Turbulence Visualization at the Terascale on Desktop PCs
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Fig. 1. Visualizations of structures in 1024° turbulence data sets on 1024 x 1024 viewports, directly from the turbulent motion field.
Left: Close-up of iso-surfaces of the Acy,n, invariant with direct volume rendering of vorticity direction inside the vortex tubes. Middle:
Direct volume rendering of color-coded vorticity direction. Right: Close-up of direct volume rendering of Rs. The visualizations are
generated by our system in less than 5 seconds on a desktop PC equipped with 12 GB of main memory and an NVIDIA GeForce
GTX 580 graphics card with 1.5 GB of video memory.

Abstract—Despite the ongoing efforts in turbulence research, the universal properties of the turbulence small-scale structure and
the relationships between small- and large-scale turbulent motions are not yet fully understood. The visually guided exploration of
turbulence features, including the interactive selection and simultaneous visualization of multiple features, can further progress our
understanding of turbulence. Accomplishing this task for flow fields in which the full turbulence spectrum is well resolved is challenging
on desktop computers. This is due to the extreme resolution of such fields, requiring memory and bandwidth capacities going beyond
what is currently available. To overcome these limitations, we present a GPU system for feature-based turbulence visualization that
works on a compressed flow field representation. We use a wavelet-based compression scheme including run-length and entropy
encoding, which can be decoded on the GPU and embedded into brick-based volume ray-casting. This enables a drastic reduction
of the data to be streamed from disk to GPU memory. Our system derives turbulence properties directly from the velocity gradient
tensor, and it either renders these properties in turn or generates and renders scalar feature volumes. The quality and efficiency of
the system is demonstrated in the visualization of two unsteady turbulence simulations, each comprising a spatio-temporal resolution
of 1024*. On a desktop computer, the system can visualize each time step in 5 seconds, and it achieves about three times this rate

for the visualization of a scalar feature volume.

Index Terms—Visualization system and toolkit design, vector fields, volume rendering, data streaming, data compression.

1 INTRODUCTION

Hydrodynamic turbulence is one of the most thoroughly explored phe-
nomena among complex multi-scale physical systems. It has im-
portant applications in engineering thermo-fluid systems, in the geo-
sciences and environmental transport, even in astrophysics. In recent
years, high performance computing [20] and new experimental mea-
surement techniques [22, 42] applied to the study of various types of
turbulent flows have enabled significant progress. Yet, modeling and
understanding turbulent flows remains a scientifically deep, techno-
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logically relevant, but fundamentally unsolved, problem.

One grand challenge that significantly increases the complexity of
turbulence analysis is turbulence’s inherently vectorial and tensorial
structure: one describes turbulent flows using velocity and vorticity
vector fields, and velocity gradient and stress tensor fields. Some of
the most salient features of turbulent flows have emerged from an ex-
amination of the velocity gradient tensor. It is defined according to
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where we use index notation; u;(x,?), i = 1,2,3 denote the three com-
ponents of the velocity vector field (which in turbulent flows depend
on position vector x and time #). Such gradient fields of fluid velocity
provide a rich characterization of the local quantitative and qualitative
behavior of flows, which is evident from the linear approximation in
the neighborhood of an arbitrary point. Since A is a second-rank ten-
sor, it has nine components (in three dimensions) and these contain
rich information about the local properties of the flow. Since the ten-
sor A encodes much information through each of its matrix elements,
analysis of its properties is quite challenging. Therefore, certain scalar



quantities that characterize basic properties of A have been proposed
and are often analyzed as scalar fields, e.g. the vorticity magnitude, the
dissipation rate, the angle between vorticity and the strain-rate eigen-
vectors, or the magnitude of the rotation tensor, to name just a few.

One of the primary challenges in turbulence research is to endow
the traditional statistical analysis of metrics (e.g. the average of an
alignment angle) with more geometrical insights into the overall struc-
ture of turbulence affecting more than one specific property. Even
though a number of different feature metrics are known, no single fea-
ture can alone explain all relevant effects. This means that different
features must be explored simultaneously and in an interactive fash-
ion, to be seen in relation to each other. Only then can one proceed
with evaluating more meaningful statistical metrics. For example, one
would like to visualize the high vorticity, high rotation, or high Q
regions in the flow, but in relation with the alignments of the local
strain-rate eigen-directions, or together with another scalar field such
as R. Particularly the question whether the geometric trends in the
small-scale turbulence structures are also shared by the coarse-grained
(or filtered) velocity gradient tensor plays a determining role in tur-
bulence research. A visual indication of the relationship between ve-
locity increments and the filtered velocity gradients at coarser scales
can enable further insights into the complicated multi-scale behavior
of turbulence.

