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Efficient Collision Detection for
Composite Finite Element Simulation of
Cuts in Deformable Bodies

Jun Wu · Christian Dick · Rüdiger Westermann

Abstract Composite finite elements (CFEs) based on

a hexahedral discretization of the simulation domain

have recently shown their effectiveness in physically

based simulation of deformable bodies with changing

topology. In this paper we present an efficient colli-

sion detection method for CFE simulation of cuts. Our

method exploits the specific characteristics of CFEs,

i.e., the fact that the number of simulation degrees

of freedom is significantly reduced. We show that this

feature not only leads to a faster deformation simula-

tion, but also enables a faster collision detection. To ad-

dress the non-conforming properties of geometric com-

position and hexahedral discretization, we propose a

topology-aware interpolation approach for the compu-

tation of penetration depth. We show that this ap-

proach leads to accurate collision detection on complex

boundaries. Our results demonstrate that by using our
method cutting on high resolution deformable bodies

including collision detection and response can be per-

formed at interactive rates.

Keywords Cutting · Deformable bodies · Collision

detection · Composite finite elements

1 Introduction

The physically-based simulation of cuts in deformable

bodies can significantly improve the realism in surgery

simulators and computer games. To efficiently compute

the deformation, composite finite elements (CFEs) [1]

based on a uniform or adaptive hexahedral (octree) dis-

cretization of the simulation domain have recently been

adopted in the computer graphics community [2,3]. The
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idea is to approximate the finite element discretization

of the governing system of partial differential equations

on a high-resolution grid by subsuming blocks of finite

elements into coarser elements, thereby reducing the

numbers of simulation degrees of freedom (DOFs) and

thus trading performance for a moderate decrease of

accuracy. Additionally exploiting the fact that during

cutting only a small number of elements are modified in

each simulation frame, [4] and [5] have further demon-

strated that interactive update rates—12 fps including

mesh cutting, surface reconstruction, and deformation

computation—can be achieved for simulating progres-

sive cuts in elastic bodies with an effective resolution of

1003 hexahedral elements.

Besides the pure deformation simulation, efficient

collision detection is another essential component in in-
teractive virtual environments. For deformable bodies

with changing topology, collision detection is particu-

larly time consuming, since new geometric primitives

are created on-the-fly. As a consequence of cutting, an

object may be split into several separated objects. It

is therefore necessary to consistently detect both inter-

and intra-collisions. Moreover, a quantitative measure

of the penetration is desired for robust collision re-

sponse.

Considering the promising results of CFEs, it is high-

ly interesting to investigate collision detection in this

specific context. On the one hand, CFEs have the po-

tential to simplify collision detection, thanks to their

nature of reducing the number of finite elements. On the

other hand, they present several challenges with respect

to the underlying non-conforming geometric structures,

i.e., the coarse composite elements (which might be du-

plicated to represent separated material parts on each

side of a cut) versus the underlying hexahedral ele-

ments, and the hexahedral discretization versus a trian-
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Fig. 1 Cutting of the Stanford Bunny model. Left: High resolution hexahedral elements and coarse composite elements
(yellow grid). Middle: The deformable bunny is cut into two parts, resulting in the upper part sliding down. Right: After four
stamp-like cuts, the resulting cylinders slide out under tight constraints. Collision detection and finite element simulation are
performed at 41 fps. Interactive cutting of the deformable body takes additional 37 ms per simulation frame for updating the
surface mesh, the stiffness matrices, and the distance field.

gulated surface mesh representation. The non-conform-

ity is particularly severe in the case of cuts: The gap of

a cut has an initial width of zero. In contrast, a naive

collision detection approach purely based on hexahe-

dral elements can only achieve an accuracy in the order

of the hexahedral grid spacing.

In this paper we present an efficient collision detec-

tion method for interactive CFE simulation of cuts ap-

plied to high-resolution deformable bodies. Our method

exploits the composition structure of CFEs to speed up

the collision query, and addresses the non-conformity of

the underlying geometric structures by analyzing the

topology of the hexahedral element grid in order to

improve collision accuracy. Our method detects both

intra-object and inter-object collisions, and also sup-

ports application scenarios where one of the objects is

not closed (e.g., a thin scalpel).

