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In uncertain scalar fields, where the values at every point can be assumed realizations of a random variable, standard
deviations indicate the strength of possible variations of these values from their mean values, independently of the val-
ues at any other point in the domain. To infer on the possible variations at different points relative to each other, and
thus to predict the possible structural occurrences, i.e., the structural variability, of particular features in the data, the
correlation between the values at these points has to be considered. The purpose of this paper is to shed light on the
use of correlation as an indicator for the structural variability of isosurfaces in uncertain 3D scalar fields. In a num-
ber of examples we first demonstrate some general conclusions one can draw from the correlations in uncertain data
regarding its structural variability. We will further motivate, why an adequate correlation visualization is crucial for
a comprehensive uncertainty analysis. Then, our focus is on the visualization of local and usually anisotropic corre-
lation structures in the vicinity of uncertain isosurfaces. Therefore, we propose a model that can represent anisotropic
correlation structures on isosurfaces and allows visually distinguishing the local correlations between points on the
surface and along the surface’s normal directions. A glyph-based approach is used to simultaneously visualize these
dependencies. The practical relevance of our work is demonstrated in artificial and real-world examples using standard
random distributions and ensemble simulations.
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1. INTRODUCTION

It is quite common to model the uncertainty at discrete points xi in an uncertain scalar field by a multivariate random
variable Y, i.e., a vector consisting of multiple scalar random variables Y (xi). The uncertainty at a point xi is then
given by a set of realizations of the random variable Y (xi). The standard deviation of one of the random variables
indicates the strength of the deviation of possible realizations from their respective mean value, independently of the
means and deviations of random variables at any other point in the domain. Consequently, the standard deviation
describes the local uncertainty but does not allow inferring on possible variations at different positions relative to
each other.

For instance, let us assume that the means and standard deviations at two adjacent points are identical, but the
realizations of the random variables at both points are stochastically independent. In this case it cannot be predicted
whether there is a positive, zero, or negative derivative of the data between the two points, and consequently the
values at these points relative to each other cannot be resolved. We will call this kind of uncertainty a structural
uncertainty, since it is associated with the occurrence of particular structures in the data which are affected by the
degree of dependency between the values at two or more data points. In particular, structural uncertainty covers all
variabilities of geometric features (e.g. orientation, curvature, etc.) of multi-dimensional structures (e.g. surfaces). To
avoid confusion, we should note here that in other communities the term "structural uncertainty" is used to indicate
the uncertainty in the structure of a model.

In the analysis of structural uncertainty it is thus necessary to first predict the statistical dependency between the
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random variables used to model the uncertainty, and then to analyze the possible structural variations of features in
this field taking into account these dependencies. To achieve this, we assume the random variables used to model
the uncertainty exhibiting a multivariate Gaussian distribution so that mean values and standard deviations exist, and
the linear statistical dependency is given by the correlation. It is worth noting here, that non-linear dependencies
between random variables are not present for multivariate Gaussian distributions, and, thus, they are not covered by
the methods proposed in this work.

For Gaussian distributed random variables X and Y the mutual stochastic dependency is given by their correlation
ρ(X ,Y ), which ranges from −1 to 1 and characterizes the linear relation between the two variables. It is computed as
Cov(X ,Y )/

√
Var(X)Var(Y ), where Var(X) and Var(Y ), respectively, denote the variance of X and Y , and Cov(X ,Y ) is

the covariance between X and Y . For a thorough discussion of the concepts of stochastic dependence and correlation,
as well as approaches to compute correlation values from given realization sets let us refer to [1–3].

A high positive correlation between two random variables indicates that realizations of both variables are likely
to deviate into the same direction from their mean values. A strong negative (or inverse) correlation indicates that a
strong positive deviation for one realization is likely to result in a strong negative deviation of the other realization,
and vice versa. As the realizations of random variables in regions exhibiting very low correlation can be assumed
independent of each other, the effect of uncertainty on a mean structure in such a region is to a large extent arbitrary.
As a consequence, in such regions a high structural variation is caused by high uncertainty, and the resulting mean
structures are not reliable. Contrarily, regions exhibiting high correlations are affected by "smooth" structural uncer-
tainty, meaning that the uncertainty causes low frequent variations to occur more likely. Thus, high frequencies in
the mean structures are not affected strongly and one can argue that they are, therefore, stochastically more stable.
Correlation is thus a very important means to analyze the structural variability of particular features in uncertain data
fields, and this property of correlation forms the basis of our investigations in this work.

Our first goal is to demonstrate the use of correlation as an indicator for structural uncertainty. For this purpose
we have designed a number of examples, ranging from rather simple to quite complicated, which clearly show the
interdependencies between (anisotropic) local correlation structures and the variability of specific features in the data.
We will use these examples to strengthen the awareness of the relevance of correlation analysis for estimating possible
structural changes of relevant features due to uncertainty.

Our second goal is to investigate methods for visualizing the structural variability of isosurfaces in uncertain 3D
scalar fields. To achieve this, we propose a novel method for visualizing the correlation structures in the vicinity of
such surfaces based on an anisotropic correlation model. By visually distinguishing between the local correlations
between points on the surface and along the surface’s normal directions, we enable an improved understanding of
the geometric and topological variability of uncertain isosurfaces. The proposed visualization techniques can be used
in addition to techniques which directly visualize the standard deviation [4, 5], and, thus, strive for a comprehensive
visualization of the full Gaussian covariance information.