The visual exploration of many different intrinsic features of tur-
bulence, however, is very challenging. The major reason is that the
fine-scale structures are fully resolved only at the very highest resolu-
tion in both space and time. For instance, in the current paper we will
address the visualization of two terascale turbulence simulations, each
comprised of one thousand time steps of size 1024, making every
time step as large as 12 GB (3 floating-point values per velocity sam-
ple). These data sets contain direct numerical simulations of forced
isotropic turbulence (see Fig. 1, left) and magneto-hydrodynamic tur-
bulence (see Fig. 1, middle and right), respectively. For a detailed
descriptions of the simulation and database methods used let us refer
to [26] and the web page at http://turbulence.pha.jhu.edu. For such
data it is simply not feasible to precompute multiple feature volumes
and inspect these volumes simultaneously, in particular because the
number of potentially interesting features and scales is so large. Fur-
thermore, to be able to faithfully represent even the smallest features in
the data, highly accurate reconstruction schemes are necessary which
work directly on the turbulence field by reconstructing features in turn
during visualization.

As a consequence, visualization systems necessary to explore the
full turbulence spectrum require an innovative approach that provides
extreme I/O capabilities, combined with computational resources that
allow for an efficient feature reconstruction and rendering. Since the
data to be visualized is so large that even storing one single time step
in CPU memory can become problematic, bandwidth limitations in
paging the data from disk become a major bottleneck.

Following the requirements in turbulence visualization, we have de-
veloped a new holistic approach which combines scalable data stream-
ing and feature-based visualization with novel hardware and software
solutions, such as a deep integration of GPU computing. We employ
the capabilities of wavelet-based data compression and on-the-fly GPU
data decoding and encoding to reduce memory access and bandwidth
limitations. Because our approach reduces disk access and CPU-GPU
data transfer, it is suitable for the analysis of small-scale turbulence
structures on desktop systems which are not equipped with large main
memory. To preserve even the finest structures, feature extraction is
embedded into the visualization process, based on the direct compu-
tation of vector field derivatives and on-the-fly evaluation of gradient
tensor-based feature metrics.

Our system distinguishes from previous approaches for visualizing
turbulent flow fields in that it eases bandwidth and memory limitations
throughout the entire visualization pipeline. In particular, the system

e compresses vector data at very high fidelity,

e works on the compressed data up to the GPU, using on-the-fly
GPU decompression and rendering,

e enables caching of derived feature volumes via on-the-fly GPU

compression,
e provides multi-scale feature visualization via on-the-fly gradient
tensor evaluation.

Our paper is structured in the following way: First, we review pre-
vious systems and algorithms for the visualization of large volumetric
data sets. We then give an overview of our system, including its in-
ternal structuring as well as the basic functionality in a nutshell. Here
we aim at giving information about what the system provides and how
this is achieved, but we do not answer the question why the particular
choices have been made. This question is addressed in the upcoming
section, where we motivate our design decisions and discuss tradeoffs
involved in making our system practical for visualizing large turbu-
lence simulations. This also involves the demonstration of some ad-
vanced features which are made possible by these choices. Finally, we
describe the streaming and visualization performance of our system
and discuss its preprocessing costs.

2 RELATED WORK

Previous efforts in large volume visualization can be classified into two
major categories: a) Parallelization and b) data compression and out-
of-core strategies. There is a vast body of literature on parallelization
strategies for volume visualization on parallel computer architectures
and a comprehensive review is beyond the scope of this work; how-
ever, some of the most recent works have addressed volume rendering
on both GPU [8, 30] and CPU [18] clusters.

A different avenue of research has addressed the visualization of
large volumetric data on desktop PCs. These works employ out-of-
core techniques to dynamically load only the required part of a data set
into memory, and many employ some form of compression to reduce
the immense data volume. Vitter [41] provides a general overview in-
cluding detailed analyses of many out-of-core algorithms. The most
recent works focussing on the direct rendering of large-scale volume
data [6, 14] employ an octree of volume bricks. During rendering, the
octree is traversed on the GPU and visited nodes are tagged for refine-
ment or coarsening. The tags are read back to the CPU which then
updates the GPU working set accordingly. Such approaches allow for
on-demand streaming of data and efficient rendering in a single pass,
provided that all data required for the current view is available in GPU
memory. In turbulent flow fields, however, using a lower-resolution
approximation of the velocity data results in a significant distortion of
the extracted features and is thus not admissible. Specifically for large
flow data, Ellsworth et al. [7] present a particle-based visualization
system that precomputes a large number of particle traces which can
then be displayed interactively.

In the following, we review the most popular compression options
in the context of volume rendering. For a general overview of data
compression, we refer to the book by Sayood [34].

Lossless: Lossless compression typically employs some form of pre-
diction to exploit spatial and temporal redundancy in the data. The
prediction remainders are then compressed via any general-purpose
compression approach. To the best of our knowledge, all existing work
employing lossless compression in the context of volume rendering
has addressed only integer-valued data [11, 12]. Outside of volume
rendering, some fast lossless floating-point compressors exist [2, 27].
However, in particular for floating-point data, lossless compression
usually achieves only quite modest compression rates.
Hardware-supported formats: Some special fixed-rate compression
formats such as S3TC are implemented directly by graphics hardware.
This means that rendering, including hardware-supported interpola-
tion, is possible directly from the compressed form, thus reducing
GPU memory requirements. By adding a second, CPU-based com-
pression stage, the compression rate can be improved [31, 32]. How-
ever, the fixed-rate first stage allows little or no control over the qual-
ity vs. compression rate trade-off, and these formats lack support for
floating-point data. Additionally, while decompression is extremely
fast, the compression step is usually quite involved.

