
Temporally Coherent Real-Time Labeling of Dynamic
Scenes

Mikael Vaaraniemi
BMW Research and
Technology GmbH
Munich, Germany

mikael.vaaraniemi@bmw.de

Marc Treib
Computer Graphics and

Visualization Group
Technische Universität

München, Germany
treib@tum.de

Rüdiger Westermann
Computer Graphics and

Visualization Group
Technische Universität

München, Germany
westermann@tum.de

ABSTRACT
The augmentation of objects by textual annotations pro-
vides a powerful means for visual data exploration. Espe-
cially in interactive scenarios, where the view on the objects
and, thus, the preferred placement of annotations changes
continually, efficient labeling procedures are required. As
identified by a preliminary study for this paper, these proce-
dures have to consider a number of requirements for achiev-
ing an optimal readability, e.g. cartographic principles, vi-
sual association and temporal coherence. In this paper,
we present a force-based labeling algorithm for 2D and 3D
scenes, which can compute the placements of annotations at
very high speed and fulfills the identified requirements. The
efficient labeling of several hundred annotations is achieved
by computing their layout in parallel on the GPU. This al-
lows for a real-time and collision-free arrangement of both
dynamically changing and static information. We demon-
strate that our method supports a large variety of appli-
cations, e.g. geographical information systems, automotive
navigation systems, and scientific or information visualiza-
tion systems. We conclude the paper with an expert study
which confirms the enhancements brought by our algorithm
with respect to visual association and readability.

Categories and Subject Descriptors
I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques; I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism; H.1.2 [Models and
Principles]: User/Machine Systems—Human information
processing

General Terms
Algorithms, Design, Performance

Keywords
Labeling, force-based, real-time, annotation, graph, GIS,
navigation.

1. INTRODUCTION
Information can be represented by images and textual an-
notations. Images give a quick overview and portray data
intuitively. In contrast, textual annotations have to be ac-
tively read. However, they can precisely describe objects
with selected information. Combining both types creates a
very powerful tool for data exploration. These principles
are used in the fields of information visualization and visual
analytics. Therein, abstract data is often described by tex-
tual annotations. For instance, graphs with up to several
hundred nodes have to be labeled (see Figs. 1(a) and 9).
Another area of research focuses on geographic information
systems (GIS). These systems visualize geospatial data such
as road networks, demographic data, and their annotations
(see Figs. 1(b) and 6(b)). Such systems, especially when
used on large-scale display systems, must be able to provide
interactive visual exploration of geospatial data with a very
high number of annotations. Since in such 3D (or 2.5D)
applications the camera can be moved freely, the use of un-
constrained labels and the preprocessing of every possible
layout constellation to avoid collisions is impractical [18].
More and more such applications have to cope with dy-
namic content, requiring placements of labels without prior
knowledge, e.g. when loading KML files into Google Earth.
Therefore, real-time computation of annotation layouts is
becoming an ever important requirement in interactive data
exploration. Besides interactivity, additional requirements
such as Imhof’s cartographic principles [13] have to be con-
sidered to improve the visual analysis process. Adhering
to these principles, including readability, visual association,
and classification, is extremely challenging and demands for
a proper integration of the respective functionality into la-
bel placement algorithms, e.g. support for scalable rotated
labels with priorities. In addition, only a stable and consis-
tent (similar to [2]), as well as temporally coherent layout,
where labels do not jitter, appear suddenly, or move unex-
pectedly, lets users easily track annotations in a complex
scene. Labels should make slow-paced, smooth transitions
to minimize distraction. Therefore, on top of the aforemen-
tioned requirements, the maintenance of a frame-coherent
presentation is another major concern underlying our devel-
opments. In many applications the demand for a temporally
coherent layout even supersedes the requirement for an op-
timal position in every frame. Based on our intended ap-
plication areas and a preliminary study (see section 3), we
define the following goals:



(a) Annotation of a large graph network. (b) Labeling a GIS in Geneva, Switzerland.

Figure 1: Real-time labeling of 2D (left) and 3D (right) scenes using our force-based approach.

• Real-time labeling of point, line and area features

• Runtime placement of new labels

• Scalability to up to several hundreds of labels

• Temporal coherence and stability of the labeling layout

• Consideration of Imhof’s cartographic rules (e.g. read-
ability, visual association and classification)

• Support for rotated and scaled labels with priorities

Most existing real-time approaches follow the first two rules
but do not scale well with the number of labels, have prob-
lems maintaining temporal coherence, and do not rigorously
adhere to common cartographic rules (see section 2).

The major contribution of this paper is an efficient algo-
rithm for creating a temporally coherent labeling of 3D or
2.5D objects and scenes. Our algorithm is specifically tai-
lored to the massively parallel multi-threading architecture
of graphics processing units (GPUs). Every label collision
is detected with the separating axis theorem computed in
parallel on the GPU. Collisions between labels are resolved
with a force-based approach thus creating smooth changing
label positions. In this way we can create layouts for several
hundred annotations in real-time. Furthermore, our method
supports scaled and rotated annotations.

The remainder of this paper is organized as follows: First, we
review related work in section 2. In section 3, we present the
findings of a preliminary study and define design principles
for achieving an optimal readability of labels. In section 4,
we introduce our real-time, force-based labeling approach
with implementation details in section 5. We conclude the
paper with performance measurements and a validation of
our real-time prototype in an expert study.

