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Abstract

Overlaid plots of iso-contours in individual members of a scalar ensemble field are a popular concept to visualize
the data uncertainty. However, such plots do not allow concluding on the spatial cumulative probability distri-
bution of the iso-contours, and they cannot reveal distribution characteristics like spread and topology for huge
amounts of contours. In this paper, we propose a new visualization technique for iso-contours in ensemble data
sets to overcome these limitations. Our technique makes no assumption about a stochastic uncertainty model, ren-
dering it suitable for arbitrary ensemble distributions. It computes a statistical summary of the ensemble over the
spatial domain, including probability density values for arbitrary domain points. From this information, the un-
certainty and topology of iso-contours can be determined as well as the variations in gradient magnitude around
these contours. Since the visualization is carried out on the GPU, our approach allows analyzing even very large
ensemble data sets at interactive rates.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms, Viewing algorithms

1. Introduction

Analyzing ensemble data sets is important, because they give
answers about the uncertainty in the data. These answers are
often derived by assuming a multivariate Gaussian probabil-
ity distribution, for which the parameters like mean, standard
deviation, and correlation are estimated from the ensemble.
In this case, a number of techniques can effectively visualize
the possible variations of the data as well as specific features
like iso-contours. However, because various types of distri-
butions can occur in general, a methodology is necessary to
estimate the variability of features for arbitrary distributions.

For visualizing the variability of iso-contours, so-called
spaghetti-plots are often used. They show simultaneously the
iso-contours for an iso-value θ in all members of a scalar 2D
ensemble. See left of Fig. 1 for an example, in which the
plots do not indicate any difference between the two ensem-
bles. In the right of Fig. 1, a member of each ensemble is
shown. The data is color coded from blue (below θ) over
white (equal to θ) to red (above θ). As indicated, while in
one ensemble the iso-contour is positioned either in the left
or the right branch, in the other ensemble it occurs simulta-
neously in the left and right branch. These examples make
clear that visualizing features in individual ensemble mem-
bers in one image can be greatly misleading and does not
allow for a reliable estimation of the feature uncertainty in

general. These limitations are due to the fact that each indi-
vidual feature is taken out of the data without respecting any
stochastic model of the feature distribution.

This paper presents a study to shed light on the visualiza-
tion of iso-contour distributions in scalar ensemble fields. It
makes no assumption about a stochastic uncertainty model,
yet by computing a statistical summary of the ensemble over
the spatial domain it generates point-wise measures for the
positional likelihood of occurrence of iso-contours. In this
way, an effective analysis of the iso-contour variability is
enabled. Since the entire visualization is carried out on the
GPU, our approach allows the user to visualize even very
large ensemble data sets at interactive rates.

2. Related Work

An overview and taxonomy of uncertainty visualization
techniques is given in [PWL97, JS03, THM∗05, GS06, Pot].
A variety of general techniques for visually representing
data uncertainty have been proposed in [WPL02, DKLP02,
RLB∗03,LLPY07]. Other approaches address the visualiza-
tion of the positional variations of specific features in scalar
and vector fields [PWL97,ZWK10,KWTM03,GR04,Bro04,
PRW11, PWH11, PH10, PPH12, OT12, OGT11b, OGT11a,
OGHT10]. Structural variations of salient features in scalar
fields have been addressed in [PW12b, PW12a] by vi-
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Figure 1: Left: Spaghetti plots of iso-contours in two different ensembles. Right: Members of the respective ensemble.

sualizing positive and inverse global and local correla-
tion structures. Underlying all these approaches is a Gaus-
sian uncertainty model. The visualization of uncertain iso-
contours in 2D ensemble data sets was explicitly addressed
in [PWB∗09] using spaghetti-plots. The use of spaghetti-
plots in combination with glyphs and confidence ribbons
was proposed in [SZD∗10].