Vector quantization: In vector quantization, a data set is represented
by a small codebook of representative values and, for each data point,
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Fig. 2. Preprocessing pipeline.

an index into this codebook. This allows for very fast decoding on
the GPU via a single indirection [10, 35]. By employing deferred
filtering [9], hardware-supported texture filtering becomes possible.
However, the construction of a good codebook is extremely time-
consuming, and it is difficult to satisfy the very high quality require-
ments of our application.

Transform coding: Transform coding approaches are used in most
popular image and video compression schemes, such as the various
JPEG and MPEG standards. The basic idea is to express the input
data as coefficients to a set of basis functions with the goal of con-
tracting most of the energy into few coefficients, so that most coeffi-
cients have very small values. In a following quantization step, these
small coefficients are reduced to zero and need not be stored. The
remaining coefficients are typically further compressed using an en-
tropy coding scheme such as Huffman or arithmetic coding. The most
commonly used transforms are the discrete cosine transform (DCT)
and the discrete wavelet transform (DWT), both of which have been
applied to volume rendering [28, 45], [15, 16, 33, 43]. Woodring
et al. [44] analyze the application of JPEG 2000 compression to a
large climate simulation. For data with little or no local correlation,
Lakshminarasimhan et al. [25] present an alternative approach based
on coefficient reordering and spline fitting.

3 SYSTEM FUNCTIONALITY, ALGORITHMS, AND FEATURES

Our approach begins with a sequence of 3D turbulent motion fields,
each given on a Cartesian grid. In a preprocess, each vector field is
partitioned into a set of equally sized bricks. An overlap between ad-
jacent bricks enables proper interpolation at brick boundaries. Every
brick is compressed separately and written to disk. The preprocess is
outlined in Fig. 2.

3.1 Compression Algorithm

Once the bricked volume representation has been constructed, a
wavelet-based scheme is used for compression, including run-length
and Huffman encoding of the coefficient stream. We use the GPU
compression scheme recently proposed by Treib et al. [39], which has
been tailored explicitly to support both encoding and decoding on cur-
rent GPU architectures. The wavelet compression builds upon the fast
CUDA implementation of the discrete wavelet transform (DWT) by
van der Laan et al. [40].

The compression algorithm is slightly modified to handle vector
data, yet the basic stages remain mostly unchanged. In the first stage,
a hierarchical DWT is performed separately on each component of
the velocity vectors using the CDF 9/7 wavelet [S]. The floating-
point wavelet coefficients C; are quantized into integer values ¢; via
standard scalar dead-zone quantization, i.e., ¢; = sign(C;) | |Ci|/A ],
where A, is the quantization step that is used at level / of the wavelet
pyramid. Because the coefficients at coarser scales carry more energy
than the coefficients at smaller scales, the quantization steps are de-
creased with increasing scale, i.e., starting at the finest level / = 0 with
a user-defined step size Ag, on subsequent levels the step size is set to
A=Ay / 2!. Here, Ag provides control over the compression rate and
reconstruction quality. The quantized wavelet coefficients are finally
concatenated into a sequential coefficient stream in scan-line order. A
run-length encoder followed by a Huffman encoder convert the coeffi-
cient stream into a highly compact form.

3.2 Visualization Algorithm

For visualizing the 3D vector field, we use GPU ray-casting on the
bricked volume representation [24]. At every sample point along a ray,
one or multiple scalar features are derived from the velocity gradient
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Fig. 3. Basic system data flow at run-time.

tensor (see Section 3.3), and the respective values are mapped to color
and opacity. The velocity gradient tensor is computed on-the-fly via
central differences between interpolated velocity values. The system
supports tri-linear interpolation for fast previewing purposes and tri-
cubic interpolation [36] for high-quality visualization. The visual dif-
ference between tri-linear and tri-cubic interpolation is demonstrated
in Fig. 4. For shading purposes, gradients are approximated locally by
central differences on six additional feature samples.

The bricks are traversed on the CPU in front-to-back order. If the
compressed representation of the current brick is not residing in CPU
memory, it is loaded from disk and cached in RAM using a LRU strat-
egy. After all data for the current time step has been loaded, the CPU
starts prefetching subsequent time steps asynchronously. The brick
is then streamed to the GPU, where a CUDA kernel is executed to
decompress the data and store it in texture memory. Our system lever-
ages GPU texture memory to take advantage of hardware-supported
texture filtering. Streaming to the GPU works asynchronously, mean-
ing that the transmission stalls neither the CPU nor the GPU.

Once the data has been decompressed, a CUDA ray-casting ker-
nel is launched. It invokes one thread for every pixel covered by the
screen-aligned rectangle enclosing the projected vertices of the brick’s
bounding box. Each thread first determines if the respective view ray
intersects the bounding box and terminates if no hit was detected. Oth-
erwise, the current frame buffer content at the pixel position is read,
and the brick data is re-sampled along the ray to obtain the color and
opacity contribution to be accumulated with the current values. Early
ray termination is performed whenever the opacity has reached a value
of 0.99. Fig. 3 illustrates the basic system data flow at run-time.