The specific contributions of our paper are:

– A collision detection algorithm which exploits the

specific characteristics of CFEs. The complexity of

our broad phase collision detection depends on the

number of simulation DOFs, instead of the number

of geometrical primitives. This leads to a speedup

factor which scales exponentially with respect to the

level of composition.

– A topology-aware interpolation scheme to determine

the penetration depth on the non-conforming hexa-

hedral element grid. By flipping the sign of distance

values associated with hexahedral elements based on

analyzing their topological connectivity, the accu-

racy of penetration depth interpolation around the

boundary is improved.

The remainder of this paper is organized as follows:

In the next section, we summarize work that is related

to ours. In Section 3, we briefly review CFE simula-

tion of cuts in deformable bodies. In Section 4, we then

present our collision detection approach. In Section 5,

we describe the distance field computation and updat-

ing. Detailed timing statistics and evaluations are pro-

vided in Section 6, and the paper is concluded in Section

7.

2 Related Work

Composite finite elements approximate a high res-

olution finite element discretization of a partial differ-

ential equation by means of a small set of coarser el-

ements. Such elements have originally been invented

to resolve complicated simulation domains with only a

few degrees of freedom, and are also used in the con-

text of geometric multigrid methods to effectively rep-

resent complicated object boundaries at ever coarser

scales [1, 6–8].

In computer graphics, the idea of CFEs has been

used as a special kind of homogenization for resolving

complicated topologies and material properties in de-

formable body simulation [2], and just recently to mod-

el material discontinuities that are caused by cuts and

incisions, for instance, to improve the convergence of a

geometric multigrid solver [3] and to reduce the num-

ber of simulation DOFs in order to increase simulation

performance [4, 5].

A high quality surface mesh reconstructed after cut-

ting can serve as a good basis for collision handling.

Jeřábková et al. [4] model a cut by removing elements

on the finest resolution level, and reconstruct the bound-

ary surface by means of the Marching Cubes algorithm.

The element removal approach, in general, makes it dif-

ficult to construct a surface that accurately aligns with

a cut. Seiler et al. [9] propose a method that decouples

the resolution of the material surface from the resolu-

tion of the simulation grid, but the method is restricted

to volumetric non-progressive cuts. Dick et al. [3] model
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progressive cuts by disconnecting links between hexahe-

dral elements, and reconstruct the surface by a splitting

cubes algorithm [10], taking into account the exact in-

tersections of the cutting blade and the links. Based on

this work, Wu et al. [5] use CFEs to reduce the number

of simulation DOFs, and propose a dual contouring ap-

proach [11] to construct a high quality surface which is

accurately aligned with a cut.

Collision detection for general deformable bodies

has been widely studied and an excellent survey is given

by Teschner et al. [12].

To simulate deformable bodies with dynamically cre-

ated geometric primitives, we are interested in collision

detection methods that do not rely on heavy precom-

putation. Spatial hashing [13] requires no preprocessing

of surface meshes, and detects both self-collisions and

collisions between different bodies. Layered depth im-

ages (LDIs) [14–16] hold these properties as well, but

are limited to closed manifold objects. Bounding vol-

ume hierarchies (BVHs) are optimized to handle dy-

namic topologies [17, 18], and can be combined with

locally updated distance fields to simulate brittle frac-

tures [19].

For simulating reduced deformations governed by

only a few DOFs, James and Pai [20] have demon-

strated that precomputed BVHs can be updated at a

cost proportional to the number of simulation DOFs.

Built on intensive precomputation of collision-free cer-

tificates, reduced structures have also been exploited

for self-collision processing [21, 22]. These algorithms

are designed for reduced deformable bodies with con-

sistent topology. CFEs can be considered as a special
kind of a locally reduced model.

To facilitate dynamically created geometric primi-

tives and to detect both inter- and intra-collisions, for

CFEs we propose to utilize spatial hashing in the broad

phase of collision detection. The exact penetration in-

formation at complicated boundaries is then evaluated

with a novel topology-aware interpolation scheme.

