
Volume xx (200y), Number z, pp. 1–14

Real-Time Fluid Effects on Surfaces
using the Closest Point Method

S. Auer†,1, C. B. Macdonald‡,2, M. Treib§,1, J. Schneider¶,3, R. Westermann‖,1

1Technische Universität München
2Oxford Centre for Collaborative Applied Mathematics (OCCAM)

3King Abdullah University of Science and Technology

Abstract

The Closest Point Method (CPM) is a method for numerically solving partial differential equations (PDEs) on
arbitrary surfaces, independent of the existence of a surface parametrization. The CPM uses a closest point rep-
resentation of the surface, to solve the unmodified Cartesian version of a surface PDE in a 3D volume embedding,
using simple and well-understood techniques. In this paper we present the numerical solution of the wave equation
and the incompressible Navier-Stokes equations on surfaces via the CPM, and we demonstrate surface appear-
ance and shape variations in real-time using this method. To fully exploit the potential of the CPM, we present
a novel GPU realization of the entire CPM pipeline. We propose a surface-embedding adaptive 3D spatial grid
for efficient representation of the surface, and present a high-performance approach using CUDA for converting
surfaces given by triangulations into this representation. For real-time performance, CUDA is also used for the
numerical procedures of the CPM. For rendering the surface (and the PDE solution) directly from the closest point
representation without the need to reconstruct a triangulated surface, we present a GPU ray-casting method that
works on the adaptive 3D grid.

Categories and Subject Descriptors (according to ACM CCS): I.6.8 [Simulation and Modeling]: Types of
Simulation—Parallel I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Raytracing

1. Introduction

Techniques for solving partial differential equations (PDE)
have numerous applications in physics-based simulation and
modeling, and they are frequently employed in computer
graphics for realistically simulating real-world phenomena
such as fluids or deformable solids. Most commonly, partial
differential equations over R2 or R3 are considered, and,
since analytical solutions only rarely exist, numerical solu-
tions using some form of spatial discretization are employed.

In computer graphics, numerical solutions of PDEs are
also used to produce effects on manifolds such as surfaces

† e-mail:auer@in.tum.de
‡ e-mail:macdonald@maths.ox.ac.uk
§ e-mail:treib@tum.de
¶ e-mail:jens.schneider@kaust.edu.sa
‖ e-mail:westermann@tum.de

in R3. Prominent examples include surface texture synthe-
sis [Tur91], texture assignment [CLB∗09], or flow simula-
tion on surfaces [Sta03]. If an isometric surface parametriza-
tion exists, a PDE defined on a surface can be transformed
into a PDE on the 2D parameter domain and solved using
standard discretizations [Sta03, LWC05, LFW07]. PDEs on
surfaces can also be solved directly using finite element dis-
cretizations on a surface triangulation [DE07]. These tech-
niques, however, rely on changing the non-parametric form
of the PDE to agree with the underlying discretization. An
alternative are so-called embedding techniques [BCOS01,
NNRW09, CLB∗09, RM08, CRT04], which lift the PDE to
a narrow band around the surface and solve a transformed
PDE on this band.

Embedding techniques are particularly attractive because
they do not rely on the existence of a low distortion
parametrization. The computation of such a parametrization
can be difficult to achieve, if not impossible, and it is not suit-
able in applications where the surface undergoes frequent

submitted to COMPUTER GRAPHICS Forum (3/2012).



2 S. Auer, C.B. Macdonald, M. Treib, J. Schneider & R. Westermann / Real-Time Fluid Effects on Surfaces using the Closest Point Method

Figure 1: Numerical simulation of fluids on complicated
surfaces via the Closest Point Method. Top: The simulation
result is rendered via rasterization and pixel shading. Bot-
tom: Raycasting the embedding computational grid allows
simulating surface displacements. At a resolution that corre-
sponds to a 5123 Cartesian grid, simulation and rendering
takes less than 160 ms per time step.

shape changes. Another advantage of embedding techniques
is that once the PDE has been lifted to the embedding 3D
space, standard numerical schemes can be used in this space
to efficiently solve the PDE.

Among the embedding techniques, the Closest Point
Method (CPM) is one of the less complicated methods in
that it only requires the existence of a closest point repre-
sentation of the surface (i.e., for any point in the embedding
space, the surface point with the least Euclidean distance is
known) and it solves completely standard PDEs—without
any metric terms—in the embedding space using common
numerical methods on a uniform Cartesian grid [RM08]. In
addition, the CPM can handle general open surfaces and sur-
faces without orientation, and, thus, is applicable even in
scenarios where the surface separates into parts.

Despite its simplicity and accuracy, however, a naïve im-
plementation of the CPM is exhaustive in memory. Such
an implementation would typically construct a full surface-
embedding Cartesian grid and pre-compute at any grid point
its closest surface point. It is clear that this severely limits the
resolution of the computational grid to be used. Furthermore,
the closest point representation remains fixed only under the
assumption that the surface does not change. In scenarios
where this is not the case, re-computing closest points can
have a severe impact on performance.

Our contribution. The primary focus of this paper is the
simulation of fluid effects on surfaces in real time using the
CPM. To achieve this, we present a fast GPU method for re-
alizing the CPM and rendering the simulation results. The
method can efficiently solve non-linear PDEs on surfaces
using a high-resolution embedding grid, and it can calcu-
late and render the resulting fields independently of the input
surface resolution. Due to the strict separation of the surface
representation and the computational grid, our method sup-
ports initial surfaces of arbitrary topology and geometric de-
tail. The method is implemented in CUDA and Direct3D10,
and all parts have been optimized to make the best possible
use of the massive parallel processing power and memory
bandwidth on current GPUs.

The particular contributions of our paper are:

• A novel CUDA method for constructing an adaptive
multiblock closest point grid representing a narrow spa-
tial band around a given triangulated surface.

• A CPM for numerically solving the wave equation and the
Navier-Stokes equations on arbitrary surfaces.

• A GPU ray-caster that works directly on the adaptive clos-
est point grid and can visualize surface appearance at-
tributes and surface displacements.

Our paper is structured as follows: In Section 2 we discuss
previous work that is related to ours. The CPM is reviewed
in Section 3. Section 4 is dedicated to the efficient construc-
tion of an adaptive computational grid enclosing a triangu-
lated surface representation, and the generation of the closest
point representation. Section 5 sheds light on the numerical
solution of the second-order linear wave equation and the in-
compressible Navier-Stokes equations via the CPM. Besides
discretization aspects, the effects of the closest point exten-
sion on stability, accuracy and performance of the simula-
tion are discussed. Section 6 introduces the volume raycaster
that is used to visualize dynamic color and displacement ef-
fects independently of the surface triangulation. Section 7
presents a detailed performance analysis. The paper is con-
cluded with a discussion of the advantages and limitations of
the proposed method and some ideas for future work.

2. Related Work

An interesting surface-based problem is the simulation of
fluid dynamics on surfaces. Stam applied a modified 2D ver-
sion of his stable fluid dynamics simulation [Sta99] to the
patches of Catmull–Clark surfaces and introduced a tech-
nique to transfer information in an overlap between the
patches [Sta03]. While working well in regular areas of
the surface, the approach leads to errors at non-valence-
four vertices. For techniques relying on some sort of global
parametrization similar problems can be expected at the sin-
gularities.

Several other authors directly use the vertices and edges
of triangle meshes as a discretization and employ finite

submitted to COMPUTER GRAPHICS Forum (3/2012).



S. Auer, C.B. Macdonald, M. Treib, J. Schneider & R. Westermann / Real-Time Fluid Effects on Surfaces using the Closest Point Method 3

element, finite volume, Lattice Boltzmann or related nu-
merical methods in their solvers [SY04, FZKH05, NMZ07,
ATBG08]. This however takes away some advantages of a
regular grid discretization as finite element methods are gen-
erally more complicated. Particularly on surfaces, the result-
ing algorithms may be quite difficult to implement in prac-
tice, e.g. [RWP06]. Finally, if the input surface is not given
as a triangulation a costly reconstruction procedure may be
required.