Based on a set of basic rendering modalities, i.e., direct volume
rendering (DVR) including iso-surface rendering and scale-invariant
volume rendering [23], our system supports a number of different vi-
sualization options, for example, the simultaneous rendering of iso-
surfaces of multiple turbulence features, or a combination of differ-
ent techniques such as DVR and iso-surface rendering. Furthermore,
a comparative visualization of the same feature at different scales is
supported by enabling simultaneous operations on the initial and fil-
tered data (see Section 4.3). By incorporating shader dependencies,
the visualization of features can be made dependent on the existence
or properties of other features. Some examples of different visualiza-
tion options are shown in Fig. 1 and Fig. 5.

Fig. 4. Comparison of tri-linear (left) vs. tri-cubic (right) filtering when
rendering iso-surfaces. With tri-linear interpolation, the silhouettes of
high-frequent iso-surfaces are poorly resolved.

3.3 Turbulence Features

In our system, turbulence features are derived from the velocity gra-
dient tensor. The gradient fields of fluid velocity provide a rich char-
acterization of the local quantitative and qualitative behavior of flows,
which is evident from the linear approximation in the neighborhood of



Fig. 5. Turbulence visualizations. (a) Direct volume rendering of E. (b) Two semi-transparent iso-surfaces of Qg,.. () Fine-scale iso-surfaces
(gray) and coarse-scale iso-surfaces colored by vorticity direction. (d) Direct volume rendering of A,; negative values are red, positive values green.

an arbitrary point,
Xo : ui(X,1) = ui(Xo,1) +Aij (X0, 1) (xj —Xo;) + ...

Since A is a second-rank tensor, it has nine components (in three di-
mensions) and these contain rich information about the local proper-
ties of the flow. The decomposition

1 1
5 (Aij+A45i), Qij=3

A,-j:S,-j-l—Qij, where Sijz 3

(Aij—Aji),
is commonplace and separates A into its symmetric part (the strain-
rate tensor S) and its antisymmetric part (the rotation-rate tensor ).
The tensor S has three real eigenvalues A’s that in incompressible flow
add up to zero, and if they are different (non-degenerate case) the ten-
sor S has three orthogonal eigenvectors that define the principal axes
of S. These indicate directions of maximum rate of fluid extension
(Ag > 0) and contraction (4, < 0), and an intermediate fluid deforma-
tion that can be either extending or contracting in the third direction.
Q describes the magnitude and direction of the rate of rotation of fluid
elements and is simply related to the vorticity vector @ = V x u. Since
the tensor A encodes much information through each of its matrix el-
ements, an analysis of its properties is quite challenging. Therefore,
certain scalar quantities that characterize basic properties of A have
been proposed and are often analyzed as scalar fields.

For example, it has been found convenient to define the following
five scalar invariants [3, 29]:
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Additional commonplace, Galilean invariant vortex definitions in-
volve non-trivial combinations of A, S and Q, such as the Qg and
Achong-criterion [4, 17, 19]:
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Further vortex classifications employ additional information from the
vorticity, or eigenvalues through an eigendecomposition of symmetric
tensors. For example, the A;-criterion [21] identifies vortex regions
by Ay < 0, where 4, is the second largest eigenvalue of the symmetric
tensor S2 + Q2. Another option is the enstrophy production, which is
defined as E' = S;; 0;@;.

One striking observation in turbulence research was the preferential
vorticity alignment found by Ashurst et al. [1]. They observed that the
most likely alignment of the vorticity vector @ was with the interme-
diate eigenvector B, the direction corresponding to the eigenvalue kﬁ

that could be either positive or negative. For a random structureless
gradient field, no such preferred alignment would be expected, and on
naive grounds one might have expected the vorticity to align with the
most extensive straining direction instead. Therefore, the observations
generated sustained interest in the problem of alignment properties of
the vorticity field and relationships with features related to the strain-
rate tensor—e.g. its eigenvectors’ directions. For this reason, our sys-
tem provides mappings of the vector components of @ (or one of the
eigenvectors 0Og, s, 15 of the strain-rate tensor) to RGB colors during
volume ray-casting.

Besides analyzing the small-scale turbulence structures, a substan-
tial amount of research has been devoted to the statistical features of
velocity increments in the inertial range [13, 37]. In particular, it has
been shown that a relationship between velocity increments at scale
A and coarse-grained (or filtered) velocity gradients A = G * A at
scale A can be established. Here, G, is a convolution kernel—usually
an averaging box filter—of characteristic scale ¢. To enable a visual
multi-scale analysis of turbulence, our system allows simultaneously
extracting and visualizing features from filtered velocity fields at dif-
ferent (user-selected) scales. As filtering and differentiation are linear
operations, filtering is performed on the velocity vector field instead
of the gradient tensor field.

