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Computer Graphics and Visualization Group, Technische Universität München, Germany

Abstract

In this paper we present a GPU-based multigrid approach for simulating elastic deformable objects in real time. Our method is based

on a finite element discretization of the deformable object using hexahedra. It draws upon recent work on multigrid schemes for the

efficient numerical solution of partial differential equations on such discretizations. Due to the regular shape of the numerical stencil

induced by the hexahedral regime, and since we use matrix-free formulations of all multigrid steps, computations and data layout

can be restructured to avoid execution divergence and to support memory access patterns which enable the hardware to coalesce

multiple memory accesses into single memory transactions. This enables to effectively exploit the GPU’s parallel processing units

and high memory bandwidth via the CUDA parallel programming API. We demonstrate performance gains of up to a factor of 12

compared to a highly optimized CPU implementation. By using our approach, physics-based simulation at an object resolution of

643 is achieved at interactive rates.
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1. Introduction

Over the last years, graphics processing units (GPUs) have

shown a tremendous increase in performance on intrinsically

parallel computations. Key to this evolution is the GPU’s de-

sign for massively parallel workloads, with the emphasis on

maximizing total throughput of all parallel units. The ability to

simultaneously use many processing units and to exploit thread

level parallelism to hide operations with high latency have led

to substantially higher performance in applications where par-

allelism is abundant.

Modern GPUs consist of up to 30 multiprocessors, on each

of which several hundreds of co-resident threads can be exe-

cuted. Each multiprocessor contains a number of scalar pro-

cessor cores which execute integer as well as single and dou-

ble precision floating point operations. On current GPUs like

NVIDIA’s Fermi architecture (NVIDIA, 2009), double preci-

sion operations are running at only 1/2 of the speed of sin-

gle precision operations. Threads are provided with direct

read/write access to global off-chip DRAM and to a small low-

latency on-chip memory segment per multiprocessor. In ad-

dition, an on-chip texture cache can substantially improve the

performance of read-only memory accesses by reading linear

global memory through textures.

The threads on each multiprocessor are executed in groups

of 32 called warps, and all threads within one warp run in lock-

step. Due to this reason the GPU works most efficiently if all
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threads within one warp follow the same execution path. Au-

tomatic hardware multi-threading is used to schedule warps in

such a way as to hide latency caused by memory access opera-

tions. To effectively increase memory throughput, the hardware

coalesces global memory accesses of parallel threads into larger

memory transactions if certain access patterns are met. Specif-

ically, if the memory accesses by the threads of a half warp (16

threads) lie in a 128-byte segment (for example, when the i-th

thread accesses the i-th word in the segment), these accesses are

coordinated into one single transaction.

Contribution. In the light of the GPU’s architectural design, we

consider the parallelization of an important computational ker-

nel in this paper, with the focus on memory bandwidth issues.

We present a novel geometric multigrid finite element method

on the GPU, and we show the use of this method for simulat-

ing elastic material in real time on desktop PCs. To fully ex-

ploit the GPU’s massively parallel multi-threading architecture,

the CUDA parallel programming abstraction (NVIDIA, 2008)

is used. To the best of our knowledge, this is the first time that

a multigrid finite element approach for solving the governing

equations underlying elasticity is realized entirely on the GPU.

Since we use the corotational formulation of strain, even large

deformations can be simulated at high physical accuracy.

The CUDA API is used because in contrast to graphics APIs

like OpenGL or Direct3D it gives the programmer direct control

over all available memory resources. This enables application-

specific restructuring on an algorithmic level to expose a suffi-

cient amount of fine-grained parallelism and coherent memory

accesses.