The interest in simulation on surfaces also resulted in par-
ticle based solutions. Turk [Tur91] simulated reaction diffu-
sion systems in a grid formed by particle relaxation on a sur-
face, with connectivity given by a Voronoi diagram. Later,
the technique was adapted to general shallow water equa-
tions [WMT07]. Bürger et al. [BKW10] use an orthogonal
fragment buffer to trace particles along a surface in order to
color the surface.

Chuang and colleagues [CLB∗09] proposed a volume em-
bedding scheme based on B-splines as Ansatz-functions in a
hexahedral simulation grid. By restricting the basis functions
to a surface instead of a sub-volume, a weak form of a sur-
face PDE can be solved independently of the 3D simulation
domain, but at the expense of explicitly clipping the surface
mesh against the simulation cells.

The Closest Point Method was introduced by Ruuth and
Merriman [RM08]. Later works presented an implicit time
stepping [MR09] and used the CPM for the evolution of
level sets [MR08] or segmentation on surfaces [TMR09].
Hong et. al [HZQW10] applied the CPM to fire simulation
on animated surfaces. Due to the embedding used, the CPM
relies on certain properties of distance transforms, such as
smoothness of properties close to the surface. Jones [JBS06]
provides an excellent survey of these properties.

An additional topic related to our method is GPU-based
surface voxelization of triangle meshes. We borrow ideas
from several authors [DCB∗04,ED06,ZCEP07,SS10,Pan11]
and perform a surface voxelization to determine all vox-
els lying within a computational band of arbitrary thickness
around the surface. For these voxels, the CPM surface repre-
sentation stores the closest points on the surface. As such,
our technique computes a partial distance volume around
the surface, including the positions of the closest points.
Building upon the work of Pantaleoni, Schwarz and Sei-
del [SS10, Pan11], we demonstrate the efficient use of the
CUDA parallel programming API for constructing a multi-
block closest point grid.

3. The Closest Point Method

As mentioned above, the CPM is an embedding method
where computations are performed in an embedding space
surrounding the surface (typically a 3D volume) in such a
way that the results are consistent with the solution of a sur-
face partial differential equation. The main principle needed

for this to be true is that of “equivalence of gradients”: the
intrinsic surface gradient∇Su of a surface function u agrees
on the surface with the standard Cartesian gradient of a vol-
ume function v, provided v is the closest point extension of
u [RM08]. Intuitively this is because the closest point exten-
sion v(x) = u(cp(x)) is constant in the normal direction to
the surface so the change in v must be tangent to the surface.
Here, cp(x) denotes the surface point closest to the point x.
A second principle applies in a similar fashion to surface di-
vergence operators [RM08]. The two principles can be com-
bined to handle many other differential operators including
the Laplace–Beltrami operator.

To build a numerical method on these ideas, consider a
prototype problem describing the evolution of some attribute
u on a surface

ut = f (∇Su)

where f is a general nonlinear function and∇Su is the intrin-
sic surface gradient. Suppose at some fixed time t we have a
solution vt defined over the volume which is constant in the
normal direction to the surface. We can move the solution
forward in time by one step of size ∆t using, for example, a
forward Euler discretization. This evolution phase requires
us to evaluate the right-hand side at time t and by the princi-
ples mentioned above, this is exactly the same (for points on
the surface) as evaluating f (∇vt) in the volume:

ṽt+1 := vt +∆t f (∇vt).

The new solution ṽt+1 might not be constant in the normal
direction so we then perform a second extension phase, a
closest point extension which projects values off the surface
into the surrounding volume to obtain a solution vt+1 which
is constant in the normal direction:

vt+1(x) := ṽt+1(cp(x)), for each point x.

To obtain values at cp(x), which does not have to coincide
with a grid sample xG in the discrete case, higher-order in-
terpolation is used. We then repeat these two phases over and
over to advance the solution in time. Several properties make
the Closest Point Method simple and effective:

• In the embedding volume, simple well-understood finite
difference schemes can be applied to evaluate f (∇v).

• Posing the PDE in the embedding volume is easy: in our
example, the nonlinear function f is unchanged in the vol-
ume calcuation and we simply replace intrinsic differen-
tial operators with their standard Cartesian counterparts.
There are no metric terms to deal with.

• In the extension phase, we need the closest point for each
grid point in our embedding volume. This is the only ge-
ometry representation of the surface that is needed and
it is a very general representation: allowing arbitrary co-
dimension and non-orientable surfaces for example.

• Without effects on the accuracy, the computation can be
performed on a narrow band enveloping the surface. Due

submitted to COMPUTER GRAPHICS Forum (3/2012).



4 S. Auer, C.B. Macdonald, M. Treib, J. Schneider & R. Westermann / Real-Time Fluid Effects on Surfaces using the Closest Point Method

to the closest point extension, artificial boundary condi-
tions do not need to be applied at the band’s exterior.
• The accuracy of the method is well-understood and de-

pends on the accuracy of the time-stepping scheme, the
finite difference scheme and the interpolation scheme.

In principle, the discrete closest point surface represen-
tation required by the CPM is a volumetric Cartesian grid,
where each grid cell stores the surface point closest to its
center. When the surface is smooth, the closest point is
unique in a small band around the surface. However, in our
application where the CPM is used to simulate effects on
surfaces given by piecewise linear triangle meshes, the sur-
face is only C0 at the edges. Thus, discontinuities in the clos-
est point field can arise, and for a single grid point more
than one closest point can exist on the surface. In this case
we select one of these closest points arbitrarily. The closest
point extension propagates such discontinuities also to the
fields which store the simulation attributes. Both the exten-
sion phase and the evolution phase must therefore employ
numerical schemes that are tolerant of discontinuities.

3.1. Adaptive Multiblock CPM

For high resolution simulations, the use of a uniform simu-
lation grid is impractical. For the CPM, on the other hand,
it is sufficient to work on two narrow computational bands
around the surface: The evolution band and the extension
band, which are used in the evolution and extension phase
of the CPM, respectively. This suggests using an adaptive
multiblock grid, which stores only those blocks of the full
grid which overlap these bands. Figure 2 illustrates such a
multiblock grid in 2D. The widths we choose for the bands
are the ones proposed by Macdonald and Ruuth [MR08]
(Section 4.1.1).

5 

0 1 2 
3 4 … 5 6 7 

Figure 2: Sparse closest point grid. Left: A grid of blocks,
some of them overlapping the narrow band around the sur-
face. Top right: Only blocks overlapping the narrow band
around the surface are stored in linear order. Bottom right:
The closest points of the grid cells within these blocks.

The multiblock grid is comprised of two levels. The

coarse level consists of a regular 3D grid, where each cell
represents a block of cells in the uniform simulation grid.
The fine level consists of the grid cells of those blocks which
are intersected by the computational band. All data is stored
in linear buffers. The coarse-level cells representing an in-
tersected block store the position in the fine level buffer at
which this block is laid out. For constructing a closest point
surface representation we first compute the blocks which are
intersected by the computational band. This is performed by
determining for every triangle separately the blocks which
are intersected by the band around it. The cells of a block
determined in this way are stored in a contiguous region in
the fine-level buffer. To allow for an efficient computation
of the closest point of each fine-level cell, we also compute
the set of triangles intersecting this block. For each cell of
the same block we then iterate over the corresponding set of
triangles and compute the closest surface point. Finally, the
simulation is carried out on the fine-level cells.

4. CPM on the GPU

Since we are aiming to support both static and time-varying
surfaces, for instance surfaces that are modified in turn by
the CPM simulation, an important requirement is that the
creation and update of the sparse closest point representa-
tion can be performed at high rates even for high-resolution
surfaces and simulation grids. For this computationally and
bandwidth intense task, we exploit the massively parallel ar-
chitecture of the GPU.