4 DESIGN DECISIONS AND TRADEOFFS

We now consider some of the decisions made in the implementation of
our system that make it suitable for visualizing large turbulence data.
In particular, we want to emphasize the possible tradeoffs that allow
the user to choose between highest quality and highest speed. As we
will show, despite the careful design of the system with regard to the
application-specific requirements, not always can it respond interac-
tively to the user inputs. This is because of the extreme amounts of
data to be processed and the complex shaders to be evaluated. How-
ever, our results demonstrate a system performance that facilitates an
interactive exploration for most of the supported visualization options.
The bricked data representation the system builds upon is necessary
to keep the chunks of data that are processed at run-time manageable.
In addition, the bricked representation has the advantage of enabling
view frustum culling, resulting in a considerable reduction of the data
to be streamed to the GPU. The integration of occlusion culling is
also possible, but the turbulence structures are typically so small and
scattered that no significant gain can be expected. We also want to
mention that level-of-detail rendering strategies as they are typically
employed in volume ray-casting have not been considered, because
the continuous transition between multiple scales of turbulence in one
image has been determined inappropriate by turbulence researchers.
To avoid access to neighboring bricks in tri-linear/tri-cubic data in-
terpolation and gradient computation, a 4-voxel-wide overlap is stored
around each brick. Thus, the smaller the bricks, the more additional
memory is required to store the overlaps. On the other hand, the larger
the bricks, the fewer disk seek operations have to be performed for
reading the bricks from disk. Consequently, we make the bricks as



large as possible, yet we consider that a certain number of decom-
pressed bricks (at least 4) should fit into GPU memory as a working
set. We chose a brick size of 2483 in our system, so that a brick in-
cluding the overlap can be stored in a texture of size 2563. This results
in a memory overhead of about 10%.

4.1 Feature Reconstruction

The visualization system by default reconstructs turbulence features
directly from the velocity field during ray-casting. It would also be
possible to precompute certain (scalar) feature volumes in a prepro-
cess and to visualize these volumes. However, such an approach is
problematic in the current scenario. First, it would cause a signifi-
cant increase of the overall memory consumption. Second, the system
would become inflexible to the extent of the precomputed features,
prohibiting an interactive steering of the feature extraction processes.
Third, quality losses are introduced by re-sampling a scalar feature
volume instead of a direct feature reconstruction.

Two examples demonstrating the quality differences are shown in
Fig. 6. The images clearly reveal that certain fine-scale structures can
no longer be reconstructed from the scalar feature volumes. Even
though the principal shapes are still maintained, a detailed analysis
of the bending, stretching, merging, and separating behavior of the
turbulence features is no longer possible.

Fig. 6. Features reconstructed from the turbulent motion field (left) and
from a precomputed scalar feature volume (right).

On the other hand, ray-casting a feature volume can be a viable ap-
proach to obtain an overview of the turbulence structures. Therefore,
our system supports the construction and storage of scalar feature vol-
umes for fast previewing purposes (see also Section 5). Even though
the construction of such a volume on the GPU is straightforward us-
ing the system’s functionality, this volume might be too large to be
stored on the GPU in uncompressed form. The requirement to tackle
this problem has significantly steered our selection of the compression
scheme to be used in the system.

4.2 Lossy Compression

Because of the extreme data volumes to be handled by our system, the
reduction of this volume becomes one of the most important require-
ments. Without any reduction, expensive disk-to-CPU data transfer
becomes the major performance bottleneck since only a very small
portion of an entire turbulence sequence can be stored in main mem-
ory. To meet this requirement, we have embedded a data compression
layer into the system. This layer encapsulates a compression scheme
that can be used for arbitrarily-sized bricks and, thus, can be integrated
seamlessly into the system architecture.

In the decision which compression to use, the following aspects
have been considered. First of all, it is required that no features will
be destroyed due to the compression, and that possible quality losses
do not affect the features’ shapes significantly. For floating-point data,
compression schemes like S3TC and vector quantization [34] do not
adhere to this constraint. Second, the compression rate must be so
high that the data can be streamed from disk and decompressed at a
rate that keeps pace with the data processing speed. Especially due

to this requirement, lossless compression schemes are problematic. In
general, lossless schemes, for instance as proposed in [2, 27], can only
achieve a rather moderate compression rate.

A last consideration arises from the particular requirement of our
system to generate scalar feature volumes on-the-fly for the purpose
of fast previewing. This functionality goes hand in hand with the pos-
sibility to efficiently compress the generated feature volumes on the
GPU, so that they can be efficiently streamed to the CPU and buffered
in RAM. While the compressed volumes could also be stored on the
GPU, the time required to transfer the compressed data between the
CPU and the GPU is negligible compared to the compression time.
Thus, all generated data is always buffered on the CPU. To support
this option, an alternative data flow as illustrated in Fig. 7 is realized
in our system. This rules out compression schemes such as vector
quantization, because the construction of the vector codebook in the
coding phase can not be performed at sufficient rates in general.
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Fig. 7. Alternative data flows at run-time support construction and re-
use of derived feature volumes.