2. RELATED WORK
Cartographic principles Imhof [13] names legibility and
the graphical association of a label with its feature as charac-
teristics of good lettering. Furthermore, he emphasizes the
importance of minimal map disturbance, good label distri-
bution, as well as fonts which indicate the spatial properties
of features and their classification. He divides the labeling
problem into three categories: labeling point features, line
features and area features. For each category certain car-

tographic principles apply. Yoeli’s four-position model [31]
depicted in Fig. 3(a) ranks each possible position of a la-
bel around a point feature according to its degree of intu-
itive association. He already mentions the semi-automatic
labeling of point features. Its computational complexity is
NP-complete [17]. Christensen et al. [5] introduce the point-
feature-labeling-problem (PFLP) and prove that it is NP-
hard. Thus, heuristics are needed to label maps with a huge
number of features. A broad range of strategies has been
developed, for instance exhaustive rule-based, genetic, force-
based or greedy approaches. A collection of related papers
can be found in the bibliography by Wolff and Strijk [29].

Force-based A force-based approach was first presented
by Hirsch [12]. He uses a gradient-driven heuristic to label
point features. Labels are placed on a circle around their cor-
responding features. To resolve conflicts, vectors between
overlapping labels are computed based on the intersection
area. As a single label can collide with multiple other an-
notations, the sum of all its vectors guides its movement,
thus improving the global labeling layout. Feigenbaum [9]
describes a similar method to automatically annotate point
features. He resolves collisions and places labels close to
their anchor by a force-based approach. Attractive forces
pull labels to their point feature, while repelling forces push
labels away from other features. Thus, step by step, the
map layout converges towards a final labeling state through
a gradient descent method. Ebner et al. [7, 8] enhance this
approach by simulated annealing. Consequently, local min-
ima which usually prevail in greedy force-based methods can
be avoided. Similar to the approaches of Hirsch and Feigen-
baum, this technique approximates the intricate form of a
label’s lettering by an axis-aligned rectangle. A hybrid ap-
proach is presented by Stadler et al. [25]. They obtain an
initial placement with the help of image processing. Then,
iterative forces improve the chosen labeling positions. They
note that force-based approaches achieve a clear label distri-
bution and thus an aesthetical layout. However, this method
does not allow for real-time placement of labels.

2D Real-time Full interaction with 2D GIS environments,
which includes panning and zooming, requires dynamic map
labeling. In the last decade, several real-time algorithms for
2D maps have appeared. They divide the labeling problem
into a pre-processing and an interactive real-time phase [2,



18, 21, 30]. In the former, a conflict graph is generated
which stores every possible conflict between labels at every
possible scale. At runtime, relevant labeling positions are
chosen based on the precomputed graph. Unfortunately, all
these approaches only work for a top-down view and require
uniformly sized, axis-aligned labels. Recently, real-time la-
beling of 2D maps without pre-processing has been achieved
by Luboschick et al. [15, 6]. They divide the available screen
space into a uniform grid wherein “conflict particles” indi-
cate if a region (cell) is occupied. Choosing a labeling po-
sition then becomes a search for free cells. This approach
uses existing position-models [31] sequentially to determine
the first valid position. By using particles, this method can
freely define obstacles and is not restricted to axis-aligned
annotations. The layout is computed from scratch every
frame. Temporal coherence is achieved by interpolating the
resulting positions. However, during animation, occlusion of
labels can occur. In this approach, most of Imhof’s carto-
graphic principles [13] are not addressed, even though posi-
tioning models are used.

3D Real-time Bell et al. present a real-time approach for
labeling a 3D virtual world [3]. They introduce the notion
of temporal continuity in a lettering. This avoids popping
of annotations while panning or zooming the map. Labels
are projected from 3D world space into 2D screen space.
Placement is done by iterating through a set of rectangles
describing unoccupied screen space. Thus, the performance
of this method does not scale well and labels can only be ap-
proximated by axis-aligned rectangles. A simpler approach
from Maass and Döllner [16] splits the screen space into dis-
joint vertical slots. Therein, labels are stacked sorted by
their distance to the viewer. A line connects a feature and
its label visually. A bold font with a halo makes textual
annotations easily readable. However, this approach creates
dense clusters of labels and long connecting lines. Thus,
visual association becomes impossible. Several approaches
deal with the labeling of single 3D objects for illustration
purposes [1]. Göetzelmann et al. [11] describe an algorithm
which uses distance fields to compute ideal labeling positions
and employ agents to preserve temporal coherency. Unfortu-
nately, during camera movements labels are hidden and jit-
tering occurs. Stein and Décoret [26] present a GPU-based
real-time approach for labeling a 3D scenery. To compensate
the drawbacks of their greedy approach, an Appolonius di-
agram defines the label placement order. Similar to Stadler
et al. [25], they use image processing to determine the initial
positions. Unfortunately, only up to 20 labels can be placed
at interactive framerates. Furthermore, during navigation,
jittering and harsh changes in labeling positions occur. Fi-
nally, a real-time approach for annotation of virtual reality
environments is described by Pick et al. [22]. They choose
the initial position of a label by voxelizing the correspond-
ing object, extracting a medial line and choosing the closest
point on this line to the object’s center of gravity. Unfor-
tunately, this can lead to collisions at placement and thus
unstable layouts. To resolve conflicts at runtime, they first
compute a visibility volume from an object’s axis-aligned
bounding box. The intersection between these volumes on
directed 2D planes creates a force vector which depends on
the penetration depth. This force is applied at runtime on
the involved labels. However, real-time labeling can only be
achieved for 20-40 annotations.

Summary None of the presented approaches satisfy all
the requirements stated in section 1. Several real-time algo-
rithms suffer from visual frame-to-frame discontinuities and
create too much movement in the labeling layout [16, 26].
Others only follow a minor set of Imhof’s cartographic prin-
ciples [6, 15, 16] or exhibit an unstructured layout [6, 16, 22].
The performance of some approaches does not scale well [3,
26, 22]. Finally, some algorithms only allow axis-aligned
annotations [3, 18, 16, 21, 26, 22].