Our proposed algorithm for constructing a closest point
volume is inspired by recent CUDA voxelization approaches
[SS10,Pan11]. Similar to the tile-based approaches proposed
in these works, we use a sort-middle rasterization pipeline
which first assigns triangles to coarse blocks and then per-
forms a fine-grain voxelization and closest point calculation
per block. There are, however, some specific differences of
our GPU algorithm:

• It computes a surface voxelization using a distance crite-
rion that is based on the thickness of the computational
band around a surface.

• It calculates for every voxel within the computational
band its closest surface point and the distance to this point.

• It constructs an adaptive 2-level multiblock grid designed
for efficient simulation.

• It parallelizes over fine level cells instead of triangles to
avoid shared memory atomics in the closest point calcula-
tion.

4.1. Data Layout and Grid Generation

For the sake of clarity, we will first describe the GPU con-
struction of the sparse multiblock grid, including the in-
dexing schemes that are required to efficiently perform the
CPM, before we go into the details of the actual closest point
calculation.

submitted to COMPUTER GRAPHICS Forum (3/2012).



S. Auer, C.B. Macdonald, M. Treib, J. Schneider & R. Westermann / Real-Time Fluid Effects on Surfaces using the Closest Point Method 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

block-index-buffer 

compacted-block-index-buffer 

closest-point-buffer 

vi
rt

u
al

 s
im

u
la

ti
o

n
 g

ri
d

 

exclusive prefix sum 

expanded-tri-buffer 

triangles-per-block 

0 1 2 3 4 5 6 7 

Stage
 3

 
Stage

 1
 

Stage
 2

 
blocks-per-triangle 

0 1 2 3 4 

exclusive prefix sum 

key 
value 
sort 

0 1 2 3 4 5 6 7 

exclusive prefix sum 

Figure 3: Overview of the different GPU buffers that are created to facilitate an efficient realization of the CPM.

To create the sparse simulation grid, the user first selects a
simulation resolution by specifying the size ∆x of one simu-
lation cell. Then the bounding volume of the triangle mesh—
enlarged to respect the width of the computational band—is
subdivided into k× l×m equally sized blocks. We assume
that each block contains b3 simulation cells, so that the val-
ues of k, l, and m can be computed.

The grid construction on the GPU consists of three stages:
First, we determine which and how many blocks are inter-
sected by the computational band. The block-index-buffer is
used to keep track of this information. Second, the closest-
point-buffer—large enough to store the closest points of all
simulation cells represented by these blocks—is allocated.
To accommodate fast access to cells in adjacent blocks,
an additional buffer—the compacted-block-index-buffer—is
created. It has as many entries as there are intersected blocks,
and it stores the positions of these blocks in the block-index-
buffer. From this, and by taking into account that in the
block-index-buffer all blocks are laid out in x/y/z-order, adja-
cency information can be resolved. Third, the expanded-tri-
buffer is constructed to support coalesced memory write op-
erations in the closest point construction (see the following
subsection). This buffer stores, in contiguous sections, the
sets of triangles that are required by each block to compute
the closest point grid. The different buffers are illustrated
in Figure 3. In the following, we will describe the parallel
CUDA implementation of the three stages.

Stage 1: One CUDA-thread is launched per triangle, and
each thread determines the blocks that are intersected by
the computational band around this triangle. Therefore, each
thread computes the triangle’s axis aligned bounding box—
enlarged by the width of the computational band—and com-
putes the blocks that are intersected by this box. Since test-
ing against the bounding box can result in false positives,
i.e., blocks that are intersected by the bounding box but not
the computational band, an additional test of the blocks is

performed to prune as many of them as possible: For ev-
ery intersected block, the thread calculates the distance from
the block center to the triangle and skips the block if its
bounding sphere does not intersect the triangle’s computa-
tional band. By writing a 1 into block-index-buffer at the po-
sitions of the remaining blocks, these blocks are marked as
intersected. Because all threads write the same value, a syn-
chronization of the write operations is not necessary in this
case.

At the end of stage 1, each thread writes the number in-
dicating how many blocks are intersected by the triangle
to a temporary buffer—blocks-per-triangle—in global GPU
memory. Finally, an exclusive parallel prefix sum [Har07] is
computed in-place over block-index-buffer and blocks-per-
triangle. At the positions that were marked, the block-index-
buffer now contains the relative positions of the respective
block in the sequence of marked blocks.

Stage 2: Since the prefix sum operation also calculates the
total number of marked blocks, the closest-point-buffer can
be allocated in GPU memory. Then, a CUDA kernel with
one thread per entry in block-index-buffer is executed. The
ith thread reads the index value val from the buffer at position
i and compares it to the value that is stored at position i+1.
If the values are different, the thread writes the value i into
the compacted-block-index-buffer at position val.

Stage 3: We start by allocating the expanded-tri-buffer in
GPU global memory using the size indicated by the prefix
sum over blocks-per-triangle. The elements of this buffer are
pairs of block-triangle indices, and for each triangle these
pairs are written in succession into the buffer. Since the par-
allel scan operation also gives the starting positions of each
set of block-triangle pairs in expanded-tri-buffer, a CUDA
kernel with one thread per triangle is executed to first build
these sets in shared memory—including the computation of
intersected blocks as described before—and then to write
them into the buffer at the starting positions (see the first

submitted to COMPUTER GRAPHICS Forum (3/2012).



6 S. Auer, C.B. Macdonald, M. Treib, J. Schneider & R. Westermann / Real-Time Fluid Effects on Surfaces using the Closest Point Method

occurrence of expanded-tri-buffer in Figure 3). In the same
kernel, we use CUDA’s atomicAdd operation to fill a buffer
triangles-per-block, which stores for every marked block the
number of triangles it intersects.

In a second pass, expanded-tri-buffer is sorted with re-
spect to the block ID using the CUDA radix sort [Har07],
and a prefix sum over triangles-per-block is calculated. From
the content of the resulting buffers the indices of all triangles
contributing to the closest point representation for a particu-
lar block can be determined.

4.2. Closest Point Computation

For each of the cells in the closest-point-buffer, all of which
are uniquely defined by the block they belong to and their
relative position in the sequence of cells of this block, the
point on the surface that is closest to the cell’s center has
to be computed (we will call these centers the grid vertices
from now on). The parallel CUDA implementation we pro-
pose is optimized to reduce global memory operations by
performing a block-wise closest point computation in shared
memory, and writing the results en-block into global mem-
ory.

The CUDA kernel to compute the closest point represen-
tation executes one warp of CUDA threads per grid block.
Every thread computes the closest point of exactly one grid
vertex, by sequentially traversing the triangles that are stored
in expanded-tri-buffer for that block. Thus, the threads of
one warp process a number of grid vertices in parallel, in
the same order they lie in memory, meaning that all required
global memory buffers are accessed only by coalesced, fully
utilized memory transactions. Furthermore, since the threads
of a warp are executed in lock-step and every grid vertex
is processed by exactly one thread, all synchronization and
atomic instructions can be omitted.

In shared memory, two buffers are allocated to store the
closest point coordinates and the distances of the grid ver-
tices to these points. All threads of one warp first perform
a coalesced global memory read operation to fetch the tri-
angles from expanded-tri-buffer that are needed to compute
the closest points. The number of triangles is read from
triangles-per-block.

Each thread computes the grid vertex for the cell it is
working on. Then, it iterates over all triangles, and for each
of them it computes the closest point and corresponding dis-
tance. If the distance is shorter than the one stored in the
shared memory buffer, both the distance and the closest point
coordinate are updated. The closest point computation is per-
formed by first determining whether the grid vertex is closest
to a corner, an edge, or the triangle’s interior. By a coordi-
nate system transformation that brings the triangle into one
of the coordinate planes, this essentially breaks down to a 2D
problem: According to the illustration in Figure 4, we need

to identify in which of the 7 zones of the triangle the pro-
jected vertex x0 lies. After all triangles have been processed,
the shared memory buffers are copied in coalesced, fully uti-
lized memory transactions to buffers in global memory.

xG 

ctp(xG) 

x0 

x 

y 

7 

3 

5 

1 

4 
6 

2 

Figure 4: In each of the 7 zones, xG is closest to one region
of the triangle (face, edge, corner).