Lossy compression schemes based on the discrete wavelet trans-
form, in combination with coefficient quantization and entropy cod-
ing, are well known to achieve very high compression rates at high
fidelity [38]. Compression schemes based on transform coding also
have a long tradition in visualization, for instance to reduce memory
and bandwidth limitations in volume visualization [16, 33, 43, 45].
However, only with the possibility to perform the entire compression
pipeline on the GPU [39]—including encoding and decoding—can
the full potential of wavelet-based compression be employed for large
data visualization.
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To assess the compression rate and reconstruction quality of the
wavelet-based GPU coder, we have performed tests using two differ-
ent turbulence simulations, each consisting of time steps of size 1024°.
On each brick a three-level DWT was performed, and the wavelet
coefficients were compressed as described. Rate-distortion curves in
(P)SNR vs. bits per voxel (where each voxel contains a 3-component
floating-point vector) for both data sets are given in Fig. 8. In addi-
tion, Fig. 9 plots RMS error vs. quantization step as well as maximum
error vs. RMS error. The graphs demonstrate that the user can directly
control the compression error by choosing an appropriate quantization
step size. The rate-distortion curves demonstrate the high reconstruc-
tion quality of the wavelet-based compression. On the other hand, they
do not provide an intuitive notion of the visual quality. Therefore, in
Figs. 10 and 11, we compare the visual quality of the rendered struc-
tures in the compressed motion fields to those in the original fields.
For comparison purposes we use different compression rates.

isotropic turbulence data set. Structures are reconstructed from the
original vector field (top), and a compressed version at 3.0 bpv (middle)
and 1.3 bpv (bottom).

Even though it is clear that the compression quality depends on the
visualization parameters, such as the transfer function, the selected
iso-value, and on the feature that is visualized, a component-wise
wavelet transform can very effectively reduce the memory consump-
tion, yet it achieves a very high reconstruction quality. In particular, in
the middle images in Figs. 10 and 11 the structures are reproduced at
almost no visual difference at a remarkable compression rate of 32:1.
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Fig. 11. Visual quality comparison for an iso-surface in Rs in the MHD
turbulence data set. Structures are reconstructed from the original vec-
tor field (top), and a compressed version at 3.0 bpv (middle) and 1.3 bpv
(bottom).

Let us finally mention that the selected compression scheme can in
principle be extended to also exploit the motion coherence between
successive time steps for increasing the compression rate. The basic

idea is to not compress every time step separately, but rather to en-
code the differences between a time step and one or more preceding
(or, in some cases, succeeding) time steps. Popular video compression
algorithms such as MPEG typically employ block-based motion com-
pensation, and this approach has been applied to volume compression
as well [15]. However, any temporal prediction scheme obviously re-
quires access to one or more other time steps to use as input. If these
time steps can not be held in RAM in uncompressed form, then such
a prediction necessarily triggers additional decompression steps and
thus significantly increases the processing time. In our application,
the possible gain in compression rate does not justify the increase in
compression/decompression time. Therefore, our system compresses
each time step separately.

4.3 Multi-Scale Analysis

As we have emphasized in the introduction, one challenging endeavor
in turbulence research is the analysis of the shape and evolution of
structures at different scales. To enable such an analysis, it is necessary
to filter the velocity field using a low-pass filter. A linear convolution
filter is used in practice. It can then be instructive to compare the orig-
inal data with the filtered version, or multiple instances filtered with
different radii. Both the initial and the filtered data are made accessible
to the shader, and they are ray-cast simultaneously. Many options for
combined visualizations are now possible, for example, iso-surfaces
for different iso-values and with different colorings (Fig. 5 (c)), or the
conditional visualization of fine features depending on coarse features
(Fig. 12).

Fig. 12. Multi-scale turbulence analysis in a “focus+context” manner.
Iso-surfaces in the fine-scale data (red) are extracted only within iso-
surfaces of the coarse-scale version.

Because a large range of scales may contain relevant features, these
scales can not be precomputed but must be determined interactively
at run-time. Furthermore, the interesting scales are often quite large,
requiring filter radii of 20 and more voxels, so that an on-the-fly fil-
tering during rendering is not feasible. The large filter radii also make
a separate filtering of each brick impossible, because values from ad-
jacent bricks are required in the convolution. Unfortunately it is also
impossible to keep all 26 neighbors of one brick in GPU memory at
the same time, such that the bricks required for filtering have to be
streamed and accessed sequentially. As a consequence, every brick
needs to be loaded from the CPU and decompressed multiple times.

To avoid this, we have restricted our system to the execution of
separable filters, i.e. filters that can be expressed as 3 successive 1D
filters, one along each coordinate axis. In this case, only 3 filtering
passes are required, and in each pass only the 2 neighbors along the
current filter direction need to be available (as long as the filter radius
is not larger than the brick size). In each pass, the bricks are traversed
in an order which ensures that each brick needs to be decompressed
only once. Fig. 13 illustrates this ordering.

All intermediate results and the final filtered result are compressed
in turn on the GPU and buffered in CPU memory. Consequently, ad-
ditional losses will occur, besides those which are introduced by the
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Fig. 13. Brick ordering during separable filtering in x and y dimension
(left and right, respectively). The z dimension is analogous. One exem-
plary working set during each filtering pass is indicated in red.

encoding of the initial vector field. On the other hand, because the data
becomes smoother and smoother after each filtering pass, at the same
compression rate ever better reconstruction quality can be achieved.
In all of our examples, the additional losses were only very minor, and
noticeable differences between single-pass and multi-pass filtering on
the compressed vector field could hardly be observed. This is demon-
strated in Fig. 14 for a particular feature iso-surface in the isotropic
turbulence data set.