3. PRELIMINARY STUDY
A good readability is one of the most important goal of
our approach. In order to define design principles, we con-
ducted a preliminary expert study at our research facility.
As a representative application, we chose the labeling of a
GIS with 3D-terrain overlayed by orthoimages and a road
network. We interviewed one psychologist, who has been
working as a researcher in the human-machine interaction
(HMI) design field for over two decades, four engineers, three
of which work as project leaders for navigation components,
the fourth is developing HMI concepts, and a sixth expert
who has worked for over a decade as a visual designer.

3.1 Study Design
In an interview of approximately one hour we presented dif-
ferent labeling concepts (see Fig. 2), all adhering to Imhofs
cartographic principles [13], and we provided the following
questionnaire to the experts. Firstly, we asked whether the
size of a label should change with respect to its depth po-
sition in a 3D landscape. Secondly, we surveyed how to
annotate point features (e.g. cities): using the four-position
model, centered above their anchor, or circling around its
feature. Finally, we questioned the best strategy to label
line features (e.g. streets): horizontally (see Fig. 2(a)), as
rotated straight labels (see Fig. 2(b)), or by following the
line features (see Fig. 2(c)).

3.2 Results
Depth Scaling This concept categorizes the subjects into
two groups. The first group (with 4 of 6 candidates) stated
that depth scaling helped spatial perception in the 3D land-
scape. The second group (2 of 6) stated it is acceptable if
textual annotations remain readable.

Annotation of Point Features Firstly, we asked which
point labeling concept is appropriate. The majority (4 of
6) stated that a consistent approach was the most impor-
tant property. Three of the candidates suggested that the
labeling concept should create a clear layout and give a good
overview of the situation. Finally, one of them chose the 4-
position model as the best concept because it incorporated
all these stated requirements.

Annotation of Line Features The concept of horizon-
tally placed labels again splits the candidates into two groups.
The first group (4 of 6) qualified it as very readable but
with a higher search and visual association time. The second
group (2 of 6) did not like this kind of placement. One stated
reason was that a horizontal label could occlude neighbour-
ing features. The concept of straight, rotated annotations
was selected as the best alternative by almost every subject
(5 of 6) as it provides a good compromise between read-
ability and visual association to the line feature. In the



(a) Horizontal annotations. (b) Straight, screen space rotated anno-
tations.

(c) Annotations following the roads cur-
vature.

Figure 2: Static images for the conducted expert study: each concept shows a different annotation style.

last concept, annotations follow the curvature of the corre-
sponding line. The majority (5 of 6) liked the appearance,
but questioned if it would remain readable under special cir-
cumstances (e.g. roads with tight turns). Furthermore, this
group stated that this concept helps understanding the lay-
out of a road. Some of them (3 of 6) indicated the good
visual association. Finally, some (2 of 6) said that they did
not see much difference compared to straight annotations.

3.3 Design Principles
The first conclusion of our study is that scaling annotations
by their depth helps spatial perception in a 3D landscape.
However, the scale factor should not go below a certain min-
imum to maintain readable labels. Hence, the first require-
ment for the layouting algorithm is freely scalable annota-
tions. Secondly, labeling point features should create a clear
layout and give a good overview of the situation. Therefore,
we choose the four-position model because of its clear and
consistent labeling. The best compromise between readabil-
ity and visual association in most situations are provided
with straight, rotated labels. Only at very steep angles,
where the readability would be compromised significantly,
we switch to horizontal labels. Thus, we concluded on the
support for rotated annotations as our last requirement.

4. FORCE-BASED LABELING
In this section, we introduce our force-based, real-time la-
beling approach for dynamic scenes. By providing a tem-
porally coherent layout, at the same time considering the
additional requirements identified in the expert study, opti-
mal readability of annotations is enforced in an interactive
environment. However, achieving this for a huge number of
labels is extremely challenging, since at runtime initial label
positions have to be computed (see section 4.3), collisions
have to be detected (see section 4.4), and these collision
have to be resolved in a temporally coherent manner (see
section 4.5).

4.1 Motivation
According to Chen et al. [4], naive search tasks are com-
pleted in less time when labels are displayed in screen space.
Hence, to achieve an optimal readability and a more efficient
visual exploration we handle the entire layouting in screen
space. It is worth noting that this strategy also facilitates
an efficient computation of conflict situation between differ-
ent labels [3, 15, 26]. Textual labels and icons are repre-
sented by 2D object-oriented bounding boxes (OOBBs) to
accelerate the computation of possible collisions via the sep-
arating axis theorem [24] (see section 4.4). Furthermore,
OOBBs enable us to efficiently approximate rotated labels

needed for line aligned annotations. For the initial place-
ment of point features, we use the four-position model (see
section 4.3). As shown in our preliminary study, and also
stated by Yoeli [31], this model helps creating a visual asso-
ciation between a feature and its annotation. While brows-
ing through annotated datasets, the addition and removal of
labels changes the optimal labeling layout, such that in ev-
ery frame a completely new arrangement might be required
to again achieve optimality. These frame-to-frame changes
lead to jittering effects and abrupt re-layouting in several
existing approaches [15, 26]. Therefore, we do not create a
discrete optimum arrangement in each frame. Instead, the
current layout is always based on the labeling result of the
previous frame. This is achieved by using a force-based ap-
proach which only allows continuous changes to the layout
and thus, creates a temporally coherent labeling. Addition-
ally, this results in an appropriate label distribution and
avoids clustering [25] (see also Imhof’s cartographic princi-
ples [13]).