3. Spatial Probability Distribution

We first develop stochastic functions for characterizing the
spatial variability of iso-contours in uncertain scalar fields,
i.e., the spatial CDF and PDF. We assume a discrete sam-
pling of a 2D domain on a Cartesian grid structure with grid
points Sa,b = {xi, j : 1≤ i≤ a,1≤ j≤ b}. An ensemble has n
members, the k-th member containing scalar values yk(xi, j)
and gradients ∇yk(xi, j). At each grid point, the data uncer-
tainty is given by the variation of the data values. The data
uncertainty can be modeled by assigning a random variable
Y (xi, j) to each grid point xi, j.

To analyze the variability in position of iso-contours for
an iso-value θ in the ensemble members, our goal is to de-
termine for every grid point the probability that a contour is
located exactly at this point. At a point xi, j, the probability
that the data takes on the value θ is P(Y (xi, j) = θ). Unfor-
tunately, this probability vanishes if the data is real-valued
and smooth. This is because a 1D contour (or 1-manifold)
in a 2D domain has a zero Lebesgues measure, i.e. its area
is zero. Since a non-zero probability of the occurrence of a
contour is only possible across a non-zero area, it must hold
that P(Y (xi, j) = θ) = 0. It is thus not possible to directly
compute probabilities of the occurrence of iso-contours at
the domain points.

However, instead of interpreting an iso-contour as a 1-
manifold embedded into the 2D domain, we regard it as
the boundary between the regions containing all points with
scalar values above and below the iso-value. We call these
regions the upper and lower iso-region, respectively. These
regions have non-zero Lebesgues measures in general, and
can thus be used to derive probability measures.

For this purpose we introduce the spatial CDF

Ψθ(xi, j) := P(Y (xi, j)≥ θ) =
1
n

n

∑
k=1

Pk(Y (xi, j)≥ θ), (1)

where Pk is a boolean indicator function 1k for each ensem-

ble member k:

Pk(Y (xi, j)≥ θ) = 1k(xi, j) :=

{
0 if yk(xi, j)< θ

1 if yk(xi, j)≥ θ
(2)

The spatial CDF expresses the probability that the scalar
value at a particular grid point is greater than θ with respect
to the data uncertainty at that point. In Fig. 2 (b) the spatial
CDF is shown for the ensemble member in (a). A color ta-
ble was used to map values in the interval [0,1] to the color
range from blue to red.

Since a CDF is obtained by integrating the respective
PDF, we obtain the spatial PDF via differentiation as

ψθ(xi, j) :=
∥∥∇Ψθ(xi, j)

∥∥ (3)

In the following we will show for the spatial PDF that a) it
can be computed at each grid point by using only the ensem-
ble data at that point, and b) can be used directly to encode
the positional uncertainty of the iso-contours.

3.1. Gaussian Contour Representation

The spatial PDF expresses the probability density of the iso-
contours in the 2D domain. However, it cannot be evaluated
directly because the indicator function in Equ. (2) is neither
continuous nor differentiable. Thus, we replace the binary
indicator function by a function which generates a smooth
and differentiable transition between the lower and upper
iso-region. We choose a function with a closed-form first
derivative such that a closed form of Equ. (3) can be ob-
tained.

One possible choice is the well-known CDF Φ of the stan-
dard normal distribution, yielding

Pk(Y (xi, j)≥ θ) = Φ

(
yk(xi, j)−θ

σs

)
(4)

Since Φ is computed as an integral of the Gaussian PDF,
it serves our requirements. In Fig. 2 (c), for the ensemble
member in (a) the values of Pk for a small positive sharpness
parameter σs are shown.

Due to the chosen smoothing function, with increas-
ing/decreasing values yk(xi, j) above/below the iso-value in
one ensemble member k, we obtain Pk(Y (xi, j) ≥ θ) → 1
and Pk(Y (xi, j)≥ θ)→ 0, respectively. The transition rate be-
tween the upper and lower region is controlled by the sharp-
ness parameter. For a fixed sharpness parameter, the spatial
CDF has a strong gradient magnitude in those regions along
the contour where the data gradient is strong, too.
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Figure 2: (a) Member of the ensemble in Fig. 1 (d). (b) Spatial CDF using binary indicator transition function. (c) Spatial CDF
using Gaussian transition function. (d) Spatial PDF as derivative spatial CDF.