To compute the penetration depth for collision re-

sponse, a practical workflow for interactive application-

s [13,23–25] is to first find potentially overlapping pairs

of a vertex and a volumetric element. The vertex is

then transformed, with respect to this volumetric ele-

ment, from the deformed configuration to the reference

configuration, where the penetration depth and direc-

tion of the vertex is evaluated. Finally, the penetration

information is transformed back to the deformed con-

figuration and utilized to compute the collision force.

High update rates can be achieved by using a precom-

puted distance field in the reference configuration.

3 Composite Finite Element Simulation of Cuts

Our collision detection method is particularly designed

for CFE simulation, which has recently gained popular-

ity to simulate cuts in medical applications [4, 5, 9]. In

the following, we briefly summarize the main principles

of CFE simulation of cuts in deformable bodies. For a

detailed discussion, we refer the reader to [5].

For CFE simulation, three coupled geometric repre-

sentations are employed to describe a deformable body

(see Figure 2 for an illustration).

Hexahedral elements. The deformable body is

discretized by means of trilinear hexahedral elements

that are aligned on a restricted octree grid. This grid

is adaptively refined along the surface (including cut-

ting surfaces) of the object. To simplify the discussion,

a uniform Cartesian grid is assumed in the following.

Physical properties (i.e., Young’s modulus and Pois-

son’s ratio) are assigned on a per-element basis. The

topology is represented by links between face-adjacent

elements. Cuts are modeled by marking links as discon-

nected. For each link that is cut the intersection point

with the cutting blade and the blade’s normal at that

point is stored. This linked hexahedral element repre-

sentation is the basis for constructing the following two

representations, which are used for efficient deformation

computation and high quality visual rendering, respec-

tively.

Composite elements. From the linked hexahedral

elements, composite elements are constructed by con-

sidering 2k × 2k × 2k blocks of hexahedral elements.

In each block, we analyze the connectivity among the

elements, and create one composite finite element for

each connectivity component. In this way we create one

composite finite element for the distinct material parts

separated by cuts, and thus accurately represent cut-

s in the composite finite element discretization. As a

consequence, multiple composite finite elements might

exist at the same location. An example for duplicat-

ed composite elements is shown Figure 2, indicated by

a darker cell color. From an implementation point of

view, the composition process is performed in k itera-

tions by successively considering 2×2×2 blocks. While

Figure 2 illustrates an example of one-level composition

(k = 1), the composite elements can be several levels

coarser than the hexahedral elements, thereby trading

speed for a moderate decrease of simulation accuracy.

Note that when the underlying hexahedral element grid

is an adaptive octree grid, the composite element grid

is also an adaptive octree grid.

The deformation computation is performed on the

composite elements. From a mathematical point of view,

this is achieved by starting with a finite element dis-

cretization on the fine hexahedral elements, and substi-
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Fig. 2 A deformable body is represented by linked hex-
ahedral elements (yellow), from which composite elements
(gray) and a surface mesh (black) are constructed. Note that
the gaps between elements are purely illustrative, i.e., in the
finite element model, the elements are directly attached to
each other. The dark gray color indiciates that more than
one (here: two) composite elements exits at the same loca-
tion, corresponding to the distinct material parts separated
by the cuts. Links are shown in green and orange color if
marked as connected and disconnected, respectively.

tuting the DOFs of the hexahedral elements by means

of trilinear interpolation from the DOFs of the compos-

ite elements.

Surface mesh. By means of a dual contouring ap-

proach, a smooth surface triangle mesh is constructed

on the dual grid consisting of the links between hexa-

hedral elements by utilizing the intersection points and

the normals of the cutting blade stored at these links [5].

The surface is bound to the hexahedral element model

by assigning each vertex to its topologically connected,

closest hexahedral element. In this way, the computed

deformation of the finite element model can be trans-

ferred to the surface mesh.

The three representations are geometrically non-con-

forming, i.e., a composite finite element may be only

partially filled with hexahedral elements, and the sur-

face mesh arbitrarily intersects the hexahedral element

grid.

In each simulation time step, the computed per-

vertex displacements of the composite elements there-

fore are propagated to the hexahedral elements and

then to the surface mesh vertices, both by means of

trilinear interpolation. It is worth noting that a) part-

s of the triangle mesh associated with the same com-

posite element cannot self-collide, since the coordinates

of the surface mesh vertices are trilinearly interpolat-

ed from those of the same composite element, and that

b) for a given vertex position, inferring between the

trilinear interpolation weights with respect to the com-

posite element and the trilinear interpolation weights

with respect to an underlying hexahedral element is s-

traightforward.

4 Collision Detection for CFE Simulation of

Cuts

From an abstract point of view, we consider collision de-

tection as querying whether a given vertex penetrates

into a solid object, and if yes, reporting the penetration

depth and direction to be used for computing the col-

lision response. Since the querying vertex can be from

the same object or another one, this abstraction han-

dles both inter- and intra-collisions. Note that the ver-

tex can also be from a non-closed object, e.g., a thin

blade in surgery simulations.

Our collision detection approach consists of a broad

and a narrow phase. In the broad phase (Section 4.1),

potential overlaps between surface vertices and com-

posite elements are detected. This phase is performed

in the deformed configuration. Testing coarse compos-

ite elements instead of fine hexahedral elements leads

to a significant speedup.

In the narrow phase (Section 4.2), we determine the

penetration depth for each potentially colliding vertex

by transforming the composite element/vertex pair de-

termined in the broad phase into the reference configu-

ration. Due to the trilinear interpolation between com-

posite element DOFs and hexahedral element DOFs, we

can directly determine the position of the vertex with

respect to the hexahedral element grid. The penetra-

tion depth is interpolated from a signed distance field.

Since distance field voxels on both sides of a cutting

surface are classified as inside, i.e., are assigned to a

negative distance value, a simple interpolation of the

penetration depth for a vertex position close to a cut-

ting surface is not accurate (e.g., the distance value of

a vertex directly on the cutting surface should be zero,

but since all surrounding voxels carry a negative dis-

tance value, a non-zero value would be returned). We

address this problem by specifically flipping the sign of

distance values based on considering the connectivity

between hexahedral elements.

4.1 Broad Phase Collision Detection

To identify for each vertex the potentially overlapping

composite elements, we employ the spatial hashing ap-

proach proposed by Teschner et al. [13]. The basic idea

is to subdivide the 3D space using a uniform Cartesian

grid. For each geometric primitive (vertices and com-

posite elements), we determine the set of grid cells that

are intersected by the primitive. If the sets of grid cells

for two primitives are not disjunct, the pair of primi-

tives is classified as potentially colliding and is further

examined in the narrow phase. To efficiently represent

the 3D grid in main memory, a hash table is employed.
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Our broad phase collision detection consists of two

passes. In the first pass, we traverse all composite el-

ements. For each composite element, we construct an

axis aligned bounding box in the deformed configura-

tion. Since the surface mesh vertices are not strictly

placed in the interior of the composite element, e.g.,

the mesh constructed using the sharp feature preserv-

ing dual contouring approach [11], we compute a bound-

ing box which covers the composite element’s eight ver-

tices as well as all surface mesh vertices associated with

this composite element (i.e., the vertices of the part of

the surface mesh that belongs to the material part de-

scribed by the composite element). The composite ele-

ment’s ID is stored in each grid cell that is intersected

by the bounding box.

In the second pass, we traverse all surface vertices.

For each vertex, we determine the grid cell that contains

the vertex. The grid cell’s list of composite elements ID

generated in the first pass directly yields the composite

elements that are potentially colliding with the consid-

ered vertex. Note that the composite element which the

surface mesh vertex is associated with can be excluded

from the list, since self-collisions of mesh parts associ-

ated with the same composite element cannot occur.

The parameters of spatial hashing significantly in-

fluence the performance of collision detection. We follow

the optimized spatial hashing approach [13] to assign

these parameters. The spacing of the uniform Carte-

sian grid is chosen equal to the size of the composite

elements in the reference configuration. To reduce hash

collisions, we employ the XOR hash function to obtain

a hash value H(x, y, z) from a grid cell’s index (x, y, z):

H(x, y, z) = (x p1 ⊕ y p2 ⊕ z p3) mod n, (1)

where ⊕ is the XOR operator, and the prime numbers

p1, p2, p3 are 73856093, 19349663, 83492791. The size n

of the hash table is chosen to be eight times the number

of composite elements.

4.2 Narrow Phase Collision Detection

To further examine potentially colliding vertex/com-

posite element pairs, we transform the vertex back in-

to the reference configuration. The penetration depth

and direction for this vertex are then computed us-

ing a topology-aware interpolation scheme based on a

signed distance field, and are later utilized for collision

response.

The transformation of the vertex is based on its

trilinear interpolation weights with respect to the de-

formed composite element. These can be computed by

solving the interpolation equation system using Newton

Fig. 3 Collision detection artifacts at cutting surfaces. In
the deformed configuration (left), the vertices va and vb are
outside the object. Transformed back into the reference con-
figuration (right), the vertices lie inside the object, although
in a different material part with respect to the original query.

iteration [26]. From the trilinear interpolation weights,

we can immediately determine the location of the ver-

tex in the reference configuration. All further process-

ing in the narrow phase is performed in the reference

configuration.

To determine the penetration depth and direction,

we employ a signed distance field of the surface of the

deformable body in the reference configuration. Each

sample of the distance field consists of the signed scalar

distance between the sample point and the nearest sur-

face point, as well as the vector pointing from the sam-

ple to the nearest surface point (vector distance). The

distance field is sampled at the grid cell centers of a

uniform Cartesian grid, which is aligned with the hex-

ahedral element grid (finest octree level). A negative

(positive) distance value classifies the respective voxel

as inside (outside). The spatial extent of the distance

field must be chosen such that there is at least one lay-

er of outside voxels. If in the following a more distant

outside voxel is queried, any positive distance value can

be returned (e.g., 1.0).

To determine whether the considered vertex pene-

trates the object, and at the same time obtain the pene-

tration depth and direction for this vertex, a simple ap-

proach would be to sample the distance field by means

of trilinear interpolation of the adjacent (surrounding)

eight voxels, and to consider the vertex as penetrating,

iff the obtained distance value is negative. However, this

simple interpolation produces artifacts at cutting sur-

faces, where separated material parts are directly ad-

jacent in the reference configuration. This situation is

illustrated in Figure 3. Considering vertex va or vb, all

adjacent voxels have negative distance values, resulting

in a negative interpolated distance value and thus in

the (incorrect) classification of the vertex as penetrat-

ing. Note that the error can easily be larger than the

size of a voxel/hexahedral element, as is the case for
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vertex vb. The approach can be extended by determin-

ing the hexahedral element where the considered vertex

is lying in. If this hexahedral element topologically does

not belong to the composite element, the vertex is clas-

sified as non-penetrating. Otherwise, the distance field

is trilinearly interpolated and the classification is per-

formed based on the sign of the resulting distance value

as before. This approach limits the error to half the size

of a voxel/hexahedral element, but due to the clamp-

ing of the ‘inside’ region at boundaries of hexahedral

elements, it leads to a jagged object surface as seen by

the collision handling algorithm (see Figure 5). Further

results obtained by the described algorithm—in the fol-

lowing referred to as ‘simple interpolation approach’—

are presented in the results section.

The problem with the simple interpolation approach

is that the topology of the deformable object is not con-

sidered, i.e., the trilinear interpolation of the distance

field incorporates voxels that are ‘inside’ with respect

to some material connectivity component, but ‘outside’

with respect to the specific material connectivity com-

ponent that is associated with the considered composite

element. Our approach addresses this problem by first

classifying the eight interpolation voxels as inside or

outside with respect to the material connectivity com-

ponent that is associated with the considered composite

element, and then temporarily switches the sign of the

distance value of ‘outside’ voxels, if this value is nega-

tive. This topology-aware interpolation approach virtu-

ally completely eliminates errors due to the geometrical

non-conformity of the hexahedral grid and the triangle

surface mesh, and leads to a smooth object surface as

seen by the collision handling algorithm.

The individual steps of our algorithm are as follows:

1. Starting from the eight surrounding interpolation

voxels, determine the subset of those interpolation

voxels for which the respective hexahedral element is

existing and topologically belongs to the composite

element.

2. Augment this subset by those interpolation voxels

which are topologically connected to the interpola-

tion voxels that are already contained in the subset.

3. The interpolation voxels in the subset are ‘inside’

voxels, the others are ‘outside’ voxels. Temporari-

ly switch the sign of the distance value of ‘outside’

voxels to positive. Remark: The sign of the distance

value of ‘inside’ voxels is negative, since each of these

voxels corresponds to a hexahedral element (whose

center is located inside of the deformable body). Dis-

tance field voxels outside of the simulation domain

do not correspond to an hexahedral element, but al-

ready carry a positive distance value. Thus, no sign

flipping is necessary for such voxels.

Fig. 4 Classification of voxels in our topological-aware in-
terpolation approach. Left: We consider the lower composite
element, more precisely, the left material part (note that there
are two composite elements at the same location, indicated
by the dark gray color). Right: From the four (in 2D) inter-
polation voxels of vertex va, one corresponds to a hexahedral
element (orange) that topologically belongs to the considered
composite element. Two further interpolation voxels corre-
spond to hexahedral elements (yellow) that are topologically
connected to the orange element. These three voxels are ‘in-
side’. The remaining voxel (corresponding hexahedral element
is shown in white color) is ‘outside’—for this voxel, the sign
of the distance value has to be switched to positive.

4. Trilinearily interpolate the distance value using the

voxels’ temporary distance values.

An example for the application of the algorithm is

given in Figure 4. The effect of topology-aware inter-

polation is visualized in Figure 5. For a bunny model

after cutting and deformation (left), we show the zero

isocontour of the distance field returned by the sim-

ple interpolation approach (middle) and our topology-

aware interpolation approach (right). Note that the ze-

ro isocontour corresponds to the object surface as seen

by the collision handling algorithm. It is clearly visible

that the topology-aware interpolation approach leads

to a much smoother and much more precise isocontour.

To determine the penetration depth and direction

in the deformed configuration, the closest surface point

indicated by the interpolated vector distance is trans-

formed into the deformed configuration. The penetra-

tion depth and direction then are given by the vector

between the queried vertex and its transformed closest

surface point.

5 Distance Field Computation

After each cutting operation, the signed distance field

is updated in a region growing manner [27,28], starting

from those hexahedral elements which are incident to a

link that has been cut. The update is performed as fol-

lows. When the link between two hexahedral elements

has been disconnected by a cut, we assign new vector

distances to the respective voxels, and add these voxels

into a fifo queue. After all newly disconnected links are

processed, we remove a voxel hi from the list, and check
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Fig. 5 Comparison between the zero isocontours of the
distance fields obtained by the simple interpolation ap-
proach (middle) and our topology-aware interpolation ap-
proach (right).

its six face-adjacent voxels. The vector distance d(hj)

of a neighbor voxel hj is updated to d′ =
−−→
hjhi+d(hi), if

‖d′‖2 is smaller than ‖d(hj)‖2. If the vector distance of

the neighbor voxel has been updated and the neighbor

voxel is not already contained in the list, it is added to

the list.

Note that to obtain an absolutely accurate distance

field, a priority queue would have to be used instead

of a fifo queue. This, however, would increase the com-

plexity of updating. For a reasonable collision response,

an approximately monotone distance field is sufficient

to provide fully reasonable results, as has for example

been demonstrated in [19].

Sub-voxel accurate boundary values. Sub-voxel ac-

curate distance values for the boundary voxels improve

the accuracy of the distance field over a binary clas-

sification [29]. The exact distance value for a bound-

ary voxels can be obtained by determining the distance

from the voxel’s center to the triangle surface mesh.

In our approach, the exact intersection point of a link

and the cutting blade as well as the blade’s normal is

stored when a link is cut. To obtain a sub-voxel accu-

rate distance value for a boundary voxel, we consider

the disconnected links that are incident to the corre-

sponding hexahedral element, and compute the mini-

mum distance of the voxel center to the planes spanned

by link/blade intersection points and blade normals.

Accuracy of the deformed distance field. Figure 6

shows a comparison between an exact distance field, di-

rectly computed in the deformed configuration, and an

approximate distance field, computed in the reference

configuration and transformed into the deformed con-

figuration. The solid green lines represent the isocon-

tours of the exact distance field, whereas the dashed

red lines are the isocontours of the approximate dis-

tance field. The approximate distance field decreases

monotonically from the interior towards the boundary,

and it converges to the exact one as the surface of

the object is approached. Recomputing the distance

Fig. 6 Isocontours of the distance field computed directly in
the deformed configuration (solid green), and of the distance
field computed in the reference configuration and transformed
into the deformed configuration (dashed red).

field in the deformed configuration would take minutes,

even when accelerated by means of a hierarchical struc-

ture [30], whereas locally updating the precomputed

distance field in the reference configuration and trans-

forming distance values into the deformed configuration

can be performed in a few milliseconds.

6 Results

In the following, we analyze the potential of our pro-

posed collision detection approach for interactive ap-

plications like virtual surgery simulations. Our exper-

iments were run on a standard desktop PC equipped

with an Intel Xeon X5560 processor running at 2.80 GHz

(a single core is used), 8 GB of RAM, and an NVIDIA

GeForce GTX 480 graphics card.

Examples. In the first example, we focus on the

collision detection between newly created surfaces after

cutting. Figure 1 (left) shows a deformable model con-

sisting of hexahedral elements at a resolution of 101 ×
78 × 100, and composite elements (yellow grid) that are

three levels coarser than the hexahedral elements. In the

middle, the bunny, with its bottom fixed to the ground,

is cut into two parts by a curved surface, resulting in

the upper part sliding down along the cutting surface.

On the right, four stamp-like cuts are applied to the

bunny. The resulting cylindrical shapes slide out of the

bunny’s body, under the tight constraints of the holes.

Contact forces are computed using a penalty force mod-

el, and together with their derivatives are fed into the

time-implicit CFE elasticity simulation, which is based

on an efficient geometric multigrid solver [3].

The second example, Figure 7 shows haptic cut-

ting on a liver model. The haptic interaction loop is

decoupled from the deformation simulation loop; colli-

sion detection between the scalpel and the soft liver is

performed at 1 kHz haptic rates, while the deformation

runs at about 37 simulation frames per second. To give

the user an intuitive feedback force, we use a damping

force model [31] to compute an elementary cutting force
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Fig. 7 Haptic cutting of a liver model. Left: Setup. Middle: High resolution hexahedral elements and coarse composite
elements. Right: High quality surface mesh used for visualization. The collision detection between the scalpel and the deformable
liver model is performed at 1 kHz haptic rates. Please see the accompanying video for dynamic effects.

Fig. 8 Cutting of a cylinder shell model. Left: High reso-
lution hexahedral elements and coarse composite elements.
Right: After cutting, the parts fall down and stack. Colli-
sion detection and finite element simulation are performed at
136 fps, while the per cut updating is finished in 17 ms.

for each sampling segment of the scalpel. The overall

cutting force is integrated from all sampling segments.

For improved stability, we apply the virtual coupling

method (see e.g., [31,32]) to render the feedback force.

Figure 8 demonstrates our collision detection ap-

plied to a cylinder shell model, the top of which is fixed.

After cutting, the parts fall down, and stack on the

ground. Figure 9 shows haptic cutting on the Stanford

Armadillo model. For a real-time recording of the dy-

namic effects, we would like to refer the reader to the

accompanying video.

Evaluation of accuracy. To evaluate the sub-voxel

accurate collision detection, we analyze the change of

the kinematic energy of the simulation objects over

time, which is a measure for the smoothness of sim-

ulation. Jumps in the kinetic energy can easily lead to

visual artifacts and numerical instabilities. Figure 10

compares the change of kinetic energy of a bunny mod-

el using the simple distance field interpolation approach

with our topology-aware interpolation approach. It can

be observed that the change of kinematic energy for the

Fig. 9 Cutting of the Stanford Armadillo model. Left:
High resolution hexahedral elements and coarse composite
elements. Right: After cutting, the parts fall down. Colli-
sion detection and finite element simulation are performed
at 30 fps, while the per cut updating is finished in 32 ms.

topology-aware interpolation is much smoother than for

the simple interpolation. Figure 11 shows the simula-

tion of a cut in a zero-gravity environment. Since the

simple interpolation approach leads to an error in pene-

tration depth computation, the cut opens. In contrast,

using our topology-aware interpolation approach, the

cut remains closed.

Performance. Table 1 shows detailed timing statistic-

s for different models and different resolutions of the

hexahedral element grid. The second group of columns

gives information about the employed models: the res-

olution of the hexahedral element grid, the number of

simulation DOFs (using a composition level of three),

and the number of surface triangles. The third group

lists timings for mesh updating (adaptive octree refine-

ments along the cutting surface and creation of the sur-

face mesh), updating of the FEM stiffness matrices, up-

dating of the distance field for collision detection, and

finally the total time required for update operations.

Note that the time required for updating is dependent

on the spatial extent of a cut. In our tests, the cuts were

realized such that the number of newly created hexa-
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Model
Hexahedral # Sim. # Tris Per Cut Updating [ms] Simulation [ms] (Speedup)

Elements DOFs × 1k Mesh Stiffness Distance Total Col. Det. FEM Total
Bunny 101×78×100 3,669 69 8.9 25.6 2.4 36.9 4.6 (43.5×) 19.6 (253.6×) 24.2 (213.2×)
Bunny 51×39×50 933 17 3.1 5.8 0.4 9.3 1.5 (26.8×) 3.7 (93.2×) 5.2 (67.4×)

Liver 82×83×101 2,928 59 11.7 24.4 1.9 38.0 3.2 (58.4×) 23.3 (103.7×) 26.5 (98.2×)
Liver 41×42×51 717 13 2.8 5.6 0.3 8.7 1.2 (21.3×) 4.3 (67.2×) 5.5 (57.0×)

Cylinder 42×42×50 1,338 30 5.7 11.3 0.2 17.2 2.1 (32.5×) 5.2 (118.4×) 7.3 (93.3×)
Armadillo 85×77×100 2,346 50 9.3 22.6 0.4 32.3 3.7 (26.1×) 29.7 (31.0×) 33.4 (30.5×)

Table 1 Performance statistics for different models and different resolutions of the hexahedral element grid. All models are
simulated with a composition level of three.

Fig. 10 Analysis of the change of kinetic energy over time.
Top: After cutting the bunny, the upper part slides down.
Bottom: With our topology-aware interpolation, the change
of kinetic energy (green) is significantly smoother than when
the simple interpolation is used (red).

Fig. 11 Cutting in a zero-gravity environment. Left top: Us-
ing the simple interpolation, the cut opens since the collision
detection is not accurate. Left bottom: With out topology-
aware interpolation, the width of the cut remains zero. Right:
Change of kinetic energy over time.

hedral elements (due to adaptive octree refinements) in

average was about 2% to 4% of the total number of ele-

ments. The last group gives timings for collision detect-

ing and FEM simulation. The red numbers in parenthe-

ses indicate the performance gain resulting from using

composite elements, compared to performing collision

detection and finite element simulation on the under-

lying hexahedral elements. With no composition, the

broad phase takes about 86% of the total time for colli-

Fig. 12 Speedup with respect to different composition lev-
els.

sion detection. As the composition level l increases, the

narrow phase is becoming the bottleneck. To increase

the overall performance, in the narrow phase we test

every 2lth vertex rather than all vertices. It is worth

noting that the resulting speedup factor in the narrow

phase (8 when l = 3) is far below the overall speedup

factor achieved for collision detection (between 21.3 and

58.4).

Our statistics indicate that the composition not on-

ly leads to a significantly faster deformation simulation,

but also to a highly efficient collision detection. With

three levels composition, the speedup of the overall per-

formance can reach about two orders of magnitude. Fig-

ure 12 shows the speedups for different composition lev-
els. Exponential growth of the speedup factor can be

observed.

7 Conclusion

We have presented an efficient collision detection method

for CFE simulation of cuts in deformable bodies. By ex-

ploiting the composition structure, we achieve a speedup

factor which scales exponentially with respect to the

level of composition. By analyzing the topology of un-

derlying hexahedral elements, our approach accurately

interpolates the penetration depth for non-conforming

geometries. These advances make CFEs an ideal candi-

date for applications where interactive simulation up-

date rates are required.

In the future, we plan to work on the physically

based modeling of the fracture mechanics between a

scalpel and soft tissues, in order to provide a fully real-

istic haptic feedback for surgical training applications.

Another direction of research is constraint-based con-

tact handling for deformable bodies. Here, it would be
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interesting to investigate the potential of CFEs to ac-

celerate this computationally intensive approach.
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