4.2 Features
Following the definition of Imhof [13], 2D/3D scenes contain
point features (e.g. graph nodes, points-of-interest), line fea-
tures (e.g. graph edges, streets), and area features (e.g. graph
regions, land cover). Point features can be depicted by icons
or horizontal labels (see Fig. 3(a)). Line features can either
be labeled horizontally for better readability (see Fig. 3(b))
or using rotated text following a line segment to create a
better visual association (see Fig. 3(c)). The labels of area
features are always drawn horizontally (see Fig. 3(a)). When
loading feature datasets, we first have to compute their la-
beling positions. Horizontal labels for point features use
the feature’s world coordinate ppoint as the labeling an-
chor. Line features with horizontal annotations use the
polyline’s center pline as the anchor. For a line feature
with rotated text, we determine the longest straight seg-
ment sline = (pline0 , pline1). Finally, for an area feature we
compute and store its barycenter parea.

4.3 Initial Placement
The initial placement of labels consists of choosing a position
in screen space when a label first appears. The priorities of
labels determine the order of their initial placement. First,
we compute the screen space position p′i by projecting the
3D world coordinate pi of a feature’s anchor point. Based on
the projected coordinate and the label’s size, we then create
an OOBB approximation.

As concluded from our expert study in section 3.3, we use
the four-position model to label point features. For each of



 

1

 p'i

(a) Horizontal point annotations: The
four-position model [31] defines
candidate positions ranked by their
degree of intuitiveness, e.g. viewers
associate most easily a label with its
point feature p′i, if it is placed in the
top right corner.

1

p'
i

(b) Horizontal line annotations: To la-
bel line features at their anchor p′i
we can choose between one of three
candidate positions.

1
i

p'

 is'

(c) Rotated line annotations: Three
candidate positions for labeling line
features along the projected seg-
ment s′i. The first candidate po-
sition is above p′i, the second can-
didate is on the right side and the
third on the left side.

Figure 3: Initial placement of annotations.

the four candidates k we compute the corresponding OOBB
Ck using a screen space offset oi

(k) from the projected posi-
tion p′i (see Fig. 3(a)). The same is done for area features,
using the projected barycenter as the anchor. To consis-
tently place line features, we compute three offset OOBBs
Ck from p′i. Depending on the current view angle, the candi-
date OOBBs are either placed horizontally (see Fig. 3(b)) or
along the projected segment s′i (see Fig. 3(c)). Each of these

candidates k with OOBB C
(i)
k of the currently processed la-

bel i are tested for collision against the OOBB C(j) of every
already placed label j (see section 4.4). If multiple candi-

date OOBBs C
(i)
k are collision free, we choose the position

with the best visual association as described by Yoeli [31].
If there is no free position, we do not add the label i. A
timer is started and the initial placement is re-evaluated af-
ter the timer expires. To comply with the requirement of a
temporal coherent layout from section 1, the new label i is
smoothly alpha-blended into the layout.

As the placement is ordered by importance, the most rele-
vant annotations are placed in the layout first. Less impor-
tant labels are filtered out. Enforcing their placement would
lead to problems such as collision and clustering. Collision
would create rapid movements during conflict resolution,
and it would lead to several unreadable labels as stated by
Wolff [28;, 27, p. 3-4]. Finally, the resulting clusters would
make visual association and reading difficult (see Noyes [19]
and Imhof [13]). These points would contradict our goal to
follow Imhof’s cartographic rules [13].

4.4 Collision
We use a unified approach to layout the labels of all fea-
ture categories. Thus, we can involve all feature types to
compose the final layout. First, we project all computed po-
sitions ppoint, pline, parea, pline0 and pline1 from 3D world
space to 2D screen space, resulting in the projected coor-
dinates p′point, p

′
line, and p′area, and a projected segment

s′line = (p′line0
, p′line1

) (normalized ŝ′line). Second, we gener-

ate an OOBB encompassing each label. Finally, we compute
pair-wise screen space conflicts between all visible OOBBs.
Implementation details are discussed in section 5. Every
OOBB intersection causes the creation of a force vector
fcollision which aims to resolve the collision (see Fig. 5).

collisionf+

collisionf-

Figure 5: Collision dependent force vector fcollision.

Collisions between OOBBs are computed using the separat-
ing axis theorem [10, 24]. It states that if two boxes do not
overlap, there must be an axis which separates their pro-
jections. First, we normalize the edge vectors of an OOBB
with corners C = {c0, c1, c2, c3} to unit length and get the
set of normalized axes â. Then, we project all its corners
C onto every normalized axis. The result is the following
interval I:

I = [imin, imax] = [min{â · ci ∈ C},max{â · ci ∈ C}] (1)

There is no collision between two OOBBs C(n) and C(k)

if there exists a normalized axis â in which the respective
intervals I(n) and I(k) do not overlap. Thus, there is no

collision if for δ
(n,k)
0 := i

(n)
min−i

(k)
max and δ

(n,k)
1 := i

(k)
min−i

(n)
max:

δ0 > 0 ∨ δ1 > 0 (2)

To normalize the difference vector δ = (δ0, δ1)T to [−1,+1],
we calculate the width in relation to the current projection



r

p'
i

oi

(a) Circling annotations: At run-
time, a label i with offset oi can
circle around its point feature p′i.
A spring keeps the label at a dis-
tance r from p′i.

oi

i
p'

ai

(b) Free annotations: At runtime,
a label i can freely move away
from its optimum position p′i +
ai. When no force is acting, the
spring repositions the label from
p′i + oi to p′i + ai.

d

p'
i

is'

oi

(c) Line annotations: At runtime,
the label follows the projected
screen space segment s′i. A spring
positions the label at a distance d
from the line s′i.