By substituting the smoothing function (Equ. (4)) into
Equ. (1), and using the resulting CDF in Equ. (3), we arrive
at the spatial PDF for the selected member:

pk
(
xi, j
)
= φ

(
yk(xi, j)−θ

σs

) ∥∥∇yk(xi, j)
∥∥

σs
. (5)

Here, φ is the bell-shaped PDF obtained by differentiating
the standard normal distribution function. Note that for each
member k, Equ. (5) models a Gaussian “uncertainty region”
around each single iso-contour, but not for the distribution
of the set of iso-contours. The degree of this “uncertainty”
is directly related to the data gradient and can be interpreted
as condition indicator (cf. visual condition analysis of iso-
contours in [PH10]). In Fig. 2 (d), for the ensemble mem-
ber in (a) the values of pk are first transformed to [0,1] via
1− exp

(
−pk(xi, j)

)
, and then to color. The color transition

between blue and red allows clearly distinguishing between
low and strong gradient regions along the iso-contour. The
spatial PDF modeling the probability density of the contours
in the whole ensemble can now be written as

ψθ(xi, j) =

∥∥∥∥∥1
n

n

∑
k=1

φ

(
yk(xi, j)−θ

σs

)
∇yk(xi, j)

σs

∥∥∥∥∥ (6)

The spatial PDF gives rise to a quantitative assessment of
the local probability density of iso-contours, which is caused
by their positional variation in the ensemble. The distribu-
tion puts into relation the strength of the spatial variations.
It is worth noting, however, that the spatial PDF covers only
the positional variation of an oriented boundary contours.
Variations in topology, e.g. flip of the upper and lower iso-
region across one and the same contour, are not taken into
account. However, this is not the case for most ensemble data
sets affected by moderate uncertainty.

3.2. Visualization

The spatial CDF computes for every grid point the probabil-
ity that this point belongs to the region in which the scalar
values are greater than the iso-value. The probabilities range
from 0 to 1, and they are mapped linearly to gray scales from
black to white. The resulting colors serve as background col-
ors Cb, which indicate the lower and upper iso-regions as
well as the transition zone in between.

Next, we display the color coded spatial PDFs of all
ensemble members simultaneously. The color coded con-
tours appear wider and more diffuse in regions showing

low gradients, and more narrow and sharper in regions with
strong gradients. By drawing all spatial PDFs simultane-
ously, wider regions could completely hide more narrow
ones. Therefore, instead of averaging the spatial PDF values
of all members (cf. Equ. (6)), we always select the largest
value at each domain point. This results in a variant of the
spatial PDF:

ψ
max
θ (xi, j) = max

k=1,2,...,n
pk
(
xi, j
)
. (7)

Note that both ψθ and ψ
max
θ range between 0 and ∞.

These values are first mapped to [0,1] using the transfer
function α(xi, j) = 1− exp

(
−τ ·T(xi, j)

)
, where T(·) is ei-

ther replaced by ψθ or ψ
max
θ . The scaling parameter τ is used

to control the color contrast.

In addition to the background color Cb, we further con-
struct two foreground colors: The first one, lower color Cl ,
is obtained by linearly mapping Ψ (∈ [0,1]) to the color map
[yellow→ green→ cyan]. The second one, the upper color
Cu, is constructed by mapping Ψ to [red→magenta→ blue].
The final color at each grid point is obtained by linearly map-
ping α from [0,1] to [Cb→Cl →Cu]. The terms lower color
and upper color indicate relatively low and high gradients
along the iso-contours.

Figure 3: Spatial CDF/PDF plots for ensembles in Fig. 1.

The color scheme allows encoding simultaneously the
values of the spatial CDF—shows the transition between the
lower and upper iso-region—and spatial maximum PDF—
indicates regions with high and low gradients. In Fig. 3, the
color scheme was applied to the ensembles in Fig. 1. In (a),
regions colored white/black contain those points which be-
long to the upper/lower iso-region in all ensemble members.
A gray value of 0.5 indicates an equal number of ensem-
ble members in which the respective point is in the upper
or lower iso-region. Thus, from the location of the gray re-
gion it can be concluded on a multi-modal distribution of
the iso-contours, i.e. the contours are either positioned left
or right of the gray region. The color represents the spatial
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Figure 4: Two ECMWF temperature ensemble data sets: (a),(c) Spaghetti plots. (b),(d) Spatial CDF and PDF.

