pθ

∇
(θ) =

C
a

exp
(

b2

a
− c
)∫

∞

b√
a

(
u− b√

a

)
exp(−u2)du =

=
C
2a

exp
(

b2

a
− c
)(

exp
(
−b2

a

)
− 2b√

a

∫
∞

b√
a

exp(−u2)du

)
=

=
C exp(−c)

2a

(
1−
√

π
b√
a

exp
(

b2

a

)(
1− erf

(
b√
a

)))
.

This can then be re-written to yield Equ. (10).
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