Figure 4: Force-based resolution of collisions.

axis as

w = −(δ0 + δ1) (3)

g = 2 · ( δ
w

+ 0.5). (4)

Finally, we have to invert the vector to compute the final
force with magnitude |f | ∈ [0, 1]. Thus, the magnitude of
the resulting force scales with the amount of overlap:

f (n,k) =

{
g · ( 1

|gy| − 1) if | gy
gx
| > 1

g · ( 1
|gx| − 1) else

(5)

Analogously to Hirsch [12], we accumulate all collision forces

f (i,k) (i 6= k) for every visible label i, resulting in a label’s
overall repulsion force

f
(i)
collision =

∑
k

f (i,k) for i 6= k (6)

4.5 Forces and Movement
After calculating the collision forces f

(i)
collision for every visi-

ble label i, we resolve conflicts using a force-based approach.
This enables the flexible definition of each label’s reaction
to its surrounding environment. At timestep t every visible
label i stores its current screen space offset oi from the pro-
jected position p′i, and its velocity vi. First, we compute

the total force f
(i)
total acting on the label i. It is composed

of several forces, depending on the type of the annotation.
In the following, several possible annotation behaviours are
introduced: a free annotation, a line annotation and a circle
annotation behaviour.

Free Annotation A free label i is positioned by an optional
offset ai from its projected anchor p′i (see Fig. 4(b)). When
a collision with force fcollision occurs, it can be repelled in
any direction to an offset oi. Its new screen space position
becomes p′i + ai + oi, and an attracting force ffeature pulls
the label back to its original position p′i + ai. This force
ffeature is modelled as a spring with the constant k1 as in
Hooke’s law:

f
(i)
feature = −k1 · oi (7)

Finally, we introduce a friction force ffriction to stabilize the
force-based system. Based on the current velocity vi and a
friction coefficient c, we get

f
(i)
friction = −c · vi (8)

The total force acting on a free annotation i thus becomes

f
(i)
total = f

(i)
collision + f

(i)
feature + f

(i)
friction (9)

Line Annotation At runtime, labels for line features can
follow a straight segment si in screen space. This is achieved
by adding two stiff springs which create the forces fnormal

and ftangent. fnormal pushes the label displaced by dreal0
from its optimum distance doptimum along the normal back
onto the line. ftangent attracts the label along the line back
onto its anchor. Using the projected and normalized line
segment ŝ′i, the offset oi and the line equation p = p′i + t ŝ′i,
we compute the nearest point pnearest on the line using

pnearest0 = p′i + t ŝ′i with t =
oi · ŝ′i
|̂s′i|2

(10)

dreal0 = ||pnearest0 , p
′
i + oi|| (11)

Using the normal ŝ′normal = (−ŝ′iy , ŝ
′
ix)T , the spring con-

stant k2 and the displacement (dreal0 − doptimum), we com-
pute

f
(i)
normal = −k2 · (dreal0 − doptimum0) · ŝ′normal (12)

The spring force ftangent with the constant k3, pulling the
label back to its center position, is computed analogously.

pnearest1 = p′line + t ŝ′normal with t =
oi · ŝ′normal

|̂s′normal|2
(13)

dreal1 = ||pnearest1 , p
′
i + oi|| (14)

ftangent = −k3 · dreal1 · ŝ
′
i (15)

The total force acting on a line annotation i thus becomes

f
(i)
total = f

(i)
collision + f

(i)
normal + f

(i)
tangent + f

(i)
friction (16)

Circle Annotation Similar to Hirsch [12], we introduce
an annotation which circles around its anchor. We define
a spring with force fcircle keeping the label on a radius r



(a) Annotation layout created by Google Earth: not
enough labels are placed, most labels can not be read
properly and camera movement makes labels jitter.

(b) Labeling of a road network in a GIS. In this figure,
we define a large buffer zone around the labels to
enhance readability and visual association.

Figure 6: Comparison of annotation layouts created by Google Earth (left) and using our real-time labeling
approach (right). Lettering (color, size, font) and temporal coherence directly impacts the readability and
visual association of annotations.

around the projected anchor p′i. Using the distance |oi| be-
tween the current position and the anchor, the displacement
from the equilibrium is (|oi| − r). The restoring force fcircle
with the spring constant k4 and the normalized offset direc-
tion ôi is

f
(i)
circle = −k4 · (|oi| − r) · ôi (17)

The total force for a circle annotation thus becomes

f
(i)
total = f

(i)
collision + f

(i)
circle + f

(i)
friction (18)

4.6 Acceleration
We define a virtual mass mi for each label i. Its value is
determined by the label’s importance. The current acceler-
ation ai is computed using Newton’s second law of motion:

ai = f
(i)
total/mi (19)

Each label i has a screen space offset oi at time t. The time
difference between consecutive frames is given by ∆t. We
obtain the new velocity v′

i and the offset o′
i at time t + ∆t

from Euler’s integration method:

v′
i = vi + ai ·∆t (20)

o′
i = oi + v′

i ·∆t (21)

5. IMPLEMENTATION
To achieve real-time labeling, we need an efficient computa-
tion and resolution of conflicts between labels. We therefore
use the GPU for parallel processing of these tasks. Addition-
ally, by using the GPU, we ease the central processing unit
(CPU) utilization. As a consequence, the CPU is free to aid
in loading, filtering and selection of annotations. The cur-
rent implementation was done in C/C++, uses OpenGL 3.0
and GLSL.

The initial placement of labels is a sequential problem, as we
do not want to place multiple labels on the same free spot.
To minimize the computational load, this task is split over
consecutive frames. In every frame we place a fixed number
of annotations.