The relevance of our work is demonstrated in artificial and real-world examples using standard random distribu-
tions and ensemble simulations. To effectively show the influence of correlation on the structural variability of features
in multi-dimensional data sets, we have generated a number of synthetic data sets using specific random distributions
to model uncertainty. In addition, we have used our methods to visualize the structural uncertainty in an ensemble
of 3D temperature fields in the exosphere which was simulated by the European Centre for Medium-Range Weather
Forecasts [6]. As we will show in this work, our proposed technique for correlation visualization allows concluding
on the stochastic stability of the mean isosurface in this field, revealing regions which are strongly and weakly affected
by structural uncertainty.

The remainder of this paper is as follows: In the next section we review previous work that is related to ours. In
section 3 we will have a closer look on the interpretation of correlation and its effect on certain features in uncertain
scalar data sets. In section 4 we will shed light onto requirements and challenges we see in correlation visualization,
and we will propose a specific correlation model as well as a visualization technique that addresses some of these
requirements. Furthermore we will show its effectiveness in some examples, discuss advantages and limitations and
give some ideas on future research directions.
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2. RELATED WORK

Today, the expression of errors surrounding a derived value via error bars, variance plots, confidence intervals, or
histograms is the norm in tables and 2D graphs. In some scientific fields, uncertainty is considered a key quantity
and domain-specific approaches for modeling and computing uncertainties have been proposed. Some of the most
prominent examples demonstrating a rigorous treatment and analysis of uncertainty can be found in the theory of
physical measurement [7] and inverse problems [8]. In computational science, statistical techniques have been applied
directly via Monte Carlo simulation or by incorporating stochastic operator expansions into PDE formulations [9].

In the visualization of 3D scalar fields, however, the indication of accuracy in the displayed results is far from
standard and has been mainly restricted to particular domains such as geographical information systems [10], seis-
mology [11], and astrophysics [12], to name just a few. For an overview and taxonomy of uncertainty visualization let
us refer to [4, 13, 14]. A web-library providing a list of references to the major publications in the field of uncertainty
visualization is maintained at [15].

One approach for representing uncertainty in 3D scalar fields is to provide it as secondary data that is visualized
directly in addition to the primary data. It is quite common to use the deviation from a given mean value as a measure
of the local uncertainty, and to visualize this measure by color and opacity, and animations thereof, texture, glyphs, or
additional surface structures [16–20]. Such an embedding, however, even though it can provide a good indication of
the local strength of uncertainty, is difficult to use for inferring how the position and structure of specific features in
the data are affected by uncertainty.

An alternative approach is to visually encode the positional variability that is caused on relevant features due
to uncertainty. The majority of approaches has focused on visualizing the positional variation of isosurfaces and
material boundaries in 3D uncertain scalar fields. The proposed strategies range from the visualization of confidence
surfaces [5, 21] and flowlines [22], to surface diffusion techniques [23] and surface animations [24]. The most recent
approaches [25–27] suggest to model the uncertainty stochastically and derive probability distributions for particular
events associated to isosurfaces, such as the crossing of these surfaces along the view rays.

Only a very few approaches have explicitly addressed the visualization of data correlations due to uncertainty.
[28] proposed a tool for the visualization of correlation between two 3D scalar fields via color mapping and slicing.
The use of glyphs for the visualization of local covariance information was demonstrated in [29]. However, in none
of these approaches a correlation model was considered, and the used glyphs were not adapted to particular surface
structures in 3D data. The approach in [30] suggests a numerical technique for visualizing covariance and cross-
covariance fields of 2-dimensional results of stochastic simulations. The most recent technique [31] presents a cluster
visualization approach for global correlation structures.

3. STRUCTURAL UNCERTAINTY

In this section we give examples showing the interdependencies between correlation and the structural variability of
features in multi-dimensional scalar fields. In particular, we will shed light onto the interpretation of (anisotropic)
correlation structures and, thus, emphasize the importance of correlation analysis for the prediction of possible effects
of uncertainty on features in the data. By means of these investigations we will also demonstrate the importance of a
correlation analysis and its visualization for making reliable assumptions on the uncertainty of geometric properties
of certain features, e.g. position, orientation and curvature for surfaces.

Experiment 1. Figure 1 illustrates a first example using 2D curves that are affected by uncertainty to demonstrate
how correlation information can be used for analyzing structural uncertainty. In this example, at every position xi in a
set of equally spaced positions in the x domain, multivariate normal distributed random variables Y (xi) with smoothly
varying means but the same standard deviation were used to generate sets of y-values for ever xi. The green curve
shows the mean y-values at every xi. The confidence region for ±σ is enclosed by two blue dashed lines. The red
curves always show lines for three possible realizations of the y-values at the points xi for very strong (a) and weak
(b) local correlations between adjacent random variables Y (xi) and Y (xi+1).

In region (1), the expectation values of the normal distributions used to generate the y-values were chosen such
that the mean curve shows higher frequencies than in region (2). Due to the strong correlation between the random
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FIG. 1: Illustration of the structural variability of a 2D curve (green) given by a set of points (xi,yi), where each yi
represents the mean of the realizations of a multivariate normal distributed random variable at xi. While the mean
values vary for different xi, the standard deviation remains constant. Blue dashed lines enclose confidence region
around the mean curve. Three possible line realizations (red) are shown for very strong (a) and weak (b) local
correlation between random variables at adjacent points.

values at adjacent positions, the three possible occurrences of curves in (a) show the same structural behavior like the
mean curve in (a), while in (b) these structures disappear completely due to the low correlation. Strong correlation
effectively keeps adjacent realizations of the random variables used to model the curves close together, while they can
occur rather unconstraint with respect to each other in regions of low correlations. It should also be noted here, that
the knowledge of the mean and the standard deviation of the normal distributions alone does not allow inferring on
the structural behavior of the resulting realizations.

Experiment 2. Our next example demonstrates the use of correlation analysis for predicting the variability of the
orientation of curves that are affected by uncertainty. In a first experiment, at two points positioned at x = 0 and x = 1
on the x-coordinate axis a bivariate normal distributed random variable was used to compute sets of y-values. The
green line in Figure 2 (a), (b), and (c) shows the linear interpolation between the mean y-values at the two points. The
linearly interpolated confidence region is enclosed by the blue dashed lines. The red curves always show the linear
interpolation between two possible realizations of the data values at the two points. However, in (a), (b), and (c),
respectively, random values were generated using a correlation of ρ=−1, ρ= 0, and ρ= 1 between these values.

To analyze the variability of the orientation of the line connecting the values at x = 0 and x = 1, in Figure 2
(d), (e), and (f) we show the probability density functions of the derivative of this line for the different correlations.
The probability density function was computed by taking the derivatives for all pairs of realizations at the two points
and counting their occurrence. In (g), the relation between the correlation and the variance of the distribution of the
derivative is shown. The maximum possible variation in the derivative is observed for ρ = −1 (inverse correlation),
the minimum for ρ= 1.

From the experiment above it becomes clear that the correlation has a strong impact on the variability of structural
properties of certain features in the data, such as a feature’s orientation. The reason is that correlation describes the
behavior of random variables at different sample points relative to each other and, thus, constraints the amount of
variation between the possible data values at these points.

Experiment 3. The aforementioned considerations can easily be transferred to higher dimensions to analyze the
structural variability of isosurfaces in 3D scalar field. To demonstrate this, we have pursued an experiment where
at every vertex of a Cartesian 3D grid a set of random scalar values was generated using a multivariate normal
distributed random variable with constant standard deviation and linearly increasing mean (starting at 0) along the z-
grid dimension. The random values were generated with respect to a specific anisotropic correlation structure. The
computed mean values were then stored at the grid vertices and an isosurface for a selected value was rendered (see
Figure 3 (a)). In (b), the confidence volume containing all points that belong to the surface with a certain probability
is enclosed by two stochastic distance surfaces (transparent white). The blue line represents the contour of the mean
surface, the colors encode the distance from the mean position in numbers of standard deviations σ — from 0σ (green)

International Journal for Uncertainty Quantification



Correlation Visualization for Structural Uncertainty Analysis 5

FIG. 2: In (a), (b) and (c), for two bivariate normal distributed random variables Y(0) and Y(1) the means (connected
by a green line) and the confidence region (enclosed by two blue dashed lines) are shown. Red lines show three
realizations for correlations -1, 0, and 1, respectively. In (d), (e) and (f) the Gaussian probability density for the
derivative between Y(0) and Y(1) is illustrated. (g) illustrates the relation between correlation values and variance of
the derivative distribution.

to ±1σ (red). For details on this visualization mode the reader is referred to [25]. Notably, the visualization in (b)
does not allow inferring on the possible structural variations of the surface, but it can only tell in which region of the
domain the surface can be expected with a certain probability.

In (c), the occurrence of the surface in (a) for one possible realization of the random values at the grid points
is shown. In region (1), the correlations between the random variables in x-, y- and z-direction were all set to 1.
Consequently, the structure of the mean surface is not changed (cf. Figure 1 (a)). In region (2), the correlation in
x-direction was lowered with respect to region (1). This results in oscillations of the surface in x-direction. As the
correlation in y-direction is still 1, the structure does not change along the y-direction and stiff ridges occur along
this direction. The same correlation setting was applied to region (3), but this time with a lower value in y-direction.
In region (4), the correlations along x and y were lowered simultaneously, but the correlation in z-direction was kept
at 1. This means that the surface can possibly oscillate, but since the values in the 3D scalar field are still highly
constraint to each other along the z-direction, the surface remains connected. Moreover, the surface still indicates the
exact location of the transition between scalar values less and greater than the selected isovalue.

The surface structure changed completely when the correlation in z-direction was made significantly smaller
than the correlation in the other two directions. This is shown in region (5). The lower correlation in the surface
normal direction can result in several closely located but not necessarily connected surfaces1, i.e., the transition
surface becomes fuzzy and does not have the separating property any more as it had before. The example shows
that a visualization that is purely based on uncertainty parameters like standard deviations (cf. confidence volume in
(b)) does not allow inferring on the geometric structures, which are likely to occur in realizations of the underlying
probability model.

Experiment 4. In our last experiment, we outline the importance of correlation analysis in the context of inverse
problems, e.g. 2D travel-time tomography where physical measurements are used to infer on the media through

1The regular spherical surface structure results from the specific random number generation process we have used to assign
anisotropic correlation structure.
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FIG. 3: A mean isosurface situated in the x-y-coordinate plane is shown in (a). For an assigned constant standard
deviation the confidence region around the mean surface is visualized in (b). The structural variation, caused by the
assigned correlation structure, is visible in the surface realization shown in (c). Strong homogeneous correlation was
assigned to region (1). In (2) and (3) the correlation magnitude was lowered in x- and y- direction, respectively. In
region (4), low correlation in both tangential direction was applied. Around (5), low correlation along the surface
normal direction was modeled.

which wave forms are traveling. In this experiment, we model a geophysical setup, where receivers close to the
earth’s surface measure the arrival of pressure waves originating from earthquake sources with known positions in the
earth’s interior. The goal is to determine parameters describing the travel velocity of the waves in certain parts of the
interior, based on measured wave travel times between each source-receiver pair.

According to geophysical realities, the seismic travel-time inverse problem is non-linear, as seismic waves do not
follow straight paths in a heterogeneous medium and bend continuously as the velocity parameters of the medium
vary. For simplification, we will abstract these real physical conditions and assume a linear inverse problem with
straight pressure wave travel paths between source and receiver. This abstraction complies with the interpretation
of the inversion as a first-order correction to a homogeneous medium. Thus, even though real non-linear physical
conditions are abstracted, the following considerations and interpretations can be adapted to every kind of inverse
process step where a linearization takes place.

Mathematically, the abstract problem can be formulated by the system of equations

Gm = d, (1)

were G represents the problem-specific linear operator, d is the linearized vector of measured data (travel-times), and
m is the linearized vector of unknown parameters. The goal is to compute m for a given d.

In travel-time tomography, the inverse problem is often under-determined and does not have a unique solution.
For linear inverse problems and by using Bayesian probability theory, however, the solution m can be described by a
multivariate normal probability density function. This function is characterized by a mean m̄ and a covariance matrix
Cm. For more details on the physical theory and model setup let us refer to [32] and [8].

Figure 4 (a) shows a rectangular domain discretized by a triangular grid (shown in (b)), which models a cross
section of the earth. The components of the parameter vector m are placed at the grid vertices. The parameters define
for each vertex a slowness value (inverse of velocity: time/distance). In the upper and lower part of the domain,
respectively, 5 receivers (green diamonds) and 7 sources (red stars) are placed. The travel paths are illustrated by
black lines. The travel time for each path is obtained by integrating the slowness parameters along the path (linear
interpolation in each triangle). As all parameters in m appear linear in the integrals (Simpson quadrature), the integrals
can be expressed by a matrix G representing the operator in equation (1). The vector d contains the travel times for
all paths.

Intuitively one would expect that in regions which are covered by a large number of rays, e.g. in (1), there is a
lower uncertainty in the computed values than in regions which are poorly sampled by rays, e.g. in (2), since less
information is obtained from there. To confirm this, we have first computed the covariance matrix Cm from the given
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FIG. 4: Travel-time tomography experiment. (a), (b): emitter (red stars)-receiver (green diamonds) pairs and domain
triangulation. (c): Color mapping of normalized standard deviations to mean solution of inverse problem ([0;1] to
[blue→ red]). (d): Visualization of correlation between adjacent grid points (line length corresponds to correlation
strength, green/red indicate positive/negative correlation). (e), (g): Two different parameter configurations (color
coded) used in a forward computation. (f), (h): inverse computation of parameters from the results of forward com-
putation.

operator G (for details let us refer to [8]), and we have derived the standard deviations of the probabilistic solutions
for the slowness values from this matrix, i.e., the square roots of entries on the main diagonal. In (c), these normalized
standard deviations are color-coded via the mapping [0,1]→ [blue→ red]. The coloring clearly indicates that regions
with higher ray density are affected by lower uncertainty (close to zero).

To demonstrate the importance of correlation for the analysis of the uncertainty in the computed results, we have
then performed the following experiment: Firstly, we have specified two artificial slowness configurations mh and
mv with periodic horizontal and vertical change of slowness values, respectively, and we have performed forward
computations to obtain data vectors dh and dv. In (e) and (g), these slowness parameters are color coded. Secondly,
with dh and dv we have solved two inverse problems, resulting in two probabilistic solutions for the slowness values.
Their means, m̄h and m̄v, are color coded in (f) and (h) using the same color mapping as in (e) and (g). As can
be observed, only m̄h is close to its initial distribution, while m̄v shows almost no similarity or relevant structure,
although the uncertainty (c) in both solutions is the same.

In order to understand this phenomenon, we have to look at the correlations between the values at adjacent points,
which are contained in the covariance matrix Cm. Therefore, in (d) we have visualized the pair-wise correlations
between the values at every grid point and its one-ring neighbors. Visualization is performed by drawing lines from
the vertex to every adjacent vertices, where the lengths of these lines are linearly related to the magnitude of the
respective correlation value. For |ρ| = 1 the lines on either side of an edge meet at the edge’s center. The lines are
colored green for ρ≥ 0 and red for ρ< 0. The visualization clearly indicates strong positive correlations in horizontal
direction and strong negative correlations in vertical direction.

As discussed above, for strong positive correlations, high frequent structures in the data are better resolved, as they
are only affected by low frequency uncertainty. For inversely correlated regions, no reliable assumptions can be made.
Thus, the example clearly shows that only structural changes in horizontal direction can be resolved by the inverse
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computation. A variation of parameters in vertical direction cannot by "seen" by this tomographic setup. So the
correlation visualization in (d) already provides a clear indication that the data set is affected by a strong vertical but
only a low horizontal structural uncertainty. This information is not revealed by visualizing only absolute uncertainty
values (standard deviations in (c)). As a consequence, it can be concluded that the consideration of correlation
information and its visualization can significantly help to avoid misinterpretations that would occur otherwise.

4. CORRELATION VISUALIZATION

In the previous section, we have tried to motivate the relevance of correlation for uncertainty analysis. As a conse-
quence, we believe that correlation visualization is a necessary ingredient in uncertainty visualization to facilitate a
more reliable prediction of the possible effects of uncertainty on specific features in uncertain data. In this section, we
will shed light onto the particular requirements we see in correlation visualization, and we will propose a correlation
visualization technique that addresses some of these requirements.

4.1 Requirements

In real world applications, correlation data is often given as correlation matrices which can be either directly computed
(cf. Example 4 in section 3) or estimated from an ensemble data set. If the data is given on a grid with n grid
points, a correlation matrix would have n2 entries, of which 0.5n(n− 1) + n would be different. For large multi-
dimensional grids, this O(n2) memory and computational complexity has to be reduced significantly before correlation
visualization becomes feasible.

However, one difficulty in correlation analysis is that both local and global correlation effects have to be considered
and the anisotropic nature of correlation makes it difficult in general to represent it with only a few values. By
restricting the analysis to local effects, the first problem can be addressed. A possible solution for the second problem
builds upon the development of a correlation model that can efficiently represent anisotropic structures, for instance,
by trying to approximate these structures via a suitable basis transformation into a compact representation. Such a
model can then be employed for the visualization of correlation, but additional requirements have to be considered.
In particular, the direction dependent differences in correlation strength have to be depicted by an appropriate visual
mapping. Such a mapping, besides being able to indicate the correlation ratios into different directions, should also
allow a comparison of the absolute correlation strengths at different regions in the underlying domain.

Another challenge in correlation visualization arises from the general difficulty of finding a suitable visual map-
ping for complicated multi-dimensional structures. Even without considering uncertainty, the creation of approaches
for mapping such structures onto 2D pixel images in an intuitive way is extremely difficult, and it is by far not clear
how additional correlation structures can be integrated into conventional uncertainty visualization approaches. There-
fore, as we have demonstrated in our third experiment in section 3, one strategy is to restrict the correlation analysis
to specific features in the data, such as isosurfaces in 3D scalar fields. In such a scenario, one can restrict the analysis
to the local correlations along and in close vicinity to the feature, possibly augmented by contextual visualizations of
the surrounding structures.

4.2 Distance Dependent Correlation

We will now introduce a local anisotropic distance dependent correlation model, which forms the basis of the intro-
duced visualization approach. As we will show, this model has some specific advantages, and it allows transforming
correlations that are expressed in other models into this model straight forwardly. It considers the strength of positive
local correlations for analyzing a given data set with respect to structural uncertainty as discussed in section 3.

In the following, we assume a 3D Cartesian grid structure Cpqr = (x)i jk with 1≤ i≤ p,1≤ j≤ q,1≤ k≤ r, which
is attributed by a mean value and mutual correlation values for neighboring vertices at every grid vertex. This data
can be linearly interpolated from values in any arbitrary grid structure. The grid spacing can be specified interactively
by the user in order to achieve different glyph resolutions.
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With this visualization approach we are aiming for an analysis of correlation effects in 3D scalar data sets. Usually,
such data sets are assumed to be at least continuous and smooth up to a certain degree. This requires that the closer
two spatial points in the underlying domain are, the higher the correlation should be between the random variables
that are used to model the uncertainty at these points. To achieve this, the correlation is often modeled by a spatial
distance dependent correlation function [8]. One typically uses the exponential correlation function (ECF)

ρ(Y (xi jk),Y (xlmn)) = exp(−τ
∥∥xi jk−xlmn

∥∥) , xi jk,xlmn ∈ Cpqr, (2)

which assigns higher correlations to random variables of points with smaller Euclidean distance and lower correlations
to points which are more distant from each other. If the correlation strength parameter τ is defined locally for each
point in Cpqr, the ECF becomes

ρ(Y (xi jk),Y (xlmn)) = exp(−0.5(τ(xi jk)+τ(xlmn))
∥∥xi jk−xlmn

∥∥). (3)

The ECF meets the intuitive assumption that scalar realizations behave more similar if the respective sample points
are closer in Euclidean space. We can consider this as a kind of local stochastic continuity.

The distance dependent correlation model assumes isotropic correlations at every grid point. To model anisotropic
correlations, τ can be made dependent on a specific direction. For a unit vector r, the parameter τ at point xi jk in
direction r is then given by τ(xi jk,r) = r>T(xi jk)r, where T is the rank-2 parameter tensor that models the anisotropy.
This tensor can either be derived from the correlations in the data samples, or it can be specified based on a priori
knowledge. The adapted correlation model becomes

ρ(Y (xi jk),Y (xlmn)) = exp

(
−
(xi jk−xlmn)

>T(xi jk−xlmn)∥∥xi jk−xlmn
∥∥

)
(4)

T = 0.5(T(xi jk)+T(xlmn)).

One advantageous use of the distance dependent tensor model is to transform correlation data into this model
and, thus, to avoid the explicit storage of a correlation matrix. Therefore, at every grid point xi jk in Cpqr a tensor is
computed from the correlations to its (at most) 26 neighbors

N(xi jk) := {xlmn ∈ Cpqr|xlmn 6= xi jk,max(|i− l|, | j−m|, |k−m|) = 1}. (5)

If xi jk is not a border point of the grid Cpqr, then for every point nh ∈ N(xi jk) there exists an opposing point n̂h ∈
N(xi jk) such that xi jk = 0.5(nh + n̂h). At most 13 such pairs of nh and n̂h with h ∈ {1,2, ...,13} can be built. By using
the correlation model (2) and averaging the correlation against opposing neighbors one obtains 13 equations:

r>Tr =
− log

[
0.5(|ρ(Y (xi jk),Y (nh))|+ |ρ(Y (xi jk),Y (n̂h))|)

]∥∥nh−xi jk
∥∥ (6)

r =
nh− n̂h

‖nh− n̂h‖
, nh ∈ N(xi jk), h ∈ {1,2, ...,13}

If xi jk is a border point, not for every nh ∈N(xi jk) exists an opposing point. In this case, averaging is not performed in
(6) and only the logarithm log(|ρ(Y (xi jk),Y (n))|) is used. Note that only the magnitudes of the correlations are used
as the ECF only models the correlation strength. For integrating inverse correlation, another (global) model would be
necessary, which was not considered in our work, so far.

The entries of the 3×3 matrix T are denoted as ti j. As T is symmetric and represents a rank-2 tensor, only the 6
values t11, t22, t33, t12, t13, t23 have to be determined. These values appear linearly in the 13 (or less if xi jk is a border
point) equations (6). So one can build a 13× 6 over-determined linear system, which can be solved using a least
squares approach and the normal equation [33].

The ECF model provides several advantages, amongst others also for visualization purposes. First of all, using a
local approach reduces the memory requirement for storing correlation information to some extend: if the correlation
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grid has m = |Cpqr| = pqr entries, the respective correlation matrix has to store m2 local and global correlation
values. If only local values are stored, approximately 13 values per point in Cpqr would be needed for the 26-element
neighborhood system described above. This amounts to a total of 13m correlation values. The rank-2 tensor model
halves this amount to a total of 6m values. This meets the proposed requirement from section 4.1 for a memory
consumptions of O(m).

An additional reason for using the ECF model is its integration of Euclidean distances. To understand this, let us
assume that instead of the local τ tensor, the local correlation values are used at every grid vertex. In this case, the
local correlation in every direction depends on the resolution of the correlation grid Cpqr, and if this grid has a high
resolution, the correlation between neighboring points would approach 1 everywhere. Notably, the computation of T
is independent of the grid resolution, as the Euclidean distances to the neighbors are taken into account for computing
T. Thus, correlation is set in relation to Euclidean distances. Furthermore, using the parameter tensor allows the
computation of correlations for a user-specified distance (cf. next subsection 4.3). With a stored correlation tensor for
a fixed distance this would not be possible.

4.3 Anisotropic Correlation Glyphs

The rank-2 correlation tensors are always positive semi-definite and symmetric. Thus, they can be decomposed into
three orthonormal eigenvectors, which point into the directions of the first, second and third principal axes of the
associated correlation ellipsoid. Regarding the model described in (2), the eigenvalues give the values taken by τ in
the respective eigen-direction. The decomposition can be written as

T = VSV>, (7)

with matrix V containing the orthonormal eigenvectors (principal components of the ellipsoid) in the columns and the
diagonal matrix S containing the eigenvalues on the diagonal.

As the eigenvectors are not related in general to an isosurface structure in the data, the tensor T is not directly
suitable for analyzing the structural uncertainty of isosurfaces. To overcome this limitation, a basis transformation
T = V̂S̃V̂> is performed first. The tensor T(xi jk) at grid point xi jk is expressed using the normalized data gradient
g(xi jk) and two orthonormal vectors w1(xi jk) and w2(xi jk). These two vector are elements of unit vectors in the
respective tangent plane

T(xi jk) := {w ∈ R3|w>g(xi jk) = 0,‖w‖= 1}. (8)

The vectors g, w1, and w2 form the columns of V̂ and represent the new basis. It is worth noting here, that the new
matrix S̃ is not diagonal.

With the fixed vector g there is still one degree of freedom for the orientation of the orthonormal pair w1 and w2
in the tangent plane at point xi jk. We define that w1 and w2 should point into the direction of maximum and minimum
τ in the tangent plane:

w1(xi jk) : = argmax
w∈T(xi jk)

(
w>Tw

)
(9)

w2(xi jk) : = argmin
w∈T(xi jk)

(
w>Tw

)
(10)

In order to compute w1 and w2, we first define two arbitrary orthonormal vectors n1 and n2, which span the tangent
plane at xi jk, as follows:

n1 :=
(g2,−g1,0)

>√
g2

1 +g2
2

, n2 := g×n1. (11)

Here, gi denotes the i-th component of the normalized gradient g. The two spanning vectors are put into the columns
of the 3× 2 projection matrix N := [n1|n2]. The tensor T is projected into the tangent plane by N>TN. A singular
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value decomposition of the resulting matrix results two 2D orthonormal singular vectors s1 and s2. The vectors w1
and w2 can now be obtained as

w1 = Ns1 , w2 = Ns2. (12)

The values of τ into the three directions are obtained as

τg = g>Tg , τ1 = w>1 Tw1 , τ2 = w>2 Tw2 (13)

Our setting is such that w1 is pointing into the direction of maximum τ. According to (2), this is the direction of
minimum correlation. Vector w2 is pointing into the direction of maximum correlation. These two tangent vectors,
together with g and the parameters τg, τ1, and τ2 will be used for visualizing the anisotropic correlation relations as
well as their absolute strengths.

To visualize anisotropic correlation structures, at every grid point a correlation glyph is constructed from the
distinct 3D orientation given by the isosurface normal g and the two vectors w1 and w2. This glyph is then used
to visualize the correlation ratio in the tangent plane (anisotropy) as well as absolute correlation values for the three
directions.

To construct the correlation glyphs, we first have to derive correlation values along the three directions g, w1 and
w2. Therefore, the user selects a specific Euclidean distance d interactively from the interval [0,dmax], and at every
grid point the correlation values are computed as

ρg = exp(−τgd) , ρ1 = exp(−τ1d) , ρ2 = exp(−τ2d). (14)

So each glyph visualizes the correlation distribution around its center for the radius d. For the construction of the
glyph, at every grid vertex a circle is centered at this vertex and aligned with the respective tangent plane. To avoid
overlapping glyphs, the circle’s radius is set to half the grid spacing.

FIG. 5: In (a) the used correlation glyph is shown. Absolute correlation strengths are mapped from [0,1] to [red→
green] for surface normal (1), first (2) and second (3) principal tangential correlation directions in three zones. (b)
Geometry of zone (2) visualizes the correlation ratio between the two tangential direction. (c) Glyph for high contrast
tangential correlation values 0.9 (2) and 0.1 (3) is shown. (d) Glyph for low contrast tangential correlation values 0.09
(2) and 0.01 (3) is shown.

Within each circle a glyph is placed as shown in Figure 5 (a). Each glyph consists of three zones, where each zone
receives a color from the range [red→ green], indicating an absolute correlation magnitude value from 0 to 1. We
used the mentioned color map in order to enhance the contrast for absolute correlation values and to relate "stable"
regions to "green" and more "unstable" or independent regions to "red".

Zone (1) is a circle with an interactively adjustable radius r1. Its color represents the correlation ρg in surface
normal direction. The colors of zone (2) and (3) encode the values ρ2 for maximum and ρ1 for minimum correlation
in the tangent plane. Zone (3) forms always a circle with a fixed radius r3. Zone (2) is an ellipse, which is oriented
along the maximum correlation axis w2 and has an radius in this direction always equal to r3. The radius in direction
w1 is equal to (1− ρ1

ρ2
)r1 +

ρ1
ρ2

r3. So the alignment of the ellipse with respect to the radii r1 and r3 directly visualizes
the correlation ratio in the tangent plane. Compare the ellipse variations in Figure 5 (b). Note that if ρ1 = ρ2, then
zone (2) fully covers zone (3).

Volume 1, Number 1, 2012



12 Pfaffelmoser, Tobias & Westermann, Rüdiger

The introduced correlation glyphs have several strong advantages, oriented on the requirements presented in 4.1:
First of all, it is possible to show the correlation anisotropy in the tangent plane as well as absolute correlation values
(coded in color in the three zones) simultaneously in one picture. Showing only correlation ratios would not be
sufficient. For instance, the two correlation values 0.9 and 0.1 have a ratio of 9:1, but 0.09 and 0.01 would also have
a ratio of 9:1! As the user is predominantly interested in ratios where the absolute difference between both values is
also large (0.8 compared to 0.08 in our example), the second case is not really interesting.

The two cases are shown with our glyph-visualization in Figure 5 (c) and (d). In both cases, the geometry and the
radii of the elliptic zone (2) are the same, but due to the lower color contrast in (d) (colors indicate correlations 0.01
and 0.09), the ellipse is almost vanishing. So the anisotropy is only visible in regions, where |ρ1−ρ2| is considerable
large and the user’s focus is not distracted by glyphs indicating high ratios of very low correlation values. This is a
strong advantage in comparison to other tensor-glyph visualization approaches!

Furthermore, the user is able to adjust the radius r1 of zone (1) between 0 and r3. For r1 = 0 the elliptic zone (2) has
the largest range of variations. This is best for illustrating the correlation anisotropy in the tangent plane. For r1 = r3
zone (1) covers zone (3) completely, zone (2) is not perceivable any more and only the absolute correlation value
in surface normal direction is visualized. So, while interactively changing the radius r1, the user has the possibility
of putting the focus either on the analysis of the correlation anisotropy along the surface or the strengths in normal
direction — or a mixture of both!

If the structural variability of an isosurface in a 3D scalar field for a particular isovalue θ has to be analyzed, not
for every grid vertex a correlation glyph should be visualized. Instead, the visualization should restrict to only those
glyphs close to the surface. Therefore, we make the visualization of a glyph dependent on the mean value µ(xi jk) at
the respective grid vertex: the glyph at position xi jk is rendered if

θ≥min({µ(xi jk),µ(xi±1 jk),µ(xi j±1k),µ(xi jk±1)}) (15)
θ≤max({µ(xi jk),µ(xi±1 jk),µ(xi j±1k),µ(xi jk±1)})

This rule was chosen to reduce overlapping of glyphs. The regular placing of the glyphs at the vertices of the 3D grid
facilitates the visual perception of anisotropic correlation contrasts compared to approaches where the glyphs have
variable distances between each other.

4.4 Discussion

To validate the effectiveness of our proposed visualization technique for analyzing the structural variability of iso-
surfaces in uncertain 3D scalar fields, we have conducted two experiments using different data sets: A stochastically
simulated data set with a synthetic setting (see Figure 3) and a real-world data set comprised of an ensemble of
simulated weather forecasts.

In Figure 3, we have demonstrated the structural variability of an isosurface depending on different correlation
settings. Figure 6 shows the visualization of the assigned correlation structures using our glyph-based visualization
approach. Here, the glyph geometry clearly reveals the correlation ratios. In region (1), the glyphs indicate an isotropic
correlation distribution. In (2) and (3), the directions along which the correlation is high can be clearly perceived. In
region (4), the occurrence of glyphs having green center zones surrounded by red zones indicates a high ratio between
the correlations in x-/y-direction (tangent plane, low correlation) and surface normal direction (high correlation). The
reverse behavior is visualized in region (5), i.e., low correlation along the normal direction.

The visualization in Figure 7 shows a 3D temperature field in the exosphere above Europe and the North Atlantic
Ocean in spherical coordinates. It contains the mean values of multiple fields that were simulated by the European
Center for Medium-Range Weather Forecasts using slightly different input parameters. The image (a) shows an
isosurface in the mean temperature field. In (b), our glyph-based correlation visualization is used to depict structural
variation effects. In (c), a close-up view on the region marked by the white rectangle is shown. The green glyph center
and the red outer zones indicate a high ratio between the correlation strengths in tangential and normal directions.
In such regions, a higher stochastic independence between points in the tangential plane can be concluded. The
surrounding regions, which are covered by homogeneous green glyphs, are much less likely affected by structural
uncertainty.
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FIG. 6: Top view on correlation visualization on mean surface from example 3 (Figure 3). Strong local correlations in
(1) indicate low structural uncertainty. Glyph geometries reveal high anisotropic correlation difference for regions (2)
and (3). High contrast between strong correlation strengths in normal direction and lower ones in tangential directions
are shown in (4). Region (5) is affected by low normal correlation, indicated by red glyph center zones.

Figure 7 (d) and (e) reveal the interplay between correlation ratios and color-based coding of correlation strengths.
In (d), only the correlation anisotropy in the tangent planes is visualized, but the correlation in normal direction is
ignored. For a tongue-shaped region around (2), strong homogeneous local correlation close to 1 and low structural
uncertainty is indicated by uniformly colored green glyphs. In region (1), high contrast between the two glyph zones
(green and red) indicate a strong correlation anisotropy (almost 1 for the first tangential direction (green) and almost
0 for the second tangential direction (red)). Although the glyph geometry reveals the same correlation ratio as, for
instance, in region (3), the color contrast between the two glyph zones emphasizes the absolute correlation differences.
In (e), we also show the interior glyph zones for the absolute correlation values in normal direction. One can observe
that there is very low correlation along the normal direction around the stable homogeneous region (2), indicated by
the red center zones. This low correlation in normal direction indicates rather high stochastic instability, meaning that
isosurfaces in these regions are very likely to separate into multiple disconnected parts (cf. region (5) in Figure 3 (c)).

From the given examples some general advantages of the proposed glyph-based approach (based on the anisotropic
correlation model) for correlation visualization can by concluded:

– The local distance dependent correlation model, used to parameterize the glyph shape and color, allows for a
memory reduction to O(n) correlation/tensor values for n grid points.

– The correlation parameter tensor model accounts for the anisotropic nature of local correlation strengths.

– The glyph geometry clearly indicates correlation ratios in the surface tangent planes and effectively emphasizes
the predominant correlation direction.

– The color mapping scheme intuitively reveals the absolute correlation values in surface normal and the two
tangential directions. It further allows differentiating between interesting anisotropic correlation regions (low
and high correlation in tangent plane) and less interesting regions where the correlation in both directions is
low, which however could have the same ratios (cf. Figure 5 (c) and (d)).

– Since the glyph design (variable radius for normal correlation zone) can be changed interactively, the user can
flexibly change the focus between a visualization, more concentrated on the anisotropic structures in the tangent
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FIG. 7: In (a) a mean temperature isosurface in a 3D scalar ensemble weather forecast data set is shown. (b)
Correlation glyphs reveal anisotropic correlation structures in the surface’s vicinity. (c) Close-up view on rectangular
region shows region with low tangential correlation (red outer glyph zones) and strong normal correlation values
(green inner zone). In (d), an region with strong homogeneous correlation and low structural uncertainty thereof (2)
is visually separated from low and anisotropic correlation structures in (1) and (3). (e) Additional correlation values
in surface normal direction are coded in color in glyph center zones.

planes or on anisotropic structures between the tangent plane and the surface normal direction. So the structural
uncertainty can be assessed interactively for different spatial directions.

Despite the advantages, however, our approach also suffers from some limitations and leave several open questions
and requirements:

– Our approach does not show any absolute uncertainty information like standard deviation, which is mandatory
for a more comprehensive uncertainty analysis. Here a thorough analysis of an adequate visualization channel
(color, opacity, etc.) would be necessary, as a straightforward merge with an intuitive uncertainty visualization
approach, like e.g. shown in [25], is often not possible.

– The glyph-based approach is based on a local correlation model and, thus, can only show the correlation to
regions close to the position where a glyph is placed. Global correlation structures are ignored.

– Inverse correlation structures cannot be visualized, as the chosen correlation model only accounts for correla-
tions strengths (magnitudes). Here a global correlation model and a different color scheme would be necessary.

– Both the glyph geometry and the color-coding refer to the correlation between the values in a certain distance
to each other. Even though this distance can be selected interactively and arbitrarily, it does not appear in the
visualization.

From the analysis of the advantages and limitations of the glyph-based approach for correlation visualization
it can be concluded that the design of techniques allowing for an intuitive and effective correlation visualization is
not straightforward. The integration of correlation information into visualizations of complicated multi-dimensional
structures is extremely challenging due to the limited number of visualization channels (color, opacity, geometry, etc.).
Although our approach cannot fulfill all requirements on a correlation visualization technique, it can be seen as a first
step towards such an integration and is meant to stimulate further research into this direction.
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5. CONCLUSION

In this paper, we provided basic insights into the concept of correlations in uncertain scalar fields. Furthermore, we
stressed the importance for integrating correlation data into uncertainty visualization approaches in order to make
more reliable assumptions on the structural uncertainty of features and to get a more comprehensive understanding
of the effects uncertainty exerts on the underlying data set. In addition, we gave an overview on important features,
which should be integrated into a correlation visualization concept.

In order to approach some of the proposed requirements, we presented a glyph-based correlation visualization ap-
proach. Therefore, we suggested a tensor-based distance dependent correlation model for modeling local anisotropic
correlation strengths. This model was used for generating glyphs, specially adapted to isosurface structures and in-
dicating correlation ratios among tangential and between tangential and normal surface directions. A color mapping
scheme was introduced, allowing an interactive perception of absolute correlation strengths in various spatial direc-
tions. In a synthetic and one real-world data set, we showed the effectiveness of our approach for identifying regions
with high and low structural uncertainty.

In the future, we will pursue further research on visual approaches for illustrating the interplay between correla-
tion structures and uncertainty magnitudes. The proposed correlation model could be used for computing parameter
tensors for different sampling point neighborhoods and distances. This would allow a level-of-detail correlation vi-
sualization approach resulting in a both local as well as global correlation analysis. Finally a more thorough analysis
of further approaches for inverse correlation visualization would be needed for a more complete global correlation
understanding.
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