Fig. 14. A, iso-surface in an isotropic turbulence simulation. Left: A 3D
smoothing filter with support 25 was applied to the compressed vector
field in one pass. Right: The same filter as before was used, but now
the filter was separated and filtering was performed in 3 passes. After
each pass, the intermediate results were compressed and buffered on
the CPU.

5 PERFORMANCE

In this section, we evaluate the performance of all components of our
system and provide accumulated timings for the most time-consuming
operations. All presented timings were performed on a desktop PC
with an Intel Xeon E5520 CPU (quad core, 2266 MHz), 12 GB of
DDR3-1066 RAM, and an NVIDIA GeForce GTX 580 graphics card
with 1.5 GB of video memory. We used a standard hard disk providing
a sustained data rate of about 100 MB/s.

Our statistics are based on the two terascale turbulence simulations
referenced in the introduction and shown in Fig. 1. Each comprises
one thousand turbulent motion fields of size 10243. The vector sam-
ples are stored as 3 floating-point values. Both data sets were com-
pressed to 3.0 bpv at a compression rate of 32:1. The compression
rates for individual bricks ranged from 53:1 to 22:1, depending on
their content. The performance of all operations in our system scales
roughly linearly in the spatial resolution of the data, so the system
performance for data sets of different sizes can be easily extrapolated
from the numbers listed below.

Although preprocessing time is not as important as visualization
time, it is still significant for the practical visualization of very large
data sets. On our test system, preprocessing takes about 3 minutes per
time step. The majority of this time is spent reading the uncompressed
data from disk; the compression of one time step—once stored in CPU
memory—takes only about 10 seconds. This time includes the upload
of the raw data to the GPU, the compression on the GPU, and the
download of the compressed data to the CPU.

Table 1 summarizes t3ypical timings for visualizing one (com-
pressed) brick of size 256° and one (compressed) time step consisting
of 53 bricks. We give separate times for data streaming and compres-
sion, performing data operations on the GPU, and rendering. For com-
parison, the statistics also include timings for an uncompressed data
set. Rendering was always to a 1024 x 1024 viewport. The entire vol-
ume was shown so that view-frustum culling did not have any effect—

in zoomed-in views where some bricks can be culled, decompression
and ray-casting are faster accordingly. Furthermore, high transparency
was assigned to the structures to eliminate any effects of early ray ter-
mination. Which feature metric was used had no significant effect
on the performance. Since the visualization performance for different
time steps and for the two different data sets was very similar, they are

not listed separately in the table.

Table 1. Timings for individual system components. Where appropriate,

values are given as min—avg—max.

Data streaming per brick  per time step
Read from disk 35-60-88 ms 4.2s
Upload & decompress (vector-valued) 18-32-39 ms 30s
Compress & download (vector-valued) — 48-105-230 ms 103s
Upload & decompress (scalar) 7-14-16 ms 13s
Compress & download (scalar) 23-43-56 ms 42s
GPU processing per brick  per time step
Compute metric 28 ms 2.1s
Filter (per pass) 3.9 ms 03s
Rendering per brick  per time step
Ray-cast, on-the-fly feature, tri-linear 6-25-35 ms 2.1s
Ray-cast, on-the-fly feature, tri-cubic 27-150-205 ms 12.1s
Ray-cast, multi-scale, tri-cubic 54-305-415 ms 244 s
Ray-cast, precomp. feature, tri-linear 0.8-2.3-3.9 ms 02s
Ray-cast, precomp. feature, tri-cubic 1.7-6.5-10 ms 0.6s
Data streaming (uncompressed) per brick  per time step
Read from disk 19s 2.3 min
Upload or download (vector-valued) 34 ms 32s
Upload or download (scalar) 11 ms 1.1s

Table 2. Aggregate timings for some common scenarios.

Scenario startup  per frame
Preview rendering (precomp. feature, tri-linear) 935 1.5s
Standard rendering (on-the-fly feature, tri-linear) 00s 49s
HQ rendering (on-the-fly feature, tri-cubic) 0.0s 15.1s
HQ rendering w/ multi-scale analysis 40.8 s 29.8 s

One can see that the upload and decompression of all bricks of one
time step takes 3.0 seconds. This is slightly faster than the upload of
the uncompressed data, which takes 3.2 seconds (at a throughput of
4.2 GB/s over PCI-E). It has to be mentioned, however, that the de-
compression on the GPU blocks the GPU so that no other tasks can
be performed. When uploading uncompressed data, the data transfer
could be performed in parallel with other GPU tasks, such as render-
ing. Thus, operations on uncompressed data are usually slightly faster
than the operations on the compressed data, but only if the data is
already available in CPU memory. This can not be assumed in gen-
eral, e.g., when stepping through multiple time steps, or when multiple
(e.g. filtered) volumes are required simultaneously (see Sections 3.2
and 4.3). Whenever disk access becomes necessary, working on the
compressed data becomes significantly faster. Reading a single com-
pressed time step from disk takes only about 4.2 s. Additionally, read-
ing can be performed concurrently with decompression and rendering,
and, thus, it can usually be hidden completely. In contrast, reading an
uncompressed time step from disk takes about 2.3 minutes.