5.1 Parallelization
Every label is an independent entity, similar to a particle. Its
properties include the current screen space offset, the veloc-
ity, the dimension and the mass. These are stored in a global
texture buffer object (TBO). First, we use a GPU kernel to
project all anchors of visible labels to screen space. Then,
using each label’s current offset oi and its dimensions, we
write updated OOBB corners in a TBO. In the second step, a
GPU kernel computes the collision between every label pair
(n, k) using the separating axis theorem (see section 4.4).
This results in a 2D buffer containing force vectors. A cell

in row n, column k contains the force f
(n,k)
collision created by

the collision between the OOBBs n and k (see Table 1). To

determine the final force f
(i)
collision acting on a single label i,

we use a line-wise reduction operation. Finally, as described

Label i ID 1 ID 2 ID 3 f
(i)
collision

ID 1 x (0.0, 0.0) (0.5, 0.0) (0.5, 0.0)

ID 2 (0.0, 0.0) x (0.1, 0.3) (0.1, 0.3)

ID 3 (0.5, 0.0) (-0.1, -0.3) x (0.4, -0.3)

Table 1: Pairwise collision creates force f
(n,k)
collision

. Ac-
cumulation gives a global collision force f

(i)
collision

act-
ing on a label i.

in subsection 4.5, we resolve conflicts by applying the force

f
(i)
total onto its respective label i. The computation of f

(i)
total

and the necessary Euler step for moving the offset oi of a
label is done on the GPU. Unfortunately, the precision of
Euler’s method is strongly tied to ∆t. Large values lead to
an unstable layout. Thus, labels are subject to harsh posi-
tion changes. Implementing the fourth order Runge-Kutta
method did not lead to significantly better results. In the
end, clamping the final acceleration value ai was enough to
achieve stability. This leads to continuously moving labels
and thus temporal coherent labeling.



5.2 Rendering Textual Annotations
After we have determined the current screen position of vis-
ible annotations, we render them in a standard way using
texture mapped text [14]. To improve readability, we intro-
duce further techniques: We add a dark outline to the font
to increase the contrast to the background [23, p.416] (see
Fig. 7(a)). A halo around the text clears the space around
the label and makes it more readable [20] (see Fig. 7(c)).

(a) Blank. (b) Dark edge. (c) Halo.

Figure 7: Techniques for increasing the readability.

5.3 Enhancements
To further stabilize the labeling layout, we implement the
following enhancements.

Enhanced OOBBs Changing the view in a scene with a
tight labeling layout creates a lot of movement. We remedy
this by implementing two improvements: First, we slightly
increase the size of the OOBB encompassing each label to
create a buffer zone. Secondly, we define an even larger
zone around visible labels where no new annotations can be
placed. The latter improvement greatly stabilizes the label-
ing layout, but has to be used cautiously to avoid filtering
out important labels.

Speed-based removal To further stabilize the layout, we
remove labels that would otherwise be moving at very high
speed. We also remove labels where the different forces act-
ing on them cancel each other out to a large degree, indi-
cating that the label is constricted from multiple sides. The
removed labels are inserted again after a given time if there
is room for them. These actions help to meet our require-
ments from section 1, where we stated that labels should
make only slow-paced, smooth transitions.

6. RESULTS
In this section, we analyze our force-based labeling approach
with respect to scalability and cartographic principles.

6.1 Scalability
We evaluated the performance on two platforms:

• low-class hardware: Intel Core 2 Duo 1.6 GHz, 4 GB
RAM, NVidia Geforce 8600M GT (256 MB)

• lower medium-class hardware: Intel Core 2 Quad 2.66 GHz,
4 GB RAM, NVidia Geforce 8800GTS 512 (512 MB)

We measured how the timings scale in respect to the number
of labels (see Fig. 8). After each step we synced the GPU
calls to the CPU (glFinish) to measure the total GPU pro-
cessing time. We benchmarked the placement of new labels,
collision computation and resolving conflicts using forces.

The creation of GPU buffers, updating the dataset, and the
readback from GPU to CPU generates a constant overhead

of 2 ms on low-class hardware (1 ms on middle class). The
total time for up to 512 features is nearly constant and stays
below 5.5 ms on low-class hardware (below 2.5 ms on middle
class). Starting from 512 labels, collision takes more than
50% of the total time. With a realistic time budget of 10 ms
for real-time labeling, we achieve interactive framerates for
up to 1024 labels on low-class hardware (2048 labels on mid-
dle class). Also, without syncing the GPU to the CPU, the
layout computation time becomes 10% to 25% faster.

A better scalability to display a much higher number of la-
bels (>2048) can be achieved by limiting the collision search
space to the label’s neighbourhood. It would require to par-
tition all labels in screen space, e.g. with a uniform grid or
a quadtree. This was not deemed necessary in our current
applications, as we display at most several hundred labels.

Figure 9: Labeling of a protein interaction network.
A small buffer zone around the labels enables the
placement of a huge number of labels, at the cost of
a more difficult visual association.

6.2 Concluding Expert Study
Based on our prototype implementation, we performed a
concluding expert study. We invited the same experts as in
section 3 into our research facility. Our goal was to validate
the domain experts’ first recommendations and our subse-
quent choices.