5. Fluid Simulation

In the following we describe the simulation of fluid effects
on surfaces using the CPM on the GPU. We focus on the
numerical solution of two different PDEs describing such
effects: the wave equation and the incompressible isothermal
Navier-Stokes equations.

Before a PDE solution can be computed via the CPM, ap-
propriate initial conditions have to be specified (Section 5.1).
Then, each solution step generally consists of two phases,
both implemented on the GPU via CUDA: In the evolution
phase, the solution of the embedding PDE (Section 5.2) in
the next time step is calculated for all grid vertices in the
evolution band. After the evolution, the closest point exten-
sion (Section 5.3) is applied to all vertices in the extension
band. In this phase, the solution is propagated from the sur-
face to the computational band by replacing the values at the
grid vertices with values interpolated at the closest points on
the surface.

For the wave equation (Section 5.4), the less involved of
the two presented fluid models, just one evolution and one
extension is necessary for each time step. In contrast, for the
incompressible Navier-Stokes model (Section 5.5) a split-
ting method was used to handle the terms of the equations
independently of each other. Consequently, in this model a
time step requires several sub-steps and also more than one
closest point extension (see Figure 5).

5.1. Initialization

The definition of the computational bands and the construc-
tion of the closest point representation (Section 4) are nec-
essary to start the CPM. The initialization of the solution
variable completes the initialization phase. In this step, ini-
tial data on the surface has to be extended to the simulation

submitted to COMPUTER GRAPHICS Forum (3/2012).



S. Auer, C.B. Macdonald, M. Treib, J. Schneider & R. Westermann / Real-Time Fluid Effects on Surfaces using the Closest Point Method 7

Evolution 1 Extension 1 … Evolution N Extension N 

Single timestep with several sub-steps 

Evolution of PDE Extension through Interpolation 

Figure 5: A time step may require several sub-steps, consist-
ing of an evolution (left) and an extension phase (right).

grid. When the surface is given as a triangle mesh, the initial
data is typically given as per-vertex attributes or as a texture
map. Every grid vertex in the extension band interpolates the
surface data at the closest point and stores this value at its lo-
cation in the simulation grid.

5.2. Evolving the PDE

To update the simulation attributes with the solution for the
next time step, we run one CUDA thread per grid vertex of
the intersected blocks. If the vertex is not within the evolu-
tion band, the thread terminates immediately. For each term
of the embedding PDE we choose an adequate evolution
strategy (see Sections 5.4 and 5.5). The embedding of terms
of the PDE involving spatial differential operators up to or-
der two is found by replacing surface gradients, surface di-
vergences and Laplace–Beltrami operators with their stan-
dard Cartesian counterparts in R3. The discretization can
then be done via regular finite differences. The appealing
property of CPM in this case is that information is automat-
ically propagated only in tangential directions along the sur-
face. When we have an existing discretization for the prob-
lem of choice inR3, we can reuse it without modification.

The user steers the interactive simulation at runtime, by
modifying the simulation attributes temporarily or placing
permanent Dirichlet boundary conditions. When this hap-
pens, we find the first surface point under the mouse cur-
sor via raycasting (see Section 6.1) where we then attach a
sphere with a radius equal to the width of the extension band.
In every time step, one CUDA thread is started for each grid
vertex within one of these spheres in order to replace the
respective attribute values.

5.3. Closest Point Extension

The closest point extension is performed by one CUDA
thread per grid point in the extension band. We retrieve the
grid point’s closest point on the surface and resample the
respective attribute at this position using an interpolation
scheme. The value at the grid point is then replaced by the
interpolated value, thus creating a field that is constant in
normal directions to the surface. For values outside the evo-
lution band this can be seen as a natural form of Neumann
boundary condition, because gradients in directions normal
to the boundary are always zero. The kind of interpolation is
important and influences stability, quality and performance
of the whole simulation.

528 Triangles 57,120 Triangles Analytic Sphere

Figure 6: Top: With linear interpolation (left) instead of
WENO4 interpolation (right) the simulation shows artifi-
cial diffusion and loses energy. Middle: Initialization with
a high-quality triangle mesh instead of an analytic surface
leads only to subtle differences in the simulation results (grid
size: 2563). Bottom: While the CPM generally requires the
surface to be smooth, with clamped WENO interpolation it
even gives visually plausible results at sharp creases.

A stable interpolation scheme is especially important
when dealing with non-smooth surfaces. While the funda-
mental assumptions of the CPM are true only for smooth
surfaces like the analytic sphere shown in Figure 6 middle,
it is desirable to also handle triangulated surfaces as well as
surfaces with sharp features as shown, for instance, in Fig-
ure 6 bottom. However, the closest point field on the con-
cave side of the surface can contain discontinuities even in
the vicinity of such features, and due to the closest point ex-
tension this can result in discontinuities in the simulation at-
tributes (see Figure 7). This effect is proportional to the dis-

submitted to COMPUTER GRAPHICS Forum (3/2012).



8 S. Auer, C.B. Macdonald, M. Treib, J. Schneider & R. Westermann / Real-Time Fluid Effects on Surfaces using the Closest Point Method

x

cp(x)

S

Figure 7: At sharp creases the closest point field is discon-
tinuous on the concave side of the surface. This can also lead
to discontinuities in the simulation attributes.

tance of the closest points on the two sides of the discontinu-
ity, which itself depends on the sharpness of the feature and
the distance from the surface. As a consequence, especially
when larger stencils are used the stability of the interpolation
scheme becomes important. In general, the same applies to
the integration technique used in the evolution phase. Since
the proposed integration schemes did not show any stability
issues at sharp features, however, special treatment was only
necessary in the extension phase.

Linear interpolation is computationally cheap and fulfills
the convex hull property, which guarantees stability of the in-
terpolation even if the field is discontinuous. Unfortunately,
at least for second-order PDE problems, linear interpola-
tion is not accurate enough for the CPM to ensure consis-
tency [RM08]. At any rate and in practice, linear interpo-
lation introduces a significant amount of artificial numerical
diffusion, which manifests in a loss of energy in physics sim-
ulations (cf. Figure 6 top).

In the work of Macdonald and Ruuth [MR08], a weighted,
essentially non-oscillatory (WENO) interpolation appropri-
ate for the CPM was presented (Section 3.1 and Appendix A
of [MR08]). In smooth areas it is of higher order, which pre-
vents numerical diffusion. As with most polynomial inter-
polations, stability can be critical near discontinuities where
the polynomials overshoot the values in the stencil. To re-
duce this effect, the WENO algorithm calculates a weight
for several candidate polynomial interpolants and takes a
weighted sum of each interpolant. If a particular candidate is
highly oscillatory in a given region it is assigned a very small
weight. By this means oscillations are minimized in those ar-
eas, as is the formal order-of-accuracy. In the unlikely case
that all polynomials oscillate, the WENO interpolation can
still overshoot. In our tests, we experienced this effect only
for the example shown in Figure 6 bottom, near the inner
corners. To ensure stability in this event, we restrict (clamp)
the interpolation result to the [usmin,usmax] range, with usmin
and usmax being the minimum and maximum values in the
interpolation stencil.

The desired interpolation order dictates the size of the
stencil and thereby the bandwidth requirements. We use the
WENO4 interpolation scheme which is built on quadratic
candidate interpolants and recovers tri-cubic interpolation in
smooth regions (tri-quadratic otherwise) using 64 entries in
the stencil. It is sufficiently accurate for the CPM and we
find it to be fast enough for an interactive application.