Our display rates can not be compared to those reported for ray-
casting of large scalar fields [6, 14], even though volume ray-casting
on the bricked velocity field representation is used. This is because
a) classical volume ray-casting systems typically make use of level-
of-detail rendering, which is not admissible in our application, and
b) exploit empty space skipping, which has no effect in our scenario
where the data sets do not contain empty space. It is also worth men-
tioning that much more complex shaders are executed by our system
for feature reconstruction. In our case, high-quality visualization us-
ing on-the-fly feature extraction and tri-cubic interpolation takes about
15.1 seconds, of which only 3 seconds are required for decompressing
the velocity field and 12.1 seconds are required for ray-casting. The



Fig. 15. Visualizations of forced isotropic turbulence. (a) Direct volume rendering of the velocity magnitude in the whole data set. Images (b-f)
show a closeup on a 256> subregion at the center of the simulation domain. (b) Velocity magnitude. (c) Vorticity magnitude. Images (d-f) show
iso-surfaces of invariants of the velocity gradient tensor (from left to right: Qg , Oa, QOs). In all three images, iso-surfaces of a value equal to 1.0E-2
are shown.

reason lies in the extremely complex shaders on the velocity gradi-
ent tensor, which are evaluated at every sample point to evaluate the
selected feature metrics. As an alternative, a preview-quality visual-
ization of a precomputed scalar feature volume using tri-linear interpo-
lation takes about 1.5 seconds. The computation and compression of
a scalar feature volume from a compressed vector field requires about
9.3 seconds. If the whole feature volume can be stored on the GPU,
e.g. on a Quadro or Tesla card with 4-6 GB of video memory, render-
ing takes only 0.2 seconds. Since in this case the feature volume does
not need to be compressed, it can be generated on the GPU in about
5.1 seconds.

A very expensive operation is filtering of the 3D velocity field. This
operation requires the entire data set to be 3 times uploaded to the
GPU, decompressed, filtered along one dimension, and compressed.
Even though the raw compute time to filter the data on the GPU is
only 0.3 seconds per filtering pass for a filter with a support of 51,
it takes about 40 seconds until the result is available in CPU mem-
ory. This time is vastly dominated by the GPU decompression, and
in particular the GPU compression of the intermediate and final re-
sults. Compression is about 3 times as expensive as decompression
because the run-length and Huffman encoders are more complex than
the respective decoders [39]. In particular, Huffman encoding requires
a round-trip to the CPU, where the Huffman table is constructed. Ta-
ble 2 summarizes the startup and per-frame time required for some
common scenarios as outlined above. These times do not include the
times required to load the data from disk, because disk access is per-
formed concurrently with rendering and processing and can usually be
hidden.

From the measured timing statistics it becomes clear that for the

given data sets our system can not achieve fully interactive display
rates. The reason is that the system was developed with the intent of
visualizing extremely large turbulence data sets, which require com-
plex shaders for feature extraction including high-quality interpola-
tion. This is necessary to provide the significant amounts of fine detail
at the smallest scale. However, the memory-efficient design of our
system makes it well suited for implementation on desktop machines.

6 CONCLUSION

In this paper, we have presented a system for the exploration of very
large and time-dependent turbulence data on desktop PCs. The inter-
active exploration of terascale data with limited available memory and
bandwidth is made possible by the integration of a wavelet-based com-
pression scheme. A fast GPU implementation of both compression
and decompression provides the necessary throughput for fast stream-
ing of velocity data and the efficient storage of derived data. We have
demonstrated that the very high quality of the compression ensures
the faithful preservation of turbulence features. A preview mode in the
renderer based on precomputed feature volumes allows the interactive
navigation to features of interest at only slightly reduced quality. On
the other hand, the high-quality rendering of time-dependent image se-
quences is accelerated by an order of magnitude compared to the use
of uncompressed data.

By using our system, a turbulence researcher can interactively ex-
plore terascale data sets and tune visualization parameters. While it
is still too early to report on application-specific results, a first trend
has already been discovered with the help of our system which had not
been observed before: In multi-scale visualizations such as Fig. 12, the
large-scale vortices contain small-scale vortices that appear to form



helical bundles within the large-scale vortices. They appear to wrap
around the large-scale ones. These visualizations suggest new statis-
tical measures such as the alignment angle between large- and small-
scale vorticity, to be implemented in future research as a result of the
present observations.

While our current system is tailored for desktop PC systems, we
believe that many of the presented techniques also have applications
in supercomputing. When moving to the petascale, computing will
enable numerical simulations at unprecedented resolution and com-
plexity, going beyond even the present turbulence data sets. Although
the raw compute power of separate visualization computers keeps pace
with those of supercomputers, bandwidth and memory issues in net-
working and file storage significantly restrict the reachable limits. For
visualizing the peta- or even exabytes of data we will be confronted
with, writing the raw data to disk or moving them across the network
has to be avoided. A promising direction for future research is the in-
tegration of a compression layer similar to the one used in our system,
which could alleviate bandwidth limitations between compute nodes
and the visualization system. This could allow the immediate visual-
ization of data too large even to be stored on disk.
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