6.2.1 Study Design
In a similar manner to our past study, the interview lasted
one hour and we chose the labeling of a GIS as a representa-
tive application. Supported by our real-time prototype, we
first ask if the four-position model for labeling point features
is appropriate in creating a consistent and clear layout. Sec-
ondly, we ask if its application helps associating the label to
its feature. As stated in section 3, when labels are at steep
angles, we switch from line-aligned (straight, rotated) to a
horizontal annotation of line features. We analyze the an-
notation of both approaches with respect to readability and
visual association. We query if the scaling of labels based
on their depth creates a better spatial perception. We also
study if labels are still readable despite their scaling. We
compare our force-based resolution of collisions to the la-
beling in Google Earth (v6.1.0.5001). In their approach,
when collisions occur, labels are removed and replaced in
the layout. Also, we check if our solution creates too much
movement. To conclude the study, we ask if they approve
our force-based approach for real-world scenarios.

6.2.2 Results of the Study
Annotion of Point Features Almost all (5 of 6) experts
liked the 4-position-model used for cities. The last expert



0

10

20

30

40

0 500 1000 1500 2000

M
ili

se
co

nd
s

Number of Labels

Total Collision Placement Other

(a) Benchmark on low-class hardware: Intel Core 2 Duo
1.6 GHz, 4 GB RAM, NVidia Geforce 8600M GT
(256 MB).

0

2

4

6

8

10

0 500 1000 1500 2000

M
ili

se
co

nd
s

Number of Labels

Total Collision Placement Other

(b) Benchmark on lower medium-class hardware: Intel
Core 2 Quad 2.66 GHz, 4 GB RAM, NVidia Geforce
8800GTS (512 MB).

Figure 8: Benchmarks of our force-based approach. The plot shows synced timings for the layout computation
steps: total labeling time (black), collision computation and resolution (violet), placement of new labels
(green) and the overhead generated by other steps (grey). The computation of layouts for several hundred
labels remains interactive on every hardware.

suggested that switching positions 2 and 4 (see Fig. 3(a))
would create a better model. Four subjects said its appli-
cation creates a consistent labeling layout. In their opinion,
the labels are easily associated to the corresponding point
features. One expert stated that the visual association is
difficult when too many labels are on the screen at once.
Another expert mentioned that the association depends on
the viewing angle.

Annotion of Line Features Roads with horizontal and
line-aligned labels could be easily read by all experts. The
majority (5 of 6) stated that horizontal annotations allowed
an easy visual association. In contrast, only half of the ex-
perts could associate line-aligned labels to their correspond-
ing feature. Of these three experts, two noted a difficult
association for labels further away from the viewer. Of the
other half, one person mentioned that aligned labels hide
the underlying road.

Depth Scaling of Annotations All candidates stated
that scaling labels depending on their depth helps spatial
perception and that all labels are still easily readable.

Comparison Every expert deemed our labeling approach
superior to Google Earth. Three of them disliked the sud-
dendly dissapearing labels. They described the approach as
confusing and agitated.

Force-Based Collision Resolution All experts were pleased
by the alpha blending of labels. The majority of the experts
(5 of 6) liked the smoothly changing label positions and were
not distracted by moving labels. One stated reason was the
aesthetics and two liked the calm layout. The remaining
expert described the force-based method as a gimmick. He
also mentioned that the labels following a line create too
much movement.

6.2.3 Discussion
Depth scaling was unanimously accepted because spatial
perception was improved while all labels remained readable.
The acceptance of the 4-position model was even higher than
in our preliminary study. Horizontal labels for line features
were determined to be easily readable and were also rated
higher than before. However, two experts rejected the idea
of line-aligned labels and two others mentioned cases where

it fails. In total, almost all experts approved of the applica-
tion of our force-based approach for real-world scenarios.

7. CONCLUSION
In this paper, we have presented a real-time force-based la-
beling approach. It allows the flexible definition of forces to
create appropriate layouts. We have presented several force
behaviours for labeling point, line and area features. Our
method follows Imhof’s cartographic principles. Classifica-
tion of labels is done by font scaling, coloring and by choos-
ing appropriate anchor icons. Visual association is achieved
by an appropriate color encoding, distance-dependent scal-
ing and by defining attractive forces pulling the label back
to its anchor. Almost all of our domain experts approve
the force-based approach. Every expert deems it superior
to Google Earth, where labels disappear at collision. They
like our smooth transitions, the excellent readability and
the good visual association. This is achieved with a tempo-
ral coherent layout which enables the user to keep track of
annotations during visual exploration. As the entire method
uses parallel GPU computations, we achieve excellent per-
formance scalability. On medium-class hardware, our ap-
proach can layout up to 2000 annotations in real-time, con-
suming about 10 ms per frame. This enables the labeling
of vast information graphs, GIS on powerwalls, and even al-
lows real-time layout computation on embedded hardware,
e.g. for automotive navigation systems. Furthermore, as no
precomputation is necessary, it is possible to include dy-
namic and online annotations. Hence, our force-based ap-
proach can be applied to a broad range of applications such
as GIS and scientific and information visualization. In fur-
ther research, we plan to develop more intelligent selection
and filtering techniques. Also, we will evaluate the manage-
ment and visualization of occluded labels in 3D cities and
terrains. Using the terrain’s depth and silhouette buffer we
could appropriately place labels in 3D terrains.

8. ACKNOWLEDGMENTS
We would like to thank Michael Genau for the first im-
plementation of the force-based algorithm. Also, we thank
Christopher Roelle for his extensive help during the design
of this approach. Finally, we thank Philipp Promesberger
for developing huge parts of the map rendering framework.



9. REFERENCES
[1] K. Ali, K. Hartmann, and T. Strothotte. Label layout

for interactive 3d illustrations. Journal of the WSCG,
13(1):1–8, 2005.

[2] K. Been, E. Daiches, and C. Yap. Dynamic map
labeling. IEEE Transactions on visualization and
computer graphics, 12(5):773–780, 2006.