The particular restructuring we propose is based on a regular



Figure 1: Left: A deformed hexahedral object consisting of 30,000 elements is shown. Right: By using a high-resolution render surface that is bound to the deformed

representation a visually continuous appearance is achieved.

hexahedral discretization of the simulation domain. Hexahe-

dral schemes provide a number of advantages for GPU-based

deformable object simulation: First, a hexahedral discretization

of a given object boundary surface can be generated at very

high speed on the GPU, including a multi-resolution representa-

tion that is required in a geometric multigrid approach. Second,

due to the regular topology of the hexahedral grid, a numerical

stencil of the same regular shape is used for every simulation

vertex, enabling parallel processing of vertices using the same

execution path. Third, the regular stencil facilitates a memory

layout which enables coalescing for all memory access opera-

tions, thereby exploiting the maximal memory bandwidth avail-

able on the GPU. Fourth, since all hexahedral elements have

the same shape, only a single pre-computed element stiffness

matrix is needed. The stiffness matrix of a specific finite ele-

ment is obtained from this matrix by scaling with the element’s

elastic modulus and by applying the current element rotation

according to the corotated strain formulation. The single pre-

computed element stiffness matrix is stored in cached constant

memory which greatly reduces global memory accesses during

update of the simulation equations.

Due to these advantages, the restructuring we propose

achieves performance gains of up to a factor of up to 12 com-

pared to a cache-optimized CPU multigrid method using the

same finite element discretization. This speed-up mainly re-

sults from the high memory bandwidth provided by the GPU.

In combination with a high-resolution render surface, which is

bound to the simulation model via pre-computed interpolation

weights, physics-based, yet visually continuous deformable

body simulation is achieved at high resolution. Figure 1 demon-

strates the use of our approach. The proposed CUDA-based

multigrid simulation achieves update rates of 110 ms per sim-

ulation step for models consisting of roughly 120,000 hexahe-

dral elements, including two multigrid V-cycles and the update

of the render surface.

2. Related Work

In the last years, considerable effort has been spent on the

efficient realization of general techniques of numerical com-

puting on programmable GPUs (Owens et al., 2005; Houston

and Govindaraju, 2007; Owens et al., 2008). Recent work in

this field has increasingly focused on the use of the CUDA

API (NVIDIA, 2008), addressing a multitude of different ap-

plications ranging from image processing and scientific visu-

alization to fluid simulation and protein folding. CUDA pro-

vides a programming model and software environment for high-

performance parallel computing on multi-core architectures, al-

lowing the programmer to flexibly adapt the parallel workload

to the underlying hardware architecture. There is a vast body

of literature related to this field and a comprehensive review is

beyond the scope of this paper. However, Zeller (2008) and

Luebke et al. (2009) discuss the basic principles underlying the

CUDA API and provide many practical details on the effective

exploitation of the GPU’s capacities via CUDA.

Over the last decades, extensive research has been pursued on

the use of three-dimensional finite element (FE) methods to pre-

dict the mechanical response of deformable materials to applied

forces (Martin and Carey, 1973; Bathe, 2002). FE methods are

attractive because they can realistically simulate the dynamic

behavior of elastic materials, including the simulation of inter-

nal stresses due to exerted forces. Algorithmic improvements

of FE methods, steering towards real-time simulation for com-

puter animation and virtual surgery simulation have been ad-

dressed in (Terzopoulos and Fleischer, 1988; Bro-Nielsen and

Cotin, 1996; Cotin et al., 1999; Müller et al., 2002; Etzmuß

et al., 2003).

Among the fastest numerical solution methods for solving

the systems of linear equations arising in deformable model

simulation are multigrid methods (Brandt, 1977; Hackbusch,

1985; Briggs et al., 2000). In a number of previous works,

efficient multigrid schemes for solving the elliptic partial dif-

2



ferential equations describing elastic deformations have been

proposed ((Parson and Hall, 1990; Adams and Demmel, 1999;

Griebel et al., 2003; Sampath and Biros, 2009)). Especially for

the use of multigrid approaches in medical applications, real-

time approaches based on tetrahedral (Wu and Tendick, 2004;

Georgii and Westermann, 2006) and hexahedral (Dick et al.,

2008) discretizations have been considered.