PDF: Strong presence of Cu indicates almost constant gra-
dient magnitude along the iso-contours and no contrast be-
tween low and high gradient regions. In (b), the background
color indicates that there are no larger regions belonging ei-
ther to the upper or lower iso-regions. Compared to (a), it
cannot be concluded on a strong multi-modality in the iso-
contour representation; black and white regions indicate a
clear separation between the upper and lower iso-region. The
presence of Cl in the upper part of the domain indicate a
much lower gradient strength than in the lower part.

Figure 5: Spatial PDF values for ψ
max
θ (a) and ψθ (b).

In Fig. 5, we illustrate the differences between using ψ
max
θ

and ψθ for visualizing the contour distributions. In (a) and
(b) we show the upper domain part of the data set in Fig. 1
(a) with ψ

max
θ and ψθ as probability measures, respectively.

The individual contours can be visualized much more ef-
fectively in (a), and the visual focus is always put on the
contours along which the gradients are most prominent. Due
to the averaging of values in (b), contour points where sev-
eral contours intersect each other receive higher values than
points where no crossing occurs. This results in a shift of the
visual focus from the contours to the intersection regions,
and an increasing loss of the contours’ shapes.

4. Results

Our approach has been applied to two different temperature
ensembles, each comprising 50 members. The ensembles
have been generated by the European Center for Medium-
Range Weather Forecast (ECMWF) for two different fore-
cast periods and pressure levels above Europe. Since all
computations are carried out for every domain point in par-
allel on the GPU, the user can interactively monitor the
changes caused by selecting different iso-values θ, sharp-
ness parameters σs and color contrasts τ. The effect of pa-

rameter adjustments are shown in the video accompanying
this manuscript.

In Fig. 4 (a), iso-contours are visualized via spaghetti-
plots, with different colors assigned to contours in different
ensemble members. Although only 50 members are plotted,
the visualization quickly becomes cluttered, and the limita-
tions of spaghetti-plots prohibit a detailed statistical anal-
ysis. In (b), the spatial CDF and the maximum values of
the spatial PDF are shown. The gray-valued background al-
lows clearly segmenting the domain into regions with tem-
perature values above (white) and below (black) the selected
iso-value. The “sharpness” of the iso-contours and the pres-
ence of color Cu in region (1) identify a sharp temperature
transition with low gradient uncertainty towards the Green-
land border. In region (2), the iso-contours have a smooth
appearance and do not show a clear preferential direction.
Together with the presence of the lower color Cl this indi-
cates lower gradients and a much smoother temperature tran-
sition. These observations cannot be made by just looking at
the spaghetti-plot in (a).

Image (c) shows the spaghetti-plot for a different iso-
value and pressure level in the second ensemble. Compared
to the first ensemble, the visualization in (d) reveals a new
statistical feature. In region (1) (also shown in the small
image), the iso-contours split up into two branches, which
indicates a bi-modal distribution. Both branches enclose a
gray-valued background area. In addition, the presence of
the upper color Cu indicates strong gradients in this region,
compared to, for instance, region (2).

5. Conclusion

To enable an uncertainty analysis of iso-contours in scalar
ensemble field, we have derived probability distributions for
iso-contours in such fields, and we have proposed a method
to visually convey this information. We did not make any as-
sumption on the underlying uncertainty model, but we have
computed statistical summaries and generated continuous
distribution functions thereof.

In the future, we will look into ways to extend our ap-
proach towards an uncertainty analysis of other features in
scalar ensembles, such as critical points. Furthermore, we
aim to extend our method to 3D. Here, a very similar ap-
proach as used in 2D should work, yet one has to investigate
adequate mapping strategies to visually convey the spatial
distribution values.
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