[3] B. Bell, S. Feiner, and T. Höllerer. View management
for virtual and augmented reality. In Proceedings of
the 14th annual ACM symposium on User interface
software and technology, pages 101–110. ACM, 2001.

[4] J. Chen, P. Pyla, and D. Bowman. Testbed evaluation
of navigation and text display techniques in an
information-rich virtual environment. In Virtual
Reality, 2004. Proceedings. IEEE, pages 181–289.
IEEE, 2004.

[5] J. Christensen, J. Marks, and S. Shieber. An empirical
study of algorithms for point-feature label placement.
ACM Transactions on Graphics (TOG),
14(3):203–232, 1995.

[6] H. Cords, M. Luboschik, and H. Schumann. Floating
labels: Improving dynamics of interactive labeling
approaches. In Proceedings of MCCSIS (IADIS Multi
Conference on Computer Science and Information
Systems), pages 235–238, 2009.

[7] D. Ebner, G. Klau, and R. Weiskircher. Force-based
label number maximization. Technical Report
TR-186-1-03-02, Vienna University of Technology,
2003.

[8] D. Ebner, G. W. Klau, and R. Weiskircher. Label
number maximization in the slider model. In J. Pach,
editor, Graph Drawing, volume 3383 of Lecture Notes
in Computer Science, pages 144–154. Springer Berlin /
Heidelberg, 2005.

[9] M. Feigenbaum. Method and apparatus for
automatically generating symbol images against a
background image without collision utilizing
distance-dependent attractive and repulsive forces in a
computer simulation, Oct. 11 1994. US Patent
5,355,314.

[10] S. Gottschalk. Collision Queries using Oriented
Bounding Boxes. PhD thesis, University of North
Carolina at Chapel Hill, 2000.

[11] T. Götzelmann, K. Hartmann, and T. Strothotte.
Agent-based annotation of interactive 3d
visualizations. In Smart Graphics, pages 24–35.
Springer, 2006.

[12] S. Hirsch. An algorithm for automatic name
placement around point data. Cartography and
Geographic Information Science, 9(1):5–17, 1982.

[13] E. Imhof. Positioning names on maps. The American
Cartographer, 2(2):128–144, 1975.

[14] M. Kilgard. A simple opengl-based api for texture
mapped text. 1997.

[15] M. Luboschik, H. Schumann, and H. Cords.
Particle-based labeling: Fast point-feature labeling
without obscuring other visual features. IEEE
Transactions on Visualization and Computer Graphics
(TVCG) / Proceedings of IEEE Information
Visualization (InfoVis’ 08), 14(6):1237–1244,
November-December 2008.

[16] S. Maass and J. Döllner. Efficient view management

for dynamic annotation placement in virtual
landscapes. In A. Butz, B. Fisher, A. Krüger, and
P. Olivier, editors, Smart Graphics, volume 4073 of
Lecture Notes in Computer Science, pages 1–12.
Springer Berlin / Heidelberg, 2006.

[17] J. Marks and S. Shieber. The computational
complexity of cartographic label placement. Technical
Report TR-05-91, Harvard University Center for
Research in Computing Technology, Cambridge,
Massachusetts, 1991.

[18] K. Mote. Fast point-feature label placement for
dynamic visualizations. Information Visualization,
6(4):249–260, 2007.

[19] L. Noyes. The Positioning of Type on Maps: The
Effect of Surrounding Material on Word Recognition
Time. Human Factors: The Journal of the Human
Factors and Ergonomics Society, 22(3):353–360, 1980.

[20] J. O’Beirne. Blog 41latitude. Electronic Blog,
December 2010.

[21] I. Petzold, G. Gröger, and L. Plümer. Fast screen map
labeling - data-structures and algorithms. In Proc.
23rd Internat. Cartographic Conf.(ICC’ 03), pages
288–298, 2003.

[22] S. Pick, B. Hentschel, M. Wolter, I. Tedjo-Palczynski,
and T. Kuhlen. Automated positioning of annotations
in immersive virtual environments. In Proceedings of
the Joint Virtual Reality Conference of EuroVR -
EGVE - VEC, 2010.

[23] A. H. Robinson. Elements of cartography. John Wiley
& Sons, Inc, New York, 2 edition, 1960.

[24] P. Schneider and D. Eberly. Geometric tools for
computer graphics. Morgan Kaufmann Publishers,
2003.

[25] G. Stadler, T. Steiner, and J. Beiglbock. A practical
map labeling algorithm utilizing morphological image
processing and force-directed methods. Cartography
and Geographic Information Science, 33:207–215(9),
July 2006.

[26] T. Stein and X. Décoret. Dynamic label placement for
improved interactive exploration. In Proceedings of the
6th international symposium on Non-photorealistic
animation and rendering, NPAR ’08, pages 15–21,
New York, NY, USA, 2008. ACM.

[27] S. Van Dijk, M. Van Kreveld, T. Strijk, and A. Wolff.
Towards an evaluation of quality for names placement
methods. International Journal of Geographical
Information Science, 16(7):641–661, 2002.

[28] A. Wolff. Automated label placement in theory and
practice. PhD thesis, Freie Universität Berlin,
Universitätsbibliothek, 1999.

[29] A. Wolff and T. Strijk. The map-labeling
bibliography. Electronic Bibliography, 2011.

[30] M. Yamamoto, G. Camara, and L. Lorena. Fast
point-feature label placement algorithm for real time
screen maps. In Proceedings of the Brazilian
Symposium on GeoInformatics (GEOINFO’ 05), pages
1–13, 2005.

[31] P. Yoeli. The logic of automated map lettering. The
Cartographic Journal, 9(2):99–108, 1972.