In real-time applications, most commonly the linearized

strain tensor, i.e. the Cauchy strain tensor, is used. However,

since the Cauchy tensor is not invariant under rotations, com-

puted element displacements tend to diverge from the correct

solution in case of large deformations. The corotational formu-

lation of finite elements (Belytschko and Hsieh, 1979; Rankin

and Brogan, 1986; Felippa and Haugen, 2005) accounts explic-

itly for the per-element rotations in the strain computation, and,

thus, it can handle non-linear relations in the elastic quanti-

ties. The efficient integration of the corotational formulation

into real-time approaches has been demonstrated in (Müller

et al., 2002; Hauth and Straßer, 2004; Georgii and Westermann,

2008). Non-linear FE methods for deformable body simula-

tion were considered in (Zhuang and Canny, 1999; Wu et al.,

2001; Picinbono et al., 2001; Debunne et al., 2001; Mendoza

and Laugier, 2003; Picinbono et al., 2003; Zhong et al., 2005) to

accurately handle geometric as well as material non-linearities.

FE-based deformable body simulation on the GPU has been

addressed in a number of publications. The exploitation of

a GPU-based conjugate gradient solver for accelerating the

numerical simulation of the FE model has been reported in

(Wu and Heng, 2004; Liu et al., 2008). Rodriguez-Navarro

and Susin (2006) presented a GPU-based FE surface method

for cloth simulation. An overview of early GPU-accelerated

techniques for surgical simulation is given by Sørensen and

Mosegaard (2006). These approaches are mainly based on

mass-spring systems (Mosegaard et al., 2005). Non-linear finite

element solvers for elasticity simulation using graphics APIs

and CUDA were presented by Taylor et al. (2008) and Comas

et al. (2008), respectively. Both approaches build upon La-

grangian explicit dynamics (Miller et al., 2007) to avoid locking

effects. While Taylor et al. (2008) employed a tetrahedral do-

main discretization, a discretization using hexahedral finite ele-

ments was used by Comas et al. (2008). Göddeke et al. (2008)

demonstrated clear performance gains for a multigrid Poisson

solver on the GPU.

3. GPU-Aware Elasticity Simulation

Physics-based elasticity simulation in real time places strong

requirements on the used algorithms and technologies. Simula-

tion tools supporting this kind of operability must be able to ac-

curately predict the movement of the deformable material due

to internal and external loads. The efficient and high-quality

rendering of an accurate boundary surface of the moving body

is crucial for using such tools in virtual environments such as

surgery simulation, laparoscopy training, and needle insertion

planning.

In the following we describe the physical model underlying

our approach for real-time elasticity simulation, and we outline

the algorithms that are used to enable fast and stable numerical

simulation of this model. Special emphasis is put on the restruc-

turing of these algorithms to support an efficient mapping to the

GPU, involving matrix-free formulations of all computational

steps.

3.1. Corotated Linear Finite Element Method

Underlying our simulation is a linear elasticity model, mean-

ing that there is a linear relationship between stresses and dis-

placements. In this model, we describe deformations as a map-

ping from the object’s reference configurationΩ to its deformed

configuration {x + u(x) | x ∈ Ω} using a displacement function

u : R3 → R
3. The dynamic behavior of an object with lin-

ear elastic response is governed by the Lagrangian equation of

motion on a finite element discretization

Mü +Cu̇ + Ku = f , (1)

where M, C, and K denote the mass, damping and stiffness ma-

trix, respectively. u is a vector built from the displacement vec-

tors of all vertices and f is analogously built from the per-vertex

force vectors. The stiffness matrix K is constructed by assem-

bling the element stiffness matrices Ke, which are obtained by

applying the principle of virtual work to one specific element.

Linear elasticity has the drawback that it is accurate only for

relatively small deformations. It is based on a linear approxi-

mation of the strain tensor, and therefore can result in a signif-

icant volume increase in case large deformations are applied.

To overcome this limitation we use the corotated Cauchy strain

formulation in our approach, which, in principle, rotates the el-

ement from the deformed to the reference configuration before

the linear strain approximation is computed. This corotation is

carried out on the finite element discretization by rotating the

element stiffness matrices Ke accordingly.

