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Figure 1: Triangle meshes reconstructed from closest point fields using our novel closest point contouring (CPC)

Abstract
Constructing a (signed) distance field and contouring its zero level set are two important steps in many surface
reconstruction methods. While most high-quality distance transforms compute the distance to the surface as well as
the closest point on it, the contouring step typically uses only the distance and omits the closest point information.
Our novel closest point contouring algorithm (CPC) uses the full closest point field, and, thus, allows improving
existing methods for high-quality triangle mesh reconstruction based on implicit function models: Since we select
the vertex positions directly from the set of closest points, all triangle vertices are guaranteed to lie exactly on
the zero-contour and no approximations are necessary. By employing recent findings in the context of so-called
embedding techniques, we derive a formulation of the mean curvature vector on the closest point representation
and use this formulation to properly select the vertices to be triangulated. In combination with a new table-based
triangulation scheme this allows us to detect and preserve sharp features, and to avoid small degenerated triangles
in smooth areas. CPC can handle open and non-orientable surfaces, and its data-parallel nature makes it well
suited for GPUs.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations

1. Introduction and Related Work

Implicit surfaces, defined as zero level sets in discrete vol-
umetric distance fields, serve as intermediate representa-
tions in a number of computer graphics applications. A dis-
tance field can be computed in a number of ways. Accord-
ing to [JBS06] there are two categories of such algorithms:
Exact or direct algorithms compute explicitly the Euclidean
distance between a vertex of the discrete sampling grid and

its corresponding closest point (CP) on the continuous sur-
face. Approximate distance transforms perform a direction-
dependent uneven propagation of distance measures from
vertex to vertex, typically building up distances in incre-
ments to speed up computation time. The distance measure
can either be scalar-valued, or the distance transform builds
upon the propagation of vectors to the closest surface points
to achieve superior accuracy. High-quality algorithms from
both categories can thus be extended easily to also generate
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a CP representation of a given surface, i.e., a 3D surface-
embedding grid which stores at each grid vertex the CP on
the surface.

For constructing a triangle mesh from a distance field,
contouring algorithms like the Marching Cubes (MC) algo-
rithm [LC87] can be employed. If the intersections of the
surface with the edges of the embedding grid are known,
the Extended Marching Cubes (EMC) [KBSS01] and the
Dual Contouring (DC) [JLSW02] algorithms extract sharp
features by approximating surface positions in the interior
of grid cells via quadratic error function minimization.

1.1. Our contribution

We propose a new contouring approach that entirely avoids
the approximation of interior-cell surface positions, and, in-
stead, directly obtains a high-quality surface triangulation
from a CP representation. The construction of a CP field is
no more complicated than the construction of a high-quality
distance field, and the CPs can be used directly as mesh ver-
tices. Since the CPs lie exactly on the surface, there is no
need for any approximation of triangle vertices in the inte-
rior of grid cells. We will subsequently call our proposed
algorithm Closest Point Contouring (CPC).

It is not clear per se, however, which subset of the CPs
in the 3D embedding grid should become the vertices of the
triangle mesh, and how to connect the vertices in order to ex-
tract a high-quality triangulation. In this work we propose a
vertex selection oracle which makes use of an embedding
technique for the solution of partial differential equations
(PDEs) on surfaces [RM08, MR08]. This oracle performs a
Laplacian analysis on the embedding CP grid, and uses the
mean curvature vectors at the CPs to guide the selection of
mesh vertices according to the surface’s shape.

In summary, the main contributions of our paper are:

• An efficient, high-quality contouring method that works
solely on a surface embedding 3D closest point grid.
• An oracle for selecting a feature-preserving subset of all

closest points, which is based on a Laplacian analysis of
the embedding grid.
• A novel table-based algorithm for triangulating the voxels

of a 6-separating surface voxelization.

1.2. The Closest Point Method

CPC builds upon the ideas of the Closest Point Method
(CPM) [RM08, MR08], which is an embedding method for
numerically solving PDEs on arbitrary surfaces, i.e., it re-
places differential operators on a surface with their standard
Cartesian counterparts on a discrete regular grid. All surface
attributes are stored in a Cartesian multiblock grid, which
embeds the surface and a narrow band around it. At every
grid vertex the CPM requires the position of the surface point
with the shortest Euclidean distance. For all but one of the

examples in this work, the closest points were computed ex-
plicitly from triangle meshes, using the CUDA algorithm de-
scribed in [AMT∗12]. In Figure 5, however, we computed
the CPs from an unorganized point cloud, by projecting the
grid vertices onto a moving least squares surface representa-
tion using the APSS algorithm [GG07].

2. Algorithm Description

CPC is a two-pass approach, in which each CP corresponds
to its defining vertex in the primal embedding grid and to the
cell in the dual grid which is centered at the primal vertex.