5.4. Wave equation

The wave equation is the classical example of a hyperbolic
equation:

∂
2u

∂t2 = c2∇2
S u

In our case u represents the height of an elastic surface over
time t for a given wave speed c. Note that this is the surface-
PDE version of the equation, which means that we can inter-
pret u as the height above some original surface S. Because
the right-hand side involves only the Laplace-Beltrami oper-
ator, we can simply replace it with the Cartesian Laplace op-
erator to retrieve the embedding PDE for the CPM. We then
obtain a discretization for a 3D Cartesian grid with spacing
∆x and regular time intervals of length ∆t by substituting the
second order derivatives on both sides of the equation with
finite differences. For each grid point (i, j,k) this leads to:

ũt+1
i, j,k−2ut

i, j,k +ut−1
i, j,k

∆t2 =
c2

∆x2

(
ut

i+1, j,k +ut
i−1, j,k

+ut
i, j+1,k +ut

i, j−1,k +ut
i, j,k+1 +ut

i, j,k−1−6ut
i, j,k

)
Solving for the unknown ũt+1

i, j,k leads to the explicit solution

ũt+1
i, j,k = α ·

(
ut

i+1, j,k +ut
i−1, j,k +ut

i, j+1,k +ut
i, j−1,k

+ut
i, j,k+1 +ut

i, j,k−1
)
+(2−6α) ·ut

i, j,k−ut−1
i, j,k

with α =
∆t2 · c2

∆x2 ,

followed by a closest point extension

ut+1
i, j,k := ũt+1(cp(xi, j,k)).

Note that this is essentially a Verlet integration [Ver67] since
the second derivatives in space as well as in time are ap-
proximated with central differences. Compared to an explicit
Euler scheme, this method improves the accuracy of the in-
tegrator to 2nd order. Since the Verlet integration is stable
when the CFL condition is met, i.e., for α≤ 1/3 in our case,
we always choose this value in all of our experiments. To
maximize the accuracy of the simulation, we set the resolu-
tion of the computational grid to the highest value which still
allows interactive frame rates. Since the integrator requires
the height fields of the last two time steps, we copy ut to
ut−1 whenever we specify initial conditions or modify the
height field during the simulation.

submitted to COMPUTER GRAPHICS Forum (3/2012).



S. Auer, C.B. Macdonald, M. Treib, J. Schneider & R. Westermann / Real-Time Fluid Effects on Surfaces using the Closest Point Method 9

5.5. Incompressible Navier–Stokes equations

An incompressible, Newtonian fluid with constant tempera-
ture can be described by two continuity equations: One for
momentum

∂u
∂t

=−(u ·∇S)u− 1
ρ
∇S p+ν∇2

S u+ f

and one for volume and mass

∇S ·u = 0.

In this variant of the Navier–Stokes equations—formulated
as surface PDE—u denotes the fluid’s velocity, ρ the con-
stant density, p the pressure and ν the constant kine-
matic viscosity. Consequentially, the terms in the first equa-
tion represent accelerations resulting from self-advection
(−(u ·∇S)u), pressure

(
− 1

ρ
∇S p

)
, viscosity

(
ν∇2

S u
)

and

external forces (f), while the second equation states that the
velocity field must be free of divergence. Instead of interpret-
ing this flow problem as conservation laws with constraints,
we split up the equations and treat each term individually.

The last two terms of the momentum equation are unrep-
resented in our solver, since highly viscous flows and exter-
nal forces are currently not considered. If low order inter-
polation is used in the extension phase, however, the flow
already exhibits some artificial viscosity due to numerical
diffusion. We therefore also disregard fluids which are com-
pletely inviscid. On the other hand, viscous flows can be in-
tegrated either explicitly (with a potentially restricted time-
step) or using an implicit CPM [MR09], and external forces
can be added in a straightforward way.

For the nonlinear convective acceleration−(u ·∇S)u, we
use a semi-Lagrange back-trace as, e.g., described by Stam
[Sta99]. By this means a computationally more expensive
implicit solution can be avoided. To update the value of u
at each computational grid vertex, the back-trace follows the
motion of a particle starting at the vertex backwards in time
through the velocity field to find the previous location of the
particle. At this position, the old velocity field is sampled
and the retrieved value replaces u at the grid vertex.

This back-trace could naïvely be implemented in a full
simulation grid using its 3D equivalent. In this case, only
one change is necessary in order to discretize the embedding
of the surface-advection with the back-trace: as the velocity
vector must stay in the tangent space also at its new position,
it must be projected onto the local tangent plane.

For the sparse grid discussed here, however, it must be en-
sured that such a back-trace does not leave the computational
band. This results in additional constraints on the maximal
velocity, the integration time step, and the minimal size of
the extension band. To minimize these limitations we per-
form the back-trace only for points on the surface. Figure 8
illustrates this method.

The back-trace starts at the closest point of the current

ut-1(xt-1) 

Figure 8: Velocity self-advection through a semi-Lagrange
back-trace in the simulation grid.

grid vertex cp(xG) and uses a single step of the explicit Eu-
ler method. Because the current velocity values are a closest
point extension, they are constant in the normal direction and
for the start of the back-trace we can directly use the velocity
value stored at the grid vertex xG. At the old particle loca-
tion xt−1 we sample the velocity field using an interpolation.
To avoid numerical diffusion due to the interpolation in the
back-trace, we use an interpolation of higher order like the
one we described in the context of the closest point exten-
sion. The interpolated velocity vector from the particle’s old
position is projected onto the tangent plane at the new posi-
tion and then rescaled to its old length in order to retrieve the
updated value for the grid vertex.

To obtain the surface normal necessary for such a pro-
jection at a grid point xG, one can normalize the difference
vector d = xG − cp(xG) from the closest surface point to
the point itself. These normals always point away from the
surface on both of its sides. For non-orientable surfaces, for
which both directions are equally valid, this behavior is thor-
oughly intended. A real problem with this approach, how-
ever, is that it fails for grid points very close to or on the sur-
face. To reliably obtain a normal as well for these points, we
therefore examine the grid points xi, i = 0,1, . . . in a small
stencil around xG and calculate a vector di = xi− cp(xi) for
each of them. We accumulate the differences in the vector
dn

S as follows:

d0
S = d0

di+1
S = di

S +

{
di+1 if di+1 ·di

S ≥ 0
−di+1 otherwise

The negation is necessary to account for grid points on dif-
ferent sides of the surface. A surface normal is then retrieved
by normalization of dS. Note that the resulting normal points
to the side of the surface on which the first off-surface ver-
tex in the stencil lies. In practice, we find using the 6 edge
adjacent points around xG works well.

submitted to COMPUTER GRAPHICS Forum (3/2012).



10 S. Auer, C.B. Macdonald, M. Treib, J. Schneider & R. Westermann / Real-Time Fluid Effects on Surfaces using the Closest Point Method

In fluid mechanics, the pressure term − 1
ρ
∇S p is often

used within a projection method [CM00] to ensure that the
resulting velocity field fulfills the incompressibility equa-
tion ∇S · u = 0. Conceptually, this is achieved by applying
a Hodge decomposition to the velocity field, which splits it
into a divergence-free field and a curl-free field.

We determine a p that lets 1
ρ
∇S p reproduce the curl-free

part, such that after the subtraction only the divergence-free
part is left. At every time step, this ultimately requires cal-
culating the divergence of the current velocity and solving a
surface Poisson problem of the form ∇S ·∇S p = ∇S · u to
retrieve the desired pressure. Treating this Poisson equation
with an artificial time iteration and the explicit CPM would
require a closest point extension after each step, which
makes this approach quite costly. Another option would be
applying the implicit CPM [MR09], either to an artificial
time iteration or directly to the Poisson problem. This would
require solving a large linear system in each time step.

We choose a computationally cheaper approach where
we apply the closest point extension only to the right-hand
side of the equation, and we replace the left-hand side with
the simpler Cartesian Laplacian. Then, we solve the linear
system with the conjugate gradients method [KW03]. The
solver considers only grid points within the evolution band
and uses a Neumann boundary condition for the values out-
side (i.e.,the gradient in normal direction to the boundary is
zero). We chose a Neumann condition because it resembles
the effect of the closest point extension within an artificial
CPM time-integration [Gre06]. While this may not enforce
incompressibility to a high order of accuracy, in practice it
gives very good results if we reuse the pressure from the last
time step as the initial guess. After the pressure update, a
closest point extension must also be applied to the velocity
field itself to prepare it for the next time step. It is worth not-
ing here, that the Neumann boundary condition is only nec-
essary to resemble the behavior of the CPM at the boundary
of the evaluation band. It may not be confused with the typi-
cal CFD boundary conditions used to simulate object bound-
aries or in-/out-flow conditions.

In order to visualize the fluid flow we introduce an addi-
tional, final sub-step in which the advection of a mass-less,
colored dye through the velocity field is simulated. The dye
is transported through the flow by the same advection oper-
ator u ·∇S that is used for the velocity. The only difference
is that the dye is represented by three scalar fields—one for
each rgb color channel—as such the operator does not in-
clude a projection onto the tangent plane.

6. Rendering

For rendering the simulated fluid effects on the surface we
use Direct3D 10, and we make use of CUDA’s interoperabil-
ity functions to access the respective GPU memory resources
within both APIs. If the surface is given as a triangle mesh

and the simulated attributes are used to modulate its color,
the mesh is rendered via polygon rasterization. The coordi-
nates of the triangle vertices in the embedding 3D domain
are interpolated by the rasterizer and then a pixel shader is
employed, to retrieve values from the simulation buffers us-
ing trilinear interpolation. Figure 9 (left) demonstrates such
a rendering with flat shading to show the triangulation, and
in Figure 1 (top) Phong shading was used to realize a smooth
look of the surface.

Figure 9: Navier-Stokes simulation on a Möbius strip; a
non-orientable manifold. Left: Rendering with rasterization
and flat shading to emphasize the triangle mesh serving as
the original surface description. Right: Same simulation as
left, but now rendered via raycasting and using the red ink
as a displacement on "both sides" of the surface.

6.1. Volume Raycasting

If the initial surface is not given as a polygon mesh, for in-
stance if it is given by a point set representation or an implicit
surface description, or if the simulated attributes should be
used to modulate the geometry of the surface, rasterization
cannot be used any more. To overcome this problem, we
present a GPU method that renders the surface directly from
the sparse closest point volume representation, regardless of
the initial surface representation.

A first approach is to perform exact voxel ray-casting of
the closest point volume in a DDA-like fashion [AW87]. The
voxels correspond to the closest point cells, and the constant
voxel attributes are given by the simulation values at the cell
vertices. The rays of sight first traverse the grid of blocks
until a marked block is hit. Then, the block’s location in the
closest-point-buffer is retrieved and traversal is continued on
the cells inside. Traversal is stopped if a voxel is hit that
contains the closest surface point stored at this voxel, and
the voxel attribute is used as pixel color.

While the proposed technique can visualize a piecewise
(per voxel) constant distribution of attributes across a sur-
face, it does not allow rendering a smooth distribution. This
is achieved by interpolating the distances of the cell vertices

submitted to COMPUTER GRAPHICS Forum (3/2012).



S. Auer, C.B. Macdonald, M. Treib, J. Schneider & R. Westermann / Real-Time Fluid Effects on Surfaces using the Closest Point Method 11

to their closest surface points and performing an exact in-
tersection test between the ray and its zero crossings in the
reconstructed field.

For this purpose we sample along the ray in regular inter-
vals of half the voxel width. When a hit is detected, we refine
the result using binary search. Since the CPM is based solely
on the existence of an unsigned distance transform, the zero
crossings cannot be calculated exactly by this means, and
the intersection test comes down to finding the points along
the rays where the distance between the sample position and
the trilinearly interpolated closest point is below a given ε.
At this intersection point, the simulation attributes are re-
trieved via trilinear interpolation, too. To simulate smooth
shading, the attributes are translated into a material color and
per-pixel normals are calculated by normalizing the vector
between the intersection point and the closest surface point.

6.2. Rendering Surface Displacements

In addition to using the closest point representation for ren-
dering the original surface, we can also use it to for simulat-
ing surface displacements that are given, for instance, by the
simulation values at the grid vertices (see Figures 1 bottom,
and 9 right). After interpolating the closest point cp(xR) at a
sample position xR on a ray, the simulation value h(cp(xR))
at this point is interpolated and compared to the distance be-
tween cp(xR) and xR. As Figure 10 shows, a hit is detected
if the distance value is smaller than the interpolated attribute
value. The figure also shows, that the interpolation of clos-
est points from different parts of the surface can lead to off-
surface points. To avoid rendering artifacts in this case, we
determine the maximum extent of an axis aligned bounding
box around the closest points of the interpolation stencil for
the current ray sample. If this bounding box is considerably
larger than the interpolation cell, we skip the current sample
and continue sampling along the ray. The normal of the dis-
placed surface is calculated from the original surface normal
and the gradient of the attribute field. Since the gradient is
tangent to the surface because of the CPM, it can be used in
turn to disturb the surface normal appropriately. The maxi-
mum displacement is supposed not to exceed the width of
the computational band. This constraint can be abandoned,
however, by using an enlarged displacement band, where the
grid vertices outside the computational band store only their
closest points but no attributes.

The proposed rendering approach displaces the surface
equally on both of its sides. For orientable surfaces it is also
possible to distinguish the two half-spaces in order to dis-
place in just one direction or to use negative displacements.
For non-orientable surfaces the view-direction can be used to
introduce an artificial orientation. Despite being view depen-
dent, this approach has the additional problem that it results
in artifacts at the silhouettes, where the orientation flips. We
therefore recommend to treat both sides equally in this case.

Figure 10: Bottom left: Intersection of a ray (purple) with a
displaced surface (black). At the red ray sample, the interpo-
lation of closest points on the original surface (blue) results
in an off-surface point. At the green ray sample, an intersec-
tion with the displaced surface was found, as the distance
to the closest point equals the interpolated height value. Top
right: The normal of the original surface (blue arrows) com-
bined with the gradient of the height value (dotted arrow)
leads to the normal of the displaced surface (black arrow).

7. Performance Analysis

To validate the efficiency of the proposed method for simu-
lating and rendering fluid effects on surfaces, we have per-
formed a number of experiments using surface models and
simulation grids at different resolutions. In all of our exper-
iments, a block size of b = 4 was used. We found this size
to give the best performance compared to smaller (tighter
fit of the adaptive simulation grid to the surface but increas-
ing number of indirections to access adjacent grid cells) and
larger (increasing memory and computation requirements)
blocks. All measurements were performed on a 2.4 GHz
Core 2 Duo processor and an NVIDIA GeForce GTX 480
graphics card with 1,536 MiB local video memory. A de-
tailed memory and performance statistic of the GPU CPM
for fluid simulation is given in Table 1. Here, numbers sepa-
rated by a slash refer to the simulation using the wave equa-
tion with linear interpolation and the Navier-Stokes equa-
tions with WENO4 interpolation, respectively. All timings
are given in milliseconds and rendering was always per-
formed on a 1,024×1,024 viewport.

For each model, the first column lists the name and num-
ber of triangles, while the second column gives the resolu-
tion of the uniform Cartesian grid to which the simulation
resolution corresponds. The third column lists the number
of closest points within the computational band. The dif-
ferences are due to differently sized computational bands
that are dictated by the respective numerical stencils of the
wave equation (bandwidth with linear interpolation: 2.4∆x)
and the Navier-Stokes equations (bandwidth with WENO4

submitted to COMPUTER GRAPHICS Forum (3/2012).



12 S. Auer, C.B. Macdonald, M. Treib, J. Schneider & R. Westermann / Real-Time Fluid Effects on Surfaces using the Closest Point Method

interpolation: 5.7∆x). The forth column gives the memory
that is required for solving the equations on the GPU via
the CPM. The higher memory consumption of the Navier-
Stokes simulation is due to the larger computational band
and the additional buffers that are required to store the simu-
lation attributes. The times required to build the closest point
representation are given in the fifth column. Here it is im-
portant to note that more than 75% of the time is always
required by the closest points computation, meaning that the
grid construction on the GPU consumes only a small por-
tion of this time. It can further be seen that the GPU memory
requirements mainly depend on the resolution of the simula-
tion grid, while on the other hand, the time for constructing
the grid is strongly dependent on the number of triangles.

The following four columns list the simulation times us-
ing linear and WENO4 interpolation in the closest point ex-
tension for the wave equation and the Navier-Stokes equa-
tions. As expected, WENO4 interpolation increases the over-
all simulation times significantly due to its larger computa-
tional stencil, and the enlarged computational band thereof.
The Navier-Stokes simulation uses the respective interpo-
lation type in three separate closest point extensions (di-
vergence, velocity, ink) and two advection passes (velocity,
ink). It can be observed that solving the pressure Poisson
equation is the most expensive operation (~75% of the total
time) as long as linear interpolation is used. With WENO4
interpolation, however, these ratios turn into the opposite:
Most of the time is now spent on interpolations in the advec-
tion (~50%) and extension kernels (~40%).

The last three columns show the rendering times for ras-
terization, voxel-based surface raycasting, and raycasting
with surface displacements. The timings refer to the ren-
dering of a WENO4 wave simulation. In the last column a
computational band of width 8∆x was used to allow simu-
lating large surface displacements. As expected, rasterizing
the triangle mesh on the GPU leads to the highest frame
rates. Direct surface raycasting is between 1.2 to 5 times
slower, but still delivers highly interactive frame rates. Ray-
casting with smooth displacements, which allows simulat-
ing dynamic surface modifications, also delivers interactive
frame rates even for the computational grids with the highest
resolution. This is quite remarkable since much larger clos-
est point and simulation buffers are used.

7.1. Surface Deformations

The timing statistics indicate that the creation of an adaptive
closest point grid for the CPM is possible at high rates even
for large triangular meshes. This is an important step towards
a real-time CPM for simulating deformations of the sur-
face itself. In the following we demonstrate mesh smoothing
based on the Laplace operator [Tau95] via the GPU CPM as
a first example (see Fig. 11).

Each smoothing step consists of three operations:

Figure 11: Laplacian mesh smoothing using the CPM. Left:
Distorted Bunny model. Right: The model after 15 smooth-
ing steps (64ms each) using a grid resolution of 2563. Both
images show triangle rasterization and flat shading.

Firstly, we create a discrete, adaptive closest point field
as described. Secondly, we apply the Laplace-Beltrami
operator—discretized with the standard Laplace operator on
the embedding Cartesian grid—to the closest point field.
At every point on the surface the resulting vector field is
directed towards the mean of the point’s neighborhood on
the surface. Thirdly, we interpolate the discrete field using
WENO4 at every vertex position of the mesh and move each
vertex into this direction.

8. Conclusion and Future Work

We have presented a real-time method for simulating fluid
effects on surfaces using the CPM. To achieve this, we have
developed a fast GPU method for realizing the CPM and ren-
dering the simulation results as surface colors or displace-
ments. The method can efficiently solve non-linear PDEs on
surfaces using a high-resolution embedding grid, and it can
calculate and render the resulting fields independently of the
resolution and topology of the input geometry.

In the presented examples the CPM is solely used for
solving PDEs on (infinitely thin) surfaces, without enforcing
any problem-specific physical conditions. Even though this
would be possible in special cases, it has not been considered
in this work. Consequently, the effects demonstrated in this
work do not show real fluid effects as they would appear in
reality, but rather demonstrate the potential of the CPM for
producing visually plausible and compelling fluid effects on
surfaces in real-time. It is interesting to note, on the other
hand, that the exact same type of PDEs may arise at the
boundaries of volumetric simulations, and coupling oddly-
shaped boundaries to full volumetric simulations opens an
interesting venue for future work.

The proposed methods open a number of future research
directions. In particular, we would like to adopt the CPM for
real-time effects on animated surfaces. So far, we are able
to construct an adaptive embedding grid for the deforming
surface in every frame. Further research is necessary, how-
ever, to define a CPM for PDEs on deforming surfaces and

submitted to COMPUTER GRAPHICS Forum (3/2012).



S. Auer, C.B. Macdonald, M. Treib, J. Schneider & R. Westermann / Real-Time Fluid Effects on Surfaces using the Closest Point Method 13

Table 1: Performance statistics for fluid simulation and rendering on the GPU via the CPM.
Grid Generation Wave Equation Navier-Stokes Rendering

Mesh Res. # Closest Points GPU Memory Time linear WENO4 linear WENO4 Rasterization Raycasting Displ.
Möbius
(Figure 9)
3,385∆

643 34k / 48k 1MiB / 4MiB 6.1ms / 9.5ms 2.0ms 2.1ms 3.7ms 20ms 1.3ms 3.8ms 20ms
1283 77k / 184k 4MiB / 18MiB 6.4ms / 10ms 2.1ms 4.1ms 7.5ms 65ms 1.3ms 4.3ms 23ms
2563 303k / 721k 18MiB / 73MiB 7.4ms / 12ms 2.3ms 15ms 23ms 237ms 1.4ms 5.5ms 31ms
5123 1.2M / 2.9M 82MiB / 297MiB 12ms / 21ms 5.1ms 54ms 85ms 909ms 1.7ms 8.4ms 48ms

Bunny
(Figure 1)
69,451∆

643 41k / 80k 2MiB / 7MiB 29ms / 84ms 2.2ms 3.0ms 4.0ms 28ms 1.4ms 3.3ms 15ms
1283 177k / 374k 9MiB / 35MiB 32ms / 86ms 2.4ms 9.0ms 13ms 118ms 1.4ms 4.0ms 24ms
2563 733k / 1.6M 41MiB / 159MiB 34ms / 90ms 3.6ms 34ms 51ms 529ms 1.4ms 5.7ms 35ms
5123 3.0M / 6.8M 178MiB / 679MiB 49ms / 117ms 11ms 136ms 222ms 2,174ms 1.7ms 8.6ms 52ms

Armadillo
(Figure 1)
345,944∆

643 28k / 58k 1MiB / 5MiB 117ms / 377ms 2.0ms 2.7ms 3.4ms 18ms 2.5ms 3.0ms 16ms
1283 123k / 258k 6MiB / 25MiB 118ms / 380ms 2.1ms 6.1ms 9.5ms 80ms 2.5ms 3.7ms 20ms
2563 513k / 1.1M 29MiB / 110MiB 120ms / 384ms 2.9ms 25ms 38ms 370ms 2.5ms 4.6ms 28ms
5123 2.0M / 4.8M 129MiB / 477MiB 135ms / 404ms 8.6ms 100ms 157ms 1,667ms 2.6ms 5.9ms 45ms

to develop an efficient solution for the frame-to-frame infor-
mation flow. Due to the independence of the CPM and our
rendering technique from the original surface representation,
such a method would also allow simulating complex defor-
mations of the surface itself.

From a numerical point of view we are most interested
in exploring how multigrid schemes can be employed to
speed up the simulation on the embedding grid. This re-
quires pursuing research on the construction of a multigrid
closest point representation that can accurately approximate
the surface at ever coarser scales. By integrating such a con-
struction into approaches that can create a coarse grid hier-
archy independently of the complexity of the object’s shape
[LPR∗09,DGW11], good approximation quality and conver-
gence rates can be expected even for complicated surfaces.

Acknowledgements

This publication was based on work supported in part by the
Munich Centre of Advanced Computing at the Technische
Universität München (TUM) and by Awards No. KUK-C1-
013-04 and UK-C0020, made by King Abdullah University
of Science and Technology (KAUST).

References

[ATBG08] ANGST R., THÜREY N., BOTSCH M., GROSS

M.: Robust and efficient wave simulations on deforming
meshes. Computer Graphics Forum (Proc. Pacific Graph-
ics) 27 (2008), 1895–1900. 3

[AW87] AMANATIDES J., WOO A.: A fast voxel traversal
algorithm for ray tracing. In Eurographics ’87 (1987),
pp. 3–10. 10

[BCOS01] BERTALMÍO M., CHENG L.-T., OSHER S.,
SAPIRO G.: Variational problems and partial differential
equations on implicit surfaces. J. Comput. Physics 174, 2
(2001), 759–780. 1

[BKW10] BÜRGER K., KRÜGER J., WESTERMANN R.:
Sample-based surface coloring. IEEE Transactions on Vi-
sualization and Computer Graphics 16, 5 (2010), 763–
776. 3

[CLB∗09] CHUANG M., LUO L., BROWN B. J.,
RUSINKIEWICZ S., KAZHDAN M.: Estimating the
Laplace-Beltrami operator by restricting 3D functions. In
Proceedings of the Eurographics Symposium on Geome-
try Processing (2009), pp. 1475–1484. 1, 3

[CM00] CHORIN A., MARSDEN J.: A Mathematical In-
troduction to Fluid Mechanics, 4th ed. Springer Verlag,
2000, ch. 1.3, pp. 36–44. 10

[CRT04] CLARENZ U., RUMPF M., TELEA A.: Surface
processing methods for point sets using finite elements.
Computers and Graphics 28, 6 (2004), 851–868. 1

[DCB∗04] DONG Z., CHEN W., BAO H., ZHANG H.,
PENG Q.: Real-time voxelization for complex polygo-
nal models. In Proceedings of the Computer Graphics
and Applications, 12th Pacific Conference (2004), PG ’04,
pp. 43–50. 3

[DE07] DZIUK G., ELLIOTT C.: Surface finite elements
for parabolic equations. J. Comput. Math. 25 (2007), 385–
407. 1

[DGW11] DICK C., GEORGII J., WESTERMANN R.: A
hexahedral multigrid approach for simulating cuts in de-
formable objects. IEEE Transactions on Visualization and
Computer Graphics 17 (2011), 1663–1675. 13

[ED06] EISEMANN E., DÉCORET X.: Fast scene vox-
elization and applications. In ACM SIGGRAPH 2006
Sketches (2006). 3

[FZKH05] FAN Z., ZHAO Y., KAUFMAN A., HE Y.:
Adapted unstructured LBM for flow simulation on curved
surfaces. In Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics symposium on Computer anima-
tion (2005), SCA ’05, pp. 245–254. 3

[Gre06] GREER J. B.: An improvement of a recent Eule-
rian method for solving PDEs on general geometries. J.
Sci. Comput. 29 (December 2006), 321–352. 10

[Har07] HARRIS M.: Parallel prefix sum (scan) with
CUDA. NVIDIA Whitepaper, April 2007. 5, 6

[HZQW10] HONG Y., ZHU D., QIU X., WANG Z.:
Geometry-based control of fire simulation. The Visual
Computer 26 (September 2010), 1217–1228. 3

submitted to COMPUTER GRAPHICS Forum (3/2012).



14 S. Auer, C.B. Macdonald, M. Treib, J. Schneider & R. Westermann / Real-Time Fluid Effects on Surfaces using the Closest Point Method

[JBS06] JONES M. W., BÃĘRENTZEN J. A., SRAMEK

M.: 3D distance fields: A survey of techniques and ap-
plications. IEEE Transactions on Visualization and Com-
puter Graphics 12 (2006), 581–599. 3

[KW03] KRÜGER J., WESTERMANN R.: Linear alge-
bra operators for GPU implementation of numerical al-
gorithms. ACM Transactions on Graphics (TOG) 22, 3
(2003), 908–916. 10

[LFW07] LO K.-Y., FU C.-W., WONG T.-T.: Interactive
reaction-diffusion on surface tiles. In Proceedings of Pa-
cific Graphics (2007), pp. 65–74. 1

[LPR∗09] LIEHR F., PREUSSER T., RUMPF M., SAUTER

S., SCHWEN L. O.: Composite finite elements for 3D im-
age based computing. Comput. Vis. Sci. 12 (March 2009),
171–188. 13

[LWC05] LUI L. M., WANG Y., CHAN T. F.: Solving
PDEs on manifolds with global conformal parametriza-
tion. In VLSM (2005), pp. 307–319. 1

[MR08] MACDONALD C. B., RUUTH S. J.: Level set
equations on surfaces via the Closest Point Method. J.
Sci. Comput. 35, 2–3 (June 2008), 219–240. 3, 4, 8

[MR09] MACDONALD C. B., RUUTH S. J.: The implicit
Closest Point Method for the numerical solution of partial
differential equations on surfaces. SIAM J. Sci. Comput.
31, 6 (2009), 4330–4350. 3, 9, 10

[NMZ07] NEILL P., METOYER R., ZHANG E.: Fluid flow
on interacting deformable surfaces. In ACM SIGGRAPH
2007 posters (2007), SIGGRAPH ’07. 3

[NNRW09] NEMITZ O., NIELSEN M. B., RUMPF M.,
WHITAKER R.: Finite element methods on very large,
dynamic tubular grid encoded implicit surfaces. SIAM J.
on Scientific Computing 31, 3 (2009), 2258–2281. 1

[Pan11] PANTALEONI J.: VoxelPipe: A programmable
pipeline for 3D voxelization. In Proceedings of the ACM
SIGGRAPH Symposium on High Performance Graphics
(2011), HPG ’11, pp. 99–106. 3, 4

[RM08] RUUTH S. J., MERRIMAN B.: A simple embed-
ding method for solving partial differential equations on
surfaces. J. Comput. Phys. 227 (January 2008), 1943–
1961. 1, 2, 3, 8

[RWP06] REUTER M., WOLTER F.-E., PEINECKE N.:
Laplace-Beltrami spectra as "Shape-DNA" of surfaces
and solids. Computer-Aided Design 38, 4 (2006), 342–
366. 3

[SS10] SCHWARZ M., SEIDEL H.-P.: Fast parallel sur-
face and solid voxelization on GPUs. ACM Transactions
on Graphics (Proc. SIGGRAPH Asia) 29 (2010), 179:1–
179:9. 3, 4

[Sta99] STAM J.: Stable fluids. In Proceedings of the 26th
annual conference on Computer graphics and interactive
techniques (1999), SIGGRAPH ’99, pp. 121–128. 2, 9

[Sta03] STAM J.: Flows on surfaces of arbitrary topology.
ACM Trans. Graph. 22 (July 2003), 724–731. 1, 2

[SY04] SHI L., YU Y.: Inviscid and incompressible fluid
simulation on triangle meshes: Research articles. Comput.
Animat. Virtual Worlds 15 (July 2004), 173–181. 3

[Tau95] TAUBIN G.: A signal processing approach to fair
surface design. In Proceedings of the 22nd annual con-
ference on Computer graphics and interactive techniques
(1995), SIGGRAPH ’95, pp. 351–358. 12

[TMR09] TIAN L., MACDONALD C. B., RUUTH S. J.:
Segmentation on surfaces with the Closest Point Method.
In Proc. ICIP09, 16th IEEE International Conference on
Image Processing (2009), pp. 3009–3012. 3

[Tur91] TURK G.: Generating textures on arbitrary sur-
faces using reaction-diffusion. In Proceedings of the 18th
annual conference on Computer graphics and interactive
techniques (1991), SIGGRAPH ’91, pp. 289–298. 1, 3

[Ver67] VERLET L.: Computer "experiments" on classical
fluids. I. thermodynamical properties of Lennard-Jones
molecules. Phys. Rev. 159, 1 (Jul 1967), 98. 8

[WMT07] WANG H., MILLER G., TURK G.: Solving
general shallow wave equations on surfaces. In Proceed-
ings of the 2007 ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation (2007), SCA ’07, pp. 229–
238. 3

[ZCEP07] ZHANG L., CHEN W., EBERT D. S., PENG

Q.: Conservative voxelization. Vis. Comput. 23 (August
2007), 783–792. 3

submitted to COMPUTER GRAPHICS Forum (3/2012).