3.2. Model Construction

Our approach is based on a hexahedral discretization of the

deformable object. The discretization is built from a voxeliza-

tion of the object into a Cartesian grid structure. The advan-

tage of this strategy is that the meshing process is greatly sim-

plified, especially compared to a discretization using tetrahe-

dral elements. Even though building a discretization is usually

performed in a preprocess, applications like implant planning

(Dick et al., 2008) require this discretization to be updated per-

manently and, thus, demand for procedures capable of dealing

with real-time constraints.

The regular hexahedral structure also gives rise to a very ef-

ficient construction of a nested grid hierarchy that is essential

for exploiting geometric multigrid schemes at their full poten-

tial. Such a scheme is used in our approach to substantially

accelerate the numerical simulation of deformations at high ob-

ject resolution. In addition, due to the regular structure of the

hexahedral discretization, computations can be parallelized ef-

fectively on SIMD architectures like GPUs.

To build a hexahedral simulation model, different options ex-

ist. First, the model can be obtained directly from a given vol-

ume scan by classifying voxels into exterior and interior parts
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based on any meaningful assignment procedure. The simu-

lation model then consists of all interior voxels. Second, if

a polygonal boundary surface representation of the object is

available, which, for instance, can be constructed efficiently

from a volume scan using surface fitting techniques like the

marching cubes algorithm (Lorensen and Cline, 1987), a vox-

elization can be computed at very high speed on the GPU. GPU-

based voxelization of a closed surface mesh leverages the ras-

terization hardware exposed via graphics APIs like OpenGL to

efficiently determine the voxels in the interior of the mesh (Eise-

mann and Décoret, 2008). It essentially renders the mesh ortho-

graphically along a particular direction and determines along

each ray of sight the intervals the ray is passing through the ob-

ject. For instance, to generate a 2563 hexahedral discretization

of the boundary surface shown in Figure 1 it took roughly 5 ms

on our target GPU architecture.

From a given hexahedral model representation an octree hier-

archy is built in a bottom-up process by successively grouping

23 cells into one coarser cell. Starting on the finest (voxel) level,

if a grid cell on the coarser level contains at least one interior

voxel the cell is constructed. On all subsequent levels a cell is

constructed if it covers at least one cell on the respective finer

level. The process is repeated until the number of hexahedral

elements on the coarsest level is below a given threshold. On

each hierarchy level a shared vertex representation for the set of

cells is computed.

In the numerical simulation, tri-linear shape functions are as-

signed to the finite hexahedral elements. Since all elements

have the same shape, the same stiffness matrix

Ke =

∫

Ωe

BTDB dx ,

can be used for all of them. Here, B is the strain matrix and

D is the material law. Due to this property, the setup phase for

the simulation is significantly accelerated. Furthermore, even

if the object geometry deforms and hexahedra become differ-

ent shapes no further calculations are required, since the dis-

cretization of the partial differential equation underlying the lin-

ear elastic model always refers to the undeformed model state,

and thus the element stiffness matrices do not change.

3.3. Multigrid Solver

Iterative methods such as Gauss-Seidel-type relaxation can

be used in principle to solve the systems of linear equations

as they arise in the current application, because such methods

can effectively exploit the systems’ sparsity. Such methods, on

the other hand, require a large number of iterations until con-

vergence of the solution. However, looking at the frequency

spectrum of the residual reveals that high frequencies in the so-

lution are damped out very quickly by the relaxation, which

yields the idea to solve the residual equation at a coarser grid.

This principle of coupling multiple scales to achieve improved

convergence is underlying the basic multigrid idea (Brandt,

1977; Hackbusch, 1985; Briggs et al., 2000). Specifically it

can be shown that a linear time complexity of the solver can

be achieved by applying this idea recursively, yielding the so-

called multigrid V-cycle.

Numerical multigrid solvers are known to be among the most

efficient solvers for elliptic partial differential equations of the

form described above, and their potential has been exploited

for simulating deformations using tetrahedral and hexahedral

model discretizations. Our geometric multigrid solver builds

upon these approaches, and it extends previous work by intro-

ducing a method to perform the multigrid computations for ev-

ery simulation element in lock-step using only coordinated data

accesses across sets of elements. Due to this property, the solver

can effectively be mapped to the GPU via the CUDA API. Be-

fore we are going to discuss the GPU implementation in detail,

let us first derive the multigrid equations to be used on the fi-

nite hexahedra hierarchy. Here, we put special emphasis on

a matrix-free formulation of the equations that can be directly

mapped to CUDA compute kernels.

Per-Vertex Equations. In a hexahedral setting that respects the

corotational strain formulation, the following set of equations

is derived for every finite element (for simplicity reasons, we

refer to the static elasticity problem here):

8∑

j=1

R Ki j (RT (u j + p0
j ) − p0

j ) = fi , i = 1, . . . , 8.

Here, Ki j denotes a 3 × 3 block of the element stiffness matrix

Ke, R is the rotation matrix determined for the element, u j are

the displacements given at the element vertices, p0
j

are the po-

sitions of the element vertices in the undeformed state, and fi
are the forces acting on the element at its vertices. Solving for

the unknown displacements u j is performed by first rearranging

terms as

8∑

j=1

R Ki j RT

︸   ︷︷   ︸

Ai j

u j = fi +

8∑

j=1

R Ki j (p0
j − RT p0

j )

︸                            ︷︷                            ︸

bi

. (2)

By applying the Newmark time integration scheme to the La-

grangian equation of motion (1), dynamics is included in the

simulation (Bathe, 2002). The coefficients Ai j and right-hand

sides bi are introduced to simplify the upcoming discussion.

The global system of equations can then be derived by ac-

cumulating the single equations of all hexahedral elements,

thereby taking into account that elements share vertices. More

precisely, an equation is built for every vertex x = (x1, x2, x3)

of the mesh by gathering the corresponding equations from the

8 incident hexahedra. x denotes integer coordinates of the ver-

tex with respect to the underlying regular grid. This results in

per-vertex equations that depend on a regular 33 stencil of 27

adjacent vertices:
1∑

i=-1

Ax
i ux+i = bx. (3)

Here, Ax
i

are the accumulated 3 × 3 coefficient matrices as-

sociated with the adjacent vertex i, where i = (i1, i2, i3)

is the relative position of the adjacent vertex with re-

spect to vertex x. The notation i = -1, . . . , 1 means

iterating over all 27 3-tupels of the set {−1, 0, 1}3, i.e.
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(−1,−1,−1), (−1,−1, 0), (−1,−1, 1), . . . , (1, 1, 1). ux+i denotes

the displacement vector at vertex x + i, and bx is the accumu-

lated right-hand side at vertex x.

Coarse Grid Equations. The geometric multigrid solver oper-

ates on a hierarchy of hexahedral grids which are constructed

in the setup phase. In the following, the currently considered

level and the next coarser level are indicated by superscripts

h and 2h denoting the levels’ grid spacings. To solve for the

residual equations on the coarse grid levels, the equations at the

coarse grid vertices have to be determined. We use tri-linear

interpolation for the multigrid interpolation operator I2h→h, and

use Galerkin-based coarsening to construct the coarse grid op-

erators, i.e., A2h = Rh→2h Ah I2h→h. The multigrid restriction

operator Rh→2h is chosen to be the transpose of the interpola-

tion operator I2h→h, i.e., Rh→2h =
(

I2h→h
)T

. Transferring these

equations to a matrix-free formulation, the coarse grid equa-

tions are built by distributing the equations at the fine grid ver-

tices to coarse grid vertices and by simultaneously substituting

the displacement vectors at the fine grid vertices via interpola-

tion from the coarse grid vertices, using the weights illustrated

in Figure 2.

Figure 2: Weights used to transfer quantities from a coarse grid (blue vertices)

to the next finer grid (red vertices) of the multigrid hierarchy (interpolation).

For the restriction from the coarser grid to the finer grid, the same weights are

used. For simplicity, the weights are shown only for selected vertices in 2D.

To construct the equations on the coarse grids, we propose a

two-step approach as illustrated in Figure 3. First, equations at

fine grid vertices are distributed to coarse grid vertices (multi-

grid restriction), yielding a 53 neighborhood of dependent fine

grid vertices with associated coefficients B. Second, these co-

efficients are distributed to the coarse grid vertices (multigrid

interpolation), thereby reducing the neighborhood to a 33 sten-

cil. Note that the coarse grid vertex x corresponds to the fine

grid vertex 2x due to the different grid spacings. The follow-

ing equations describe the distribution process between adja-

cent levels:

hBx
i =

1∑

k=-1
|ı j−k j |≤1 , j=1,2,3

wk
hA2x+k

i−k , i = -2, . . . , 2, (4)

2hAx
i =

1∑

k=-1
|2i j+k j |≤2 , j=1,2,3

wk
hBx

2i+k , i = -1, . . . , 1. (5)

In these equations, wk = (2 − |k1|) (2 − |k2|) (2 − |k3|)/8 are the

weights used for restriction and prolongation. The additional

Figure 3: Illustration of the construction of the coarse grid equation for a spe-

cific vertex (green, center). In the first step, a weighted average of the per-

vertex equations (their stencils and weights are shown in different colors and

line styles) in the 33 fine grid (red vertices) neighborhood of the considered

vertex is computed. The resulting equation resides on a 53 stencil on the fine

grid. In the second step, this equations is restricted to a 33 stencil on the coarse

grid (blue and green vertices) by substituting the displacement vectors at the

fine grid vertices via interpolation from the coarse grid vertices, corresponding

to a distribution of the respective coefficients from the fine grid to the coarse

grid vertices (black arrows and interpolation weights). Note that the weights

shown in the figure correspond to the 2D case; the weights for the 3D case are

given in the text.

conditions for the summation index variables ensure that no co-

efficients are fetched outside the valid range (−1, . . . , 1 for co-

efficients A and −2, . . . , 2 for coefficients B).

Multigrid V-cycle. In the multigrid V-cycle, quantities are

transferred between adjacent grid levels using the restriction

and interpolation operators. Going down a V-cycle requires the

residual to be restricted to the next coarser grid via

b2h
x =

1∑

k=-1

wk rh
2x+k. (6)

The residual rh is computed as

rh
x = bh

x −

1∑

k=-1

hAx
k uh

x+k. (7)

Going up a V-cycle requires the coarse grid corrections e2h to

be interpolated to the next finer grid:

eh
x =

1∑

k=-1
x+k≡ 0 (mod 2)

wk e2h
(x+k)/2 . (8)

The condition x + k ≡ 0 (mod 2) ensures that only coarse

grid vertices are considered. The resulting corrections are then

added the current solution, yielding a complete multigrid V-

cycle as follows:

1. Gauss-Seidel relaxation of Equation 3.

2. Compute residual rh
x (Equation 7).

3. Restrict residual yielding b2h
x (Equation 6).
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4. Solve coarse grid residual equation (recursively):

1∑

k=-1

2hAx
k e2h

x+k = b2h
x .

5. Interpolate correction e2h
x yielding eh

x (Equation 8).

6. Apply coarse grid correction: uh
x += eh

x .

7. Gauss-Seidel relaxation of Equation 3.

4. CUDA Implementation

The CUDA implementation of the multigrid finite hexahe-

dra method consists of two parts: a preprocess for creating the

finite element model and the real-time simulation of the de-

formable model. In the preprocess, the finite element model is

constructed and packed into several index arrays that are stored

in GPU memory. Then, the finite element model is used for the

real-time simulation of the object’s deformations due to internal

and external forces.

In the following, we first explain the data structures used to

represent the finite element model in GPU memory (Section

4.1). We then show how the computations are parallelized and

mapped onto the CUDA threading model (Section 4.2). The

description of our CUDA implementation is completed by pre-

senting memory layouts that enable coalesced memory accesses

and thus facilitate using the full memory bandwidth available

on the GPU (Section 4.3).

4.1. Data Structures

The finite element model, including the multigrid hierarchy,

is stored on the GPU using an indexed representation, i.e., finite

elements and vertices1 are addressed via indices. These indices

are determined by enumerating the finite elements and the ver-

tices in a specific order that will be explained in Section 4.3.

The indices are counted from 0 and represented as 32-bit inte-

ger values. When referencing neighbors, parents, ..., a special

index value of -1 is used to specify that an element or vertex is

not existing.

For each finite element, we store its incident vertices, yield-

ing an array with eight indices per element. For each vertex in

the multigrid hierarchy, we store its neighbor vertices, i.e., the

vertices in the 33 domain of the numerical stencil (array with 27

indices per vertex), its corresponding vertices on the next finer

level for restriction (array with 27 indices per vertex), as well

as its corresponding vertices on the next coarser level for inter-

polation (array with eight indices per vertex). Note that only up

to 8 of the potential 27 indices in Equation 8 are required due

to the condition that vertices have to lie on the coarse grid. If

less vertices are required, we store −1 to mark invalid indices.

For each vertex on the finest level, we additionally store its in-

cident elements (array with eight indices per vertex), as well

as its initial position in the undeformed state (array with three

1Note that the term ’finite element’ only refers to the cells of the finest level

of the multigrid hierarchy, but ’vertices’ refers to the vertices at all levels of the

multigrid hierarchy, unless noted otherwise.

scalars per vertex). Note that these arrays are read-only, i.e., do

not change during runtime.

Furthermore, for each finite element, we store the elastic

modulus and density (two arrays each with one scalar per el-

ement), and for each vertex on the finest level, we store the ex-

ternal force vector acting on that vertex (array with three scalars

per vertex) and whether the vertex is fixed or not (array with one

bool per vertex). These three arrays can be written during run-

time, for example to interactively change the applied forces or

to adapt the stiffness of the finite elements.

The numerical simulation requires further arrays: For each

finite element, we store a rotation matrix according to the coro-

tational strain formulation (array with nine scalars per vertex).

For each vertex in the multigrid hierarchy, we allocate memory

for the per-vertex equations, i.e., the 3×3 matrix coefficients hAx
i

(array with 27 ·9 scalars per vertex), the right-hand side vectors

bh
x (array with three scalars per vertex), the displacement vec-

tors uh
x (array with three scalars per vertex), and the residuum

vectors rh
x (array with three scalars per vertex). For each ver-

tex on the finest level, we furthermore store the displacement

vectors uold
x and its first and second derivatives u̇old

x , üold
x of the

previous time step for Newmark time integration (three arrays,

each with three scalars per vertex).

It is worth noting that the index-based representation of the

finite element model—in contrast to an index-free representa-

tion based on a rectangular domain with implicit neighborhood

relationships—has the advantage of requiring significantly less

memory. This is due to the fact that the memory overhead in-

duced by the index structures is small compared to the mem-

ory which would have to be allocated for the per-vertex equa-

tions for void regions outside the object. Another advantage of

the index-based representation is that it yields compact lists of

elements and vertices (no void ranges), which greatly simpli-

fies an efficient mapping of the computation onto the CUDA

threading model, as shown in the next section. Despite of its

slightly more irregular nature, we will show in Section 4.3 that

the index-based representation nevertheless allows for CUDA-

friendly memory layouts and can thus exploit the full bandwidth

provided by the GPU.

4.2. Parallelization

In the following we discuss how the sub-steps of one sim-

ulation time step are parallelized and mapped onto the CUDA

threading model. Note that we are using the corotated strain

formulation, which requires to update the underlying system of

equations as well as the multigrid hierarchy in every time step

to consider the current element rotations.

Computation of the Element Rotations. The element rotations

are computed by polar decomposition (Higham, 1986) of the

element’s average deformation gradient. To parallelize these

computations, we assign one CUDA thread to each finite ele-

ment. Each thread fetches the current displacement vectors at

the element’s vertices from global GPU memory, determines

the average deformation gradient, and iteratively computes its

polar decomposition using five iteration steps. The resulting

rotation matrix is stored in global memory.
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Assembly of the Per-Vertex Equations. For the assembly of the

per-vertex equations on the finest level, we assign one CUDA

thread to each vertex. Each thread first fetches the indices of

the incident elements, and then loads the elements’ density and

elastic modulus values as well as the elements’ current rota-

tions. Furthermore, the thread fetches the external force applied

to its vertex, as well as the original position, the deformation

vector of the previous time step and its first and second deriva-

tives for Newmark time integration, and the fixation status of

that vertex. By using the single, pre-computed element stiff-

ness matrix stored in cached constant memory, the thread then

assembles the per-vertex equation consisting of the 27 3 × 3

matrix coefficients as well as the right-hand side. Note that we

construct the coefficients strictly one after another to keep the

number of registers used for temporary data as low as possible.

Whenever a coefficient is constructed, it is immediately stored

in global memory.

Assembly of the Multigrid Hierarchy. The levels of the multi-

grid hierarchy are assembled successively with one kernel call

per level. We again assign one CUDA thread to each vertex of

the current level. Each thread first loads the vertex indices of

the corresponding neighborhood on the next finer level. It then

computes the 3×3 matrix coefficients of the per-vertex equation.

To reduce the number of registers used for temporary data while

at the same time avoiding redundant global memory accesses to

the respective equations on the next finer level, we compute the

k-th entries (k = 1 . . . 9) of all 27 matrices simultaneously and

write these entries into global memory before proceeding with

the (k + 1)-st entries.

Gauss-Seidel Relaxation Step. The sequential version of the

Gauss-Seidel algorithm traverses the vertices at a particular

level and successively relaxes each per-vertex equation. In each

relaxation step the updated displacement vectors from the pre-

vious relaxation steps are used. To parallelize the Gauss-Seidel

algorithm, these dependencies have to be considered. We em-

ploy the so-called multi-color Gauss-Seidel algorithm, which

partitions the set of vertices into multiple subsets so that the ver-

tices within each subset can be relaxed in parallel. The subsets,

however, have to be processed sequentially. For the numerical

stencil in our application, 8 subsets are required. They are de-

fined by {x | x1 mod 2 = i1, x2 mod 2 = i2, x3 mod 2 = i3},

i ∈ {0, 1}3, i.e., when dividing the domain into blocks of 23 ver-

tices, the k-th vertex (k = 1 . . . 8) of each block belongs to the

k-th subset.

To process the subsets sequentially, we issue one CUDA ker-

nel call per subset. To compensate the reduced parallelism,

which is especially important for medium-resolution finite el-

ement models exhibiting only a moderate number of vertices,

we assign two CUDA threads to each vertex. Each thread com-

putes one half of the sum in Equation 3. For each summand, the

thread first fetches the index of the respective neighbor vertex,

and then fetches the corresponding displacement vector. The

respective 3 × 3 matrix coefficients are also loaded from global

memory. Upon completion, the first thread hands over his sum

to the other thread by synchronization via on-chip shared mem-

ory. The second thread finally computes the new displacement

vector and writes it back into global memory. To ensure lock-

step execution, we map groups of 32 vertices to two warps

(2 × 32 threads), so that for each vertex the first and second

half of the sum is computed by threads of the first and second

warp, respectively.

Computation of the Residuum. For the computation of the

residuum, we assign one CUDA thread to each vertex. The

computation is similar to the computation performed in the

Gauss-Seidel relaxation step. In contrast, however, the

residuum computation does not exhibit any data dependencies,

thus allowing all vertices to be processed in parallel.

Transfer Operators. For the transfer operators, we again as-

sign one CUDA thread to each vertex. For the restriction oper-

ator, each thread iterates over the corresponding neighborhood

on the next finer level to compute a weighted average of the

residuum vectors. For each neighbor, the thread first fetches

the respective vertex index, and then loads the corresponding

residuum vