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Abstract

Visualizing correlations, i.e., the tendency of uncertain data values at different spatial positions to change con-
trarily or according to each other, allows inferring on the possible variations of structures in the data. Visualizing
global correlation structures, however, is extremely challenging, since it is not clear how the visualization of com-
plicated long-range dependencies can be integrated into standard visualizations of spatial data. Furthermore,
storing correlation information imposes a memory requirement that is quadratic in the number of spatial sample
positions. This paper presents a novel approach for visualizing both positive and inverse global correlation struc-
tures in uncertain 2D scalar fields, where the uncertainty is modeled via a multivariate Gaussian distribution. We
introduce a new measure for the degree of dependency of a random variable on its local and global surroundings,
and we propose a spatial clustering approach based on this measure to classify regions of a particular correlation
strength. The clustering performs a correlation filtering, which results in a representation that is only linear in the
number of spatial sample points. Via cluster coloring the correlation information can be embedded into visualiza-
tions of other statistical quantities, such as the mean and the standard deviation. We finally propose a hierarchical
cluster subdivision scheme to further allow for the simultaneous visualization of local and global correlations.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms, Viewing algorithms

1. Introduction

In a discrete spatial scalar field, the uncertainty can be
modeled by a multivariate random variable Y with scalar-
valued components Y (xi), where each component describes
the uncertainty at the point xi. In the following we assume
that the random variables exhibit a multivariate Gaussian
distribution, so that the uncertainty at a point xi is given
by a standard deviation σi. The standard deviation is of-
ten visualized directly, for instance, via confidence regions,
uncertainty glyphs, or specific color or opacity mappings
[JS03, PWL97].

Besides analyzing the possible local variations of a quan-
tity via the standard deviation, it is also interesting to in-
vestigate the possible variations at different points relative
to each other. This analysis allows inferring on the possible
occurrences of structures, which are determined by the data
values at two or more points. The variation of a structure’s
shape is not only affected by the data values, but also by the
degree of dependency between these values. We denote by

structural variability the property of a structure to vary in
shape due to uncertainty.

For instance, let us consider an uncertain 2D height
field, where the variability of height values is modeled via
Gaussian distributed random variables. For two such vari-
ables X and Y the mutual stochastic dependency is given
by their correlation ρ(X ,Y ), which ranges from −1 to 1
and characterizes the linear relation between the two vari-
ables. It is computed as Cov(X ,Y )/

√
Var(X)Var(Y ), where

Var(X) and Var(Y ) denote the variances of X and Y , while
Cov(X ,Y ) is the covariance between X and Y .

In this example, if the random variables have significantly
different standard deviations, the shape of the height field
is very likely to change from one realization to another. If
the variables have a constant standard deviation, however,
it cannot be concluded directly on the probability of shape
variations. In this case, if the random variables have a high
positive correlation, i.e., the height values are very likely to
either go all up or all down simultaneously, there is low prob-
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Figure 1: (a) Mean surface in an ensemble temperature field over a 2D domain. (b) Disjoint clusters contain surface points
where the uncertainty has a correlation higher than ρ1 = 0.4 to the uncertainty at the cluster centroids (black dots). (c) Clusters
are subdivided using ρ2 = 0.9 and extruded along the third dimension according to the standard deviation at the member points.

ability that the shape of the height field is strongly affected
by the uncertainty. This means that the structural variabil-
ity is low, even though the entire height field might shift up
or down. Contrarily, in regions exhibiting very low or even
inverse correlation, the height values can change arbitrarily
with respect to each other. In this case, uncertainty can have a
strong effect on the height field’s shape, causing a high struc-
tural variability. Correlation is thus a very important means
to analyze the structural variability in uncertain data fields,
and this property of correlation forms the basis of our inves-
tigations.

Our Contribution. We introduce a new approach for vi-
sualizing positive and inverse correlation structures in uncer-
tain 2D scalar fields, where the uncertainty is modeled via
multivariate Gaussian distributions. Our approach allows for
a local and global analysis of the structural variability of a
2D scalar field. By visualizing the uncertain scalar field as a
height field, we can map the correlation information to the
color of surface points and simultaneously integrate com-
mon visualizations of the standard deviation on 3D struc-
tures.

Since the amount of memory that is required for storing all
correlation values is quadratic in the number of spatial sam-
ple points, we propose a novel approach for filtering the cor-
relation information. It seeks for the most prominent spatial
correlation structures and represents them as individual clus-
ters. Therefore, we introduce correlation neighborhoods and
use their size as a new measure for the degree of dependency
of a random variable on its local and global surroundings.
Correlation neighborhoods are build via spatial clustering of
random variables based on mutual correlation strengths. To
simultaneously visualize local and global correlations, we
further propose a subdivision scheme that breaks clusters in-
dicating long-range dependencies into clusters showing ever
shorter, yet stronger interactions between their member vari-
ables. Since the visualization works solely on the generated
clusters, the memory requirement of our visualization ap-
proach is linear in the number of spatial sample points.

The proposed correlation clusters are associated with ran-
dom variables at certain spatial positions and their spatial
surroundings. Thus, they can be embedded directly into vi-
sualizations of the spatial data itself. For instance, Fig. 1
(a) shows a constant temperature surface above Europe.
The surface visualizes the mean values in an ensemble of
data sets that were simulated by the European Center for
Medium-Range Weather Forecast (ECMWF). In (b), color-
coded correlation clusters are visualized on the same surface.
A visualization showing the subdivision of clusters into sub-
clusters of ever higher correlation strength and the extrusion
of clusters according to standard deviation is shown in (c).

The remainder of this paper is as follows: Firstly, we dis-
cuss work related to ours. Our proposed algorithm for clus-
tering positive correlations is outlined next. This is followed
by a description of the modifications that are required to al-
low for the construction of inverse correlation clusters. We
then emphasize the combined visualization of correlation
clusters and standard deviation, and we discuss the efficient
rendering of the given information. We conclude the paper
with an analysis of the proposed correlation visualization
techniques, including some remarks on limitations and fu-
ture work.

2. Related Work

The importance of uncertainty visualization has been rec-
ognized over more than a decade ago [PWL97], yet the vi-
sual indication of uncertainties in scientific data sets is still
far from standard. Efforts in this area have been mainly re-
stricted to particular domains such as geographical informa-
tion systems [MRH∗05], seismology [BAF08], and astro-
physics [LFLH07], to name just a few. An overview and
taxonomy of uncertainty visualization techniques is given
in [JS03,THM∗05,GS06]. The web-library at [Pot] provides
a list of references to the major publications in the field.

One approach for representing uncertainty is to provide it
as secondary data that is visualized in addition to the primary
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data. Here, the standard deviation from a given mean value is
often visualized directly via specific color and opacity map-
pings, animations, textures, or glyphs [WPL02, DKLP02,
RLBS03, LLPY07, SZD∗10]. Such approaches can provide
a good indication of the local uncertainty strength.

Alternative approaches visually encode the positional
variation that is caused by the uncertainty on specific fea-
tures, for instance, the positional variability of surfaces in
space. Techniques include the visualization of confidence
surfaces [PWL97, ZWK10] and flowlines [KWTM03], sur-
face diffusion techniques [GR04], as well as surface an-
imations [Bro04]. The most recent approaches [PRW11,
PWH11,PH10] model the uncertainty stochastically and de-
rive probability distributions for particular stochastic events
associated to isosurfaces. To the best of our knowledge, how-
ever, none of these techniques allows inferring on the possi-
ble structural surface variability.

Only few approaches have explicitly addressed the visu-
alization of data correlations. For instance, a tool for vi-
sualizing correlations between two scalar fields via color
mapping and slicing was proposed in [JPR∗04]. For a simi-
lar purpose, [STS06] employed correlation fields and multi-
field graphs. Glyph-based visualization of local covariance
structures was presented in [KWL∗]. In [SWMW09], cor-
relations in time-varying data have been investigated, and
[YXK11] suggests a numerical technique for visualizing
(cross-)covariance fields of stochastic 2D simulation results.
A sampling scheme for analyzing temporal correlations in
3D time-varying volume data was presented in [CWMW11].

Especially in machine learning applications, correlation
clustering as introduced by Bansal et al. [BBC04] has been
employed to group objects for which pair-wise probabilities
about their memberships to common categories are given.
Correlation clustering operates on weighted graphs and tries
finding a partition of nodes such that the weights of cut pos-
itive edges and uncut negative edges is minimized. Since
the problem is NP-complete, approximation algorithms us-
ing random and local pivoting for selecting cluster centroids
have been proposed in [BBC04, ACN08, Zim08, BKKZ04,
KKZ09].

3. Positive Correlation Clustering

In the following we assume an uncertain 2D scalar field. The
scalar values are given at the vertices of a 2D grid structure
C. At every vertex xi ∈ C, the mean µi and the standard de-
viation σi of Y (xi) are known, as are the correlation values
for every pair (Y (xi),Y (x j)).

To avoid storing the correlation values for every vertex
pair during visualization, we filter the correlation informa-
tion in a pre-process so as to keep the most relevant correla-
tion structures, but significantly reduce the memory require-
ments. Therefore, we first introduce a correlation-based im-

portance measure, which we then use in a novel clustering
algorithm.

3.1. Correlation Strength Model

For each vertex xi, we compute the number of vertices x j at
which the random variables Y (x j) have a higher correlation
to Y (xi) than a pre-defined threshold ρ1. We call

ηρ1(xi) := {x j ∈ C | ρ(Y (xi),Y (x j))≥ ρ1} (1)

the correlation neighborhood of xi for level ρ1 ≥ 0, and
|ηρ1(xi)| the cardinal number of this neighborhood. For a
given level and vertex xi, the cardinal number indicates the
degree of dependency between the random variable Y (xi)
and its local and global spatial surroundings, as it counts the
most prominent "correlation partners" of xi, independent of
their position in C.

The particular choice of the proposed measure is moti-
vated by the assumption of a distance dependent correla-
tion model [Tar05]. It is quite common in many applications
to assume correlations to be higher/lower between random
variables at points with smaller/larger Euclidean distance.
For instance, the Gaussian Correlation Function (GCF)

ρ(Y (xi),Y (x j)) = exp(−τ
∥∥xi−x j

∥∥2
) (2)

models this kind of distance dependent correlation decrease.

The GCF controls the correlation strength by the param-
eter τ, and, by assigning to each vertex xi a specific τ(xi),
a particular correlation strength between each Y (xi) and its
surroundings can be modeled. However, the distance depen-
dent correlation model assumes an isotropic correlation de-
crease around each vertex and cannot easily be used to ac-
count for anisotropic correlation structures. Therefore, in-
stead of assuming a distance dependent correlation decrease
and estimating for every vertex a specific τ as proposed
in [PRW11], we propose using the size of the correlation
neighborhood for a given threshold, i.e., the cardinal num-
ber, to measure the local correlation strength of each random
variable.

3.2. Clustering Algorithm

The cardinal numbers impose an ordering on the vertices that
is employed to filter the correlation information. Therefore,
the vertices are first ranked in descending order of cardinal
number. From this ordered sequence Sρ1 , the algorithm se-
lects the vertex with the largest cardinal number. If and only
if the intersection between the correlation neighborhood of
this vertex and the correlation neighborhood of any previ-
ously selected vertex is empty, the vertex is inserted into a
new sequence Ψρ1 and removed from Sρ1 . Simultaneously,
all vertices belonging to the correlation neighborhood of this
vertex are removed from Sρ1 . The algorithm is then applied
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recursively to the remaining vertices in Sρ1 . This process
generates the sequence

Ψρ1 := {c0,c1, ...} ⊂ C, (3)

which consists of the selected vertices ci in descending or-
der of cardinal number. These vertices are the centroids of
the correlation clusters that contain all vertices in the corre-
sponding correlation neighborhoods.

The clustering algorithm computes |Ψρ1 | clusters, each
cluster containing vertices with a correlation to the centroid
that is larger than the selected correlation level. The require-
ment of not allowing intersecting clusters guarantees that ev-
ery vertex either belongs to exactly one cluster, or does not
belong to any cluster. Each cluster gets assigned a unique
color using the algorithm proposed in [Hol11] for generating
the N perceptually most distinguishable colors. The coloring
ensures that also disconnected clusters, indicating so-called
bridging correlations, can be identified. Fig. 2 (a) shows the
clusters for ρ1 = 0.3 in the ECMWF data set. The pink clus-
ters show long-range bridging correlations.

Our strategy to select the centroids in descending order
of cardinality has the preferable property that the largest
clusters are always selected first. Correlation clustering al-
gorithms using random or local pivoting strategies for cen-
troid selection, such as the randomized 3-approximation al-
gorithm proposed in [ACN08], cannot achieve this. In addi-
tion, a region with strong mutual correlations between the
contained points is represented by one single cluster using
our approach, while a randomized algorithm might split up
this cluster into multiple ones.

Since our selection strategy represents regions of high and
low local correlation by large and small clusters, respec-
tively, it also allows a clear distinction between these re-
gions in the visualization (cf. Fig. 8). Furthermore, in our
approach, the size of a cluster and its expansion in different
directions is directly related to the local correlation strength
and the correlation distribution in the respective region. A
random or local selection of cluster centroids and complete
partitioning of the domain cannot guarantee this and lets the
cluster sizes be dependent on the selection order rather than
the correlation strength.

3.3. Multilevel Clustering

To enable the user to interactively analyze clusters at dif-
ferent correlation levels, multiple sets of clusters are pre-
computed for different values of ρ1. With increasing ρ1, in
regions with low correlation strength the clusters quickly
shrink and the number of clusters increases. Where clusters
remain spatially extended, they indicate strongly correlated
regions. Fig. 2 (b) shows these effects for the initial clusters
in (a) and ρ1 = 0.7.

For large values of ρ1, the clusters provide a good im-
pression of the local correlations in the data. For smaller

Figure 2: (a) Positive correlation clusters for ρ1 = 0.3 are
visualized on the ECMWF mean surface. (b) Clustering for
ρ1 = 0.7 indicates strong local correlation in regions (1) and
(2), and weak stochastic dependence in regions (3) and (4).

correlation levels, the clusters tend to cover ever larger re-
gions. Although this provides a better focus on global corre-
lation structures and large-range interactions, local correla-
tion structures, as well as the distribution of the correlation
structure within the clusters, increasingly disappear.

By providing the user with the possibility to interactively
increase and decrease the correlation level, and see the evo-
lution of the clusters over multiple levels, these internal
structures of spatially extended clusters become apparent.

3.4. Cluster Subdivision

To allow the visualization of local correlations within a
global context, we introduce a subdivision scheme that splits
the initial clusters at a certain level into disjoint sub-clusters.
This is performed by applying the proposed clustering algo-
rithm separately to every initial cluster. For a cluster with
centroid ci, this generates sub-clusters with centroids

Ψ
ci
ρ1ρ2 := {ci0,ci1, ...} ⊂ ηρ1(ci). (4)

All sets of sub-clusters are created for a correlation level
ρ2 > ρ1 according to:

ηρ1ρ2(ci j) := {xk ∈ ηρ1(ci) | ρ(Y (ci j),Y (xk))≥ ρ2} (5)

By increasing the level ρ2 for a fixed level ρ1, the initial clus-
ters are subdivided into ever smaller sub-clusters. Here, the
requirement ρ2 > ρ1 has to be met, because no subdivision
will be performed otherwise.

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



Pfaffelmoser et al. / Visualization of Global Correlation Structures in Uncertain 2D Scalar Fields

Figure 3: Clusters for ρ1 = 0.4 and corresponding sub-
clusters for ρ2 = 0.9 show isotropic and anisotropic corre-
lation structures in (1) and (2), respectively. Severe cluster
shrinkage indicates low correlation strength in (3).

The proposed two-stage approach allows for a simulta-
neous view on both global correlation structures (selected
by ρ1) and local correlation distributions within these struc-
tures (controlled by ρ2). The sub-clusters indicate in which
regions of the initial clusters the random variables are more
or less stochastically independent. This effect is shown in
Fig. 3, were positive correlation clusters for ρ1 = 0.4 (cf.
Fig. 1 (b)) were subdivided using ρ2 = 0.9. Compared to re-
gion (1), the sub-clusters in region (2) indicate strong local
anisotropic correlation structures with clear preferential di-
rections. In region (3), the severe shrinkage of the clusters
indicates a sudden drop in local correlation strength.

3.5. Anisotropy Coloring

Our proposed clustering algorithm can be used effectively to
show the sets of points at which the random variables have a
correlation to the random variable at the respective centroid
that is larger than a selected correlation level. However, due
to the uniform coloring of all points belonging to the same
cluster, it can not be seen which sub-regions of a cluster are
correlated stronger or weaker to the centroid.

This problem can be approached by mapping the correla-
tion values at every correlation level to color via a specific
color table, e.g., as shown in Fig. 4 (a). Especially for large
clusters the coloring clearly indicates high correlation val-
ues around the center points and a distance dependent corre-
lation decrease. For example, the large cluster in the center
has significantly lower correlations to points in sub-region
(2) than to points in sub-region (1).

However, the used coloring does not pronounce the spe-
cific correlation anisotropy within a cluster very well. To
overcome this problem, we introduce a color mapping
scheme that emphasizes inner-cluster anisotropy.

We first note that, at every vertex x j, the correlation to
the respective cluster centroid, as well as the Euclidean dis-
tance to the centroid are known. This information is used to
classify a vertex regarding its correlation decrease from the

centroid per unit distance. To this purpose, we employ the
GCF in Equ. (2), which controls the correlation strength by
the parameter τ. We can use the known correlation and Eu-
clidean distance in Equ. (2) to rearrange for the unknown
τ:

τ(x j) :=−
log(ρ(Y (ci),Y (x j)))∥∥ci−x j

∥∥2 , x j ∈ ηρ1(ci). (6)

From the value of τ it can be concluded on a) a more
isotropic correlation structure around a cluster center, i.e.,
points on concentric circles around the center have the same
value, b) an anisotropic correlation structure, i.e., the val-
ues along a certain direction have a significantly stronger
or weaker decrease, or c) bridging correlations, i.e., isolated
groups of points with the same correlation, but at different
distance from the center.

Unfortunately, τ has no unit, which prohibits an intuitive
interpretation and comparison of different grid points. To al-
leviate this problem, we introduce the correlation half-value
distance (CHVD)

δ(τ) :=
log(2)

τ
, (7)

which indicates the distance after which the correlation
drops below 0.5. The CHVD is computed for every point
in a cluster (except the centroid), and is then mapped lin-
early and clamped to a selected range [0,δmax], and finally
mapped to a specific color table.

Figure 4: (a) Correlation between cluster points and centers
is mapped from [ρ1,1] to [blue,red]. (b) CHVD is mapped
from [0,δmax] to [blue,red]. High correlation anisotropy
around the center point is shown in (3). In (4), high
anisotropy is only present close to the center point, while
correlation is more isotropic with increasing distance.

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



Pfaffelmoser et al. / Visualization of Global Correlation Structures in Uncertain 2D Scalar Fields

In Fig. 4 (b), the effectiveness of the proposed color map-
ping for distinguishing between isotropic and anisotropic
correlation structures is demonstrated. In region (3), strong
anisotropy can be observed for several radii around the cen-
ter point. In region (4), anisotropic correlation structures are
only present in the vicinity of the centroid. For larger radii
the correlations are much more isotropic. In contrast to (a),
directions along which the correlation is higher or lower can
now clearly be perceived.

4. Inverse Correlation Clustering

Linear inverse correlation between two random variables in-
dicates that the realization of one variable deviates positively
from its mean when the realization of the other variable de-
viates negatively, and vice versa. In inverse correlation clus-
tering, one tries to find clusters that consists of two inverse
partners, i.e., the clusters covering the regions that are in-
versely correlated to each other.

As for positive correlation clustering, we define

κρ̂(xi) := {x j ∈ C | ρ(Y (xi),Y (x j))≤ ρ̂} (8)

as the inverse correlation neighborhood of a point xi for
negative correlation level ρ̂. The cardinal number

∣∣κρ̂(xi)
∣∣

serves again as an indicator for the degree of inverse depen-
dency of a random variable Y (xi) to a spatial region. This
region, however, is not necessarily a spatial neighborhood.

In inverse correlation clustering we seek for the most
prominent pairs of centroids of inverse partners

Φρ̂ := {(a0,b0),(a1,b1), ...} ⊂ C×C, (9)

ordered by descending cluster size. These pairs are called
inverse centroids, and are defined recursively as follows:

a0 : = argmax
x j∈C

∣∣κρ̂(x j)
∣∣, (10)

b0 : = argmax
x j∈κρ̂(a0)

∣∣κρ̂(x j)
∣∣, (11)

ai : = argmax
x j∈C,κρ̂(x j)∩

⋃
k<i (κρ̂(ak)∪κρ̂(bk))=∅

∣∣κρ̂(x j)
∣∣ , (12)

bi : = argmax
x j∈κρ̂(ai),κρ̂(x j)∩

⋃
k<i (κρ̂(ak)∪κρ̂(bk))=∅

∣∣κρ̂(x j)
∣∣ . (13)

The clustering algorithm works much the same way as the
one used to construct positive correlation clusters, but now it
is necessary to look at two centroids simultaneously in order
to create one single cluster κρ̂(ai)∪κρ̂(bi). Since it always
holds that bi ∈ κρ̂(ai) and ai ∈ κρ̂(bi), every inverse partner
contains exactly one centroid that is inversely correlated to
the other partner and vice versa. Clusters are computed for
different negative levels ρ̂i.

4.1. Inverse Cluster Coloring

In inverse correlation clustering, the coloring of clusters is
important to separate pairs of inverse partners from each

other. This is accomplished by assigning to each inverse
partner κρ̂(ai) and κρ̂(bi) of a cluster a unique distinct color.

It can happen, however, that the partners κρ̂(ai) and
κρ̂(bi) each split up into multiple disconnected sub-regions
(cf. region (1) in Fig. 5). In this case, the visualization has
to indicate that the sub-regions belonging to the same part-
ner are inversely correlated to the respective other partner,
but not to each other. This is achieved by hatching the clus-
ters using different patterns. In particular, we use vertical
and horizontal stripes for hatching, uniquely colored to em-
phasize the cluster. The sub-regions are hatched in the same
style than the partner they belong to.

In Fig. 5, inverse clusters (in color) are visualized for ρ̂ =
−0.3 in relation to the positive clusters (in grey) for ρ1 =
0.4. Each color represents one inverse correlation pair, and
the stripe orientation indicates the respective inverse partners
within each pair.

Figure 5: Positive clusters are shown in gray, inverse clus-
ters for ρ̂ = −0.3 are color coded. Clusters with the same
color but different stripe orientation are inversely correlated.

5. Uncertainty Integration

The use of correlation as an indicator for the structural vari-
ability in uncertain data sets is only meaningful in regions
where a significant standard deviation is present. For in-
stance, if the random variables at two points show a strong
inverse correlation, but their standard deviation is low, the
effect of the structural variability is also low. Contrarily, a
strong effect is very likely if the standard deviation at the
two points is high. Consequently, a combined visualization
of both the standard deviation and the correlation structures
is necessary.

Since in this work we investigate uncertain scalar fields
over a 2D domain and stochastically model the uncer-
tainty via Gaussian distributions, stochastic distance func-
tions (SDF) can be used to visualize the standard deviation.
A SDF is defined as

ϑ(v,xi) :=
v−µ(xi)

max(σ(xi),σmin)
. (14)

It assigns to every grid vertex xi the distance in stochastic
data space between the selected scalar value v and the mean
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value µ(xi) in number of standard deviations σ(xi). For fur-
ther details we refer the reader to [PRW11]. The region en-
closed by the SDF values |ϑ(v,xi)| ≤ 1 forms the confidence
region for ±σ.

To visualize the standard deviation, the user first selects
a SDF level ϑ

∗. Then, all clusters are extruded along the
third dimension, both in positive and negative direction, un-
til their height is equal to the selected SDF level at the clus-
ter centroid. The side walls and caps of these "towers" have
the same color as the clusters, but, along the side walls, the
saturation is decreased by a factor of 0.5 for every second
integral change in SDF value.

The integration of standard deviation into correlation vi-
sualization is demonstrated in Fig. 6. In (a), positive correla-
tion clusters for ρ1 = 0.5, including subdivision for ρ2 = 0.9,
are extruded to the confidence level ϑ(v,xi) = 1. The small
towers in region (1) indicate significantly lower standard
deviation compared to regions (2) and (3). In (b), inverse
clusters for ρ̂ = −0.5 are visualized using the proposed ap-
proach. Compared to Fig. 5, some of the smaller clusters
vanish, and only the most prominent clusters like the red,
green, and pink clusters remain.

Figure 6: (a) Positive, subdivided correlation clusters are
shown for ρ1 = 0.5 and ρ2 = 0.9. Cluster extrusion until a
selected SDF level reveals low positional variability in (1)
and strong positional variabilities in (2) and (3). (b) Inverse
extruded cluster partners for ρ̂ =−0.5 are shown.

6. Implementation and Visualization

The clustering algorithm is performed using a parallelized
MATLAB implementation on a shared memory system with
two quad-core Opteron 2.6 GHz CPUs. The algorithm has a
run-time complexity that is quadratic in the number of grid
vertices. For the ECMWF data set that is given on a Carte-
sian grid of size 185× 425, the cluster generation for all
levels took about 19h. The current implementation is rela-
tively unoptimized, as the correlations for many pairs of ran-
dom variables are re-computed multiple times. This is due
to memory limitations, prohibiting the pre-storage of the full
correlation matrix. With all correlation data available before-
hand, the pre-process would require about 3h.

After the pre-process is completed, the resulting data is
stored in 3D textures on the GPU. Two textures store the data
required to represent the positive correlation clusters. Their
(u,v) texture size is the same as the size of the 2D domain
over which the height field is given. Thus, every row along
the third texture dimension represents the values associated
with a particular domain point. The w texture size is equal to
the number of possible (ρ1,ρ2) pairs, and every texel stores
the cluster IDs for exactly one pair. Since ρ1 and ρ2 are both
∈{0.1,0.2, ...,0.9}, and because ρ2 > ρ1, 36 pairs have to be
stored. Every (ρ1,ρ2) tuple gets assigned a unique index at
which it is stored in the respective texture row. For every in-
dex and every 2D vertex, the IDs of the initial clusters (com-
puted for ρ1) and corresponding sub-clusters (computed for
ρ2) are stored in the first and second 3D texture, respectively.
The IDs are stored in the red color channel, and the correla-
tion and CHVD values to the respective cluster centroids are
stored in the green and blue color channels, respectively.

A third texture stores the data computed by inverse cor-
relation clustering. As these clusters are not subdivided, for
m negative correlation levels, the texture size along the third
dimension is m. For each grid vertex and level a cluster ID
is stored. The cluster ID is attributed by a sign which indi-
cates which of the respective two inverse partners the grid
vertex belongs to. In an additional texture the positions of
the centroids of all clusters are stored. The cluster IDs that
are stored in the 3D textures are chosen such that they can
be used directly to reference the respective centroids in this
texture. Overall, the memory requirement of our algorithm
at run-time is linear in the number of grid points.

For the visualization of the standard deviation, a fourth
3D texture stores the SDF field with respect to the mean
and standard deviation in the data. The (u,v) texture size
is equal to the size of the 2D domain. The size of the tex-
ture in the third dimension was set heuristically depending
on the data resolution. Each texture slice along the third
dimension is associated to a height value h, ranging from
mini(µi)−maxi(σi) to maxi(µi)+maxi(σi) in m steps. For
each grid point xi in the (u,v) texture domain and each
height layer h j, a SDF value ϑ(h j,xi) is stored in the red
color channel.
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Figure 7: (a) Geophysical setup to determine the depth of a material discontinuity (red) in the earth’s interior by measuring
travel times of artificial pressure waves (emitted along black lines). A material layer between emitters and discontinuity structure
simulates a Gaussian error distribution in wave velocities. (b) Correlation clusters are color coded on the mean surface in the
simulated data ensemble. (c) Visualization of standard deviation shows equally strong uncertainty in quadrants (1),(2),(3) and
low uncertainty in (4). (d) One possible solution (realization) of the depth structure. High structural variability is seen in
quadrant (3), which is indicated by low correlations and high standard deviations in (b) and (c).

Rendering the correlation clusters in a 2D height field is
performed via parallel ray-casting on the GPU. Rays are cast
through the 3D SDF field until an intersection with the level-
0 isosurface in this field, i.e., the mean surface, is deter-
mined. The projection of the intersection point into the 2D
domain and the selected (ρ1,ρ2) combination are used to
look-up the cluster ID in the pre-computed 3D textures. This
ID is then used to color the corresponding pixel. The stripe
patterns, indicating the membership to the inverse correla-
tion clusters, are generated procedurally in a pixel shader.
For rendering the cluster towers, it is tested at every sam-
pling point along the rays whether the ray has already en-
tered into the selected SDF confidence region. In this case,
ray traversal is stopped as soon as the ray enters into a clus-
ter. At the intersection point, the cluster color is looked up
and the height dependent saturation is computed. Normals
for shading are computed on-the-fly from the SDF field.

7. Analysis and Discussion

We first validate the plausibility of the proposed correlation
clustering approach using a simple artificial data set (see Fig.
7 (a)). We simulate a set of seismic pressure sources po-
sitioned at the grid vertices of a 2D Cartesian grid (white
lines) on the earth ground (green plane). Each source gener-
ates pressure waves traveling into the earth along the black
lines. The waves are reflected from a material discontinuity
(red structure at the bottom) and registered at the source lo-
cations. The red surface is broken at three fault lines where
a discontinuous change between two depth layers is perceiv-
able. By making assumptions on the wave speed and mea-
suring the travel-time, one can estimate the discontinuity’s
depth at every grid position.

Since the material in-between the source and the discon-
tinuity (second layer) introduces errors in the assumed wave
speed, the estimated depth of the discontinuity is uncertain.
In our model, the "error layer" is subdivided into 34 zones

(uniquely colored), each of which introduces a Gaussian dis-
tributed zero mean error that are stochastically independent
from each other. Within the three quadrants (1), (2), and (3),
the error model has the same standard deviation. In quadrant
(4), the standard deviation is significantly lower.

Based on the probabilistic error model, 100 possible so-
lutions were computed. Positive correlation clusters in the
ensemble field are color coded on the mean surface in Fig.
7 (b). It can be seen that the independent error structures
shown in (a) are correctly grouped by our algorithm. In (c),
clusters are extruded to visualize the standard deviation: A
significantly lower error is shown in quadrant (4). In (d), one
of the possible solutions (realizations) is shown. The faults
in (1) and (2) can be well resolved, because correlations are
high in both regions, i.e., large correlation clusters exist. The
fault between (1) and (2) cannot be resolved, because there is
no correlation between (1) and (2). In quadrant (4), the corre-
lation is low, but the fault can be well resolved, because the
standard deviation is low, too. In region (3), however, cor-
relation clustering reveals highly uncorrelated sub-regions
and high standard deviations. Consequently, the fault can-
not be resolved here, because of high structural uncertainty.
This example illustrates that an integrated visualization of
uncertainty and correlation is very important, as the single,
detached visualization of each of them could result in false
interpretations.

We now turn our attention to the ECMWF data set, and we
use the proposed correlation visualization to conclude on the
following peculiarities: Fig. 1 (a) and (b) show a long ridge-
like structure covered by the large red cluster. This shape
feature can be assumed to be stable, because it resides in a
highly correlated region, indicated by large clusters even for
increasing correlation levels (cf. Fig. 2). Furthermore, clus-
ter subdivision in Fig. 3 and anisotropy coloring in Fig. 4 (b)
clearly show the alignment of the prominent correlation di-
rection with the ridge orientation, meaning that the structural
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Figure 8: (a) Mohorovičić discontinuity below Australia. (b) Strong correlation clusters close to the domain boundaries indicate
strong regularizations in the simulation algorithm. (c) Close-up view reveals high and low uncertainties, respectively, at the
boundaries and in the center, as well as high local correlations at (1) and (2). (d) Inverse clustering shows that strong inverse
correlation takes place on a local rather than a global scale.

variability is low along the ridge. In Fig. 2 (b), small clusters
in region (4) indicate low correlation strength (see also re-
gion (3) in Fig. 3). It can be concluded that this area is prone
to structural variability, and that the particular occurrence of
the mean surface is stochastically unstable.

Inverse correlation visualization reveals a very interesting
long-range interaction between data values in the ECMWF
data set. Fig. 6 (b) shows multiple inversely correlated clus-
ter pairs. In combination with uncertainty towers, the red
clusters turns out to be the most prominent. The visualiza-
tion shows a strong stochastic dependency between spatial
locations over long distances. For instance, a temperature de-
crease in region (2) is likely to cause a temperature increase
in region (3), and vice versa.

In a third example we use correlation visualization to an-
alyze the Mohorovičić discontinuity — the boundary sur-
face between the Earth’s crust and mantle — below Aus-
tralia (see Fig. 8 (a)). The data was acquired using a similar
geophysical setup as described in our first example. Posi-
tive correlation clusters in (b) show a rather homogeneous
correlation distribution in the domain interior and high cor-
relation strength at the boundaries. A close-up view in (c)
also reveals high standard deviation in the outer parts. The
reason is that less measurements were performed in these
regions and, thus, the data coverage is too low to allow re-
solving high frequencies in the data. As a consequence, such
regions are automatically regularized (smoothed) by the data
generation algorithm, resulting in high correlations and stan-
dard deviations. In (1) and (2), the same uncertainty and
dependency structures are visualized. Correlation visualiza-
tion supports domain experts in discovering whether smooth
structures arise from the real physical material characteris-
tics in the discontinuity or are due to regularization effects.

Besides the visualization of positive correlations, domain
experts in geophysics are interested in the location of in-
versely correlated regions. From this information, one can
conclude on regions that cannot be resolved against each
other and have a rather uncertain relative position. The visu-
alization in (d) shows that inversely correlated regions are lo-

cated close to each other. Large-range inverse correlations do
not seem to exist. This indicates that strong structural vari-
abilities are restricted to small spatial regions. Note that this
is completely different to the situation in the ECMWF data
set, where inversely correlated clusters are far more distant
to each other and cover significantly larger regions.

8. Conclusion

Our contribution is a new approach for visualizing posi-
tive and inverse correlation structures in uncertain 2D scalar
fields. We have built upon the concept of correlation neigh-
borhoods and their cardinal numbers a novel correlation
clustering algorithm. The organization of data points into
groups takes into account a selected correlation strength,
giving rise to an interactive visual analysis of short- and
long-range dependencies in the data. The cluster represen-
tation which is build in a pre-process requires an amount of
memory that is linear in the number of initial data points.

In the future we will strive to extend our approach to iso-
surfaces in 3D scalar fields. In general, correlation clustering
as proposed can be extended to 3D, but, in this case it is not
sufficient to consider only the correlations between surface
points. In addition, the correlations in a 3D region enclosing
the surface have to be analyzed, and, thus, more elaborate
techniques are required to overcome the significantly higher
computational complexity for determining correlation clus-
ters. Furthermore, special projection or restriction schemes
are required to relate 3D clusters to the structural variability
of isosurfaces. Evidently, the use of correlation towers will
become problematic on arbitrary surfaces due to distortions
and possible penetrations of towers.
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