The first pass iterates over the primal grid vertices and
selects a subset of their CPs as mesh vertex candidates.
We interpret the corresponding selection of cells in the
dual grid as a surface voxelization. To obtain a closed tri-
angulation in the second step, this voxelization must be
6-separating [KCY93]. A realization of the first pass for
smooth surfaces is discussed in Section 2.1. The contour
shown in Figure 5 bottom left was reconstructed with this
technique. In Section 2.3 we present an advanced algorithm
for surfaces with sharp features, which was used for all other
CPC results shown in this work.

The second pass iterates over all primal grid cells with
three or more selected corner vertices, and, comparable to
the MC algorithm, it determines the connectivity of the re-
spective candidate CPs with a lookup into a triangulation
table. Contrary to MC, however, CPC does not restrict the
triangle vertices to the edges of the grid, but instead uses the
exact closest surface points of the grid vertices. The second
pass is detailed in Section 2.2.

2.1. Triangulation-Aware CP Selection

A 6-separating CP selection can be computed by finding the
voxels containing the surface. To do so, we consider only the
distances between each voxel center xv (i.e., the position of
the primary grid vertex) and its CP on the surface cp(xv).
6-separation is guaranteed if we select CPs with a Euclidean
distance less than half the voxel diameter. Such a selection,
however, contains many false positives, which leads to over-
tessellation and degenerated triangles.

To obtain a less conservative selection, we calculate the
distances based on the L∞-norm instead of the L2-norm,
and select all CPs with a Chebyshev distance DC(p,q) :=
maxi(|pi− qi|) less than half the grid spacing h. This inter-
section test is exact if the CP representation is also based on
the L∞-norm. For a Euclidean representation it can miss in-
tersections if the Euclidean CP is outside the voxel and the
Chebyshev CP is inside. Yet even in this case the resulting
selection is 6-separating, which is why we always prefer the
L∞-norm for distance computations.

c© The Eurographics Association 2013.



S. Auer & R. Westermann / Closest Point Contouring

5

6

0

4

3
2

1

7

4

0

3

1

2

5

766

4

0

2
3

1

7

55

6

4

3

0

2

1

7

5

6

0

4

3

1

2 7

5

4

0

3

1

2 76

4

3
2

1

0
5

76

5

6

0

4

3
2

1

7

0 1 2 3

4 5 6 7

Figure 2: Triangulated cubes

Figure 3: Effect of moving the selection to the convex side

2.2. Table-Based CP Triangulation

Like MC, CPC determines the triangle connectivity for a pri-
mal grid cell by building an 8-bit index from the local indices
(depicted in Figure 2) of the selected cell vertices. This in-
dex identifies one out of 256 possible cube configurations in
a precomputed triangulation table.

Each entry in the triangulation table is a triangle list con-
taining the local indices of up to 6 triangles. To fill the ta-
ble, we first consider the cube faces containing the corner
with local index 0, to avoid redundant evaluation in adja-
cent cells. If the CPs of all 4 vertices of a face are selected,
we triangulate this face by adding a quad of two triangles
to the respective table entry. In a second step, we consider
the 8 cases depicted in Figure 2 and all of their permutations
arising from the 48 cube symmetries (24 rotations and re-
flection). If a cube configuration matches one of these cases,
the respective table entry is filled with the triangulation de-
picted in the figure (rotated or reflected as required). For the
underlined cases in the figure, which represent non-manifold
triangulations, we set an additional non-manifold bit.

If this bit is detected after the first table lookup, we treat
the most distant selected CP as unselected and compute a
new cube configuration. A manifold triangulation is then ob-
tained with a second lookup. The additional lookup can be
omitted, if manifoldness is less important than performance.

2.3. Feature-Sensitive CP Selection

We adjust the initial selection from Section 2.1 so that CPs
on sharp features are preferred. The idea underlying our ap-
proach is illustrated in Figure 3. Column A shows the ini-
tial selection of voxels and the resulting CPC reconstruc-
tion. In columns B and C this selection was moved to the
6-adjacent voxels on the inside, respectively outside of the
object. We observe that features are preserved where the se-
lection was moved to the locally convex side of the surface.
The reason for this effect is that in a certain area on the con-
vex side near an edge or corner, all voxel centers are closest

to a point on the feature. Column D shows the result of the
feature-sensitive CP selection. Here the selection was adap-
tively moved towards the locally convex side, guided by the
negative mean curvature vectors (purple arrows) to identify
areas of high curvature and their convex side.

The mean curvature vector at a point xs on the continuous
surface S is given by

H(xs) =∇2
S id(xs), (1)

where ∇2
S denotes the Laplace-Beltrami operator, and

id(x) = x is the identity function. H(xs) is parallel to the
surface normal, points to the locally concave side of S (i.e.,
on convex objects it points inside), and its length equals
the absolute value of the mean curvature. The closest point
method [RM08] allows us to define H on the discrete em-
bedding grid. The CPM’s equivalence of gradients principle
states that the Laplace-Beltrami operator applied to a func-
tion f and the standard Cartesian Laplace operator applied
to the closest point extension of f agree on the surface:

∇2
S f (xs) =∇2 f (cp(xs))

Since the CP function cp(x) is the CP extension of the iden-
tity function, we can rewrite Equation 1 to

H(xs) =∇2 cp(xs). (2)

To discretize this PDE, a standard discrete Laplace opera-
tor with a 3× 3× 3 stencil is applied to the CPs in the em-
bedding grid. The result H̃ on the discrete grid equals H at
points on the surface. Since a grid vertex v does not coin-
cide with a surface point in general, we evaluate H̃ at the
CP of v: H(xv) = H̃(cp(xv)). This discrete CP extension is
implemented as a WENO4 interpolation [MR08].

To guide the movement of the initial selection to the con-
vex side, we classify the grid vertices based on their mean
curvature vectors. The classification stage first computes
H(xv) in the described way and then decides for each grid
vertex v if its selection and deselection are allowed. A se-
lection is allowed only if v was never selected before and
if it does not lie on the locally concave side. Concavity is
assumed if the inner product H(xv) · (cp(xv)− xv) is larger
than a small ε. A deselection is allowed only if v is close to
a feature and if the resulting selection is still 6-separating.
We assume that a feature is close if DC(cp(xv),xv)+h/2 <
λ|H(xv)|, with λ being a user-defined value to control the
sensitivity of the feature detection. 6-separation is preserved
if H(xv) ·H(xṽ) > ε for all ṽ in the 26 neighborhood, i.e. if
the concave side does not change at the adjacent voxels.

Based on the classification we then apply two iterations
of the move stage to the initial selection. In each iteration,
we check for each currently selected vertex if its deselection
is allowed. If allowed, we deselect the vertex and instead
select all of its 6-adjacent neighbors which are selectable.
After two iterations all concave deselectable grid vertices are
effectively removed from the selection.
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Table 1: Contouring Timings (in milliseconds)
Res. Triangles Classific. Move Triangul. Total
643 25k 6 6 6 18

1283 108k 21 15 17 53
2563 401k 82 68 58 208
5123 1.5M 270 213 221 704
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DC-QEF DC-centroid CPC
Figure 4: CPC compared to Dual Contouring

3. Results and Conclusion

Note that all triangle meshes in this work were rendered
with per-pixel lighting, using flat triangle normals. Figure 1
shows that CPC effectively preserves sharp creases and cor-
ners (left), that it generates reasonable triangulations for
smooth areas as well as for smaller details (middle), and
that it supports open and non-orientable surfaces (right). Fig-
ure 5 shows that an existing technique for the generation of
a distance-based implicit surface can easily be modified to
generate a CP-based representation. In such cases, CPC with
the initial selection algorithm only is a viable substitute for
MC. It is just as simple to implement, yet it uses exact ver-
tex positions which are not restricted to the grid edges and
it avoids the generation of degenerated triangles, resulting
in 18% less triangles in the example. In Figure 4 we com-
pare the reconstruction quality of CPC and DC for a noisy
input model and varying grid resolutions. Besides the stan-
dard DC which approximates vertex positions by minimiz-
ing a quadratic error function, we also include a more noise-
tolerant variant which uses the centroid of the edge-surface
intersections. Especially at the silhouettes it is apparent that
the contour quality is further improved by using exact CPs.

Figure 5: Contouring a moving least squares surface

In Table 1, we present reconstruction times for the results
shown in Figure 4. The resolution of the defining Carte-
sian grid and the resulting number of generated triangles are
listed in the first two columns. The third and forth columns
show the times spent in the classification and move stages of
the feature-sensitive CP selection, which are implemented
in CUDA. The last two columns show the timings for the
triangulation stage, which is implemented in a Direct3D ge-
ometry shader, and the total reconstruction time.

In summary, we have presented a very efficient contouring
method which rigorously exploits a closest point representa-
tion to extract high-quality surfaces. The proposed contour-
ing method opens a number of future research directions, es-
pecially in the context of the surface PDEs. When the CPM
should be used to dynamically animate a surface, an explicit
representation helps to accurately track the movement of the
surface. After a few time-steps a re-initialization of the tri-
angle mesh is required, however, since otherwise the simula-
tion cannot generate new surface details. Further research is
necessary to determine if a weighting scheme based on the
Laplacian analysis in Section 2.3 could reduce the problems
at sharp edges mentioned in [AMT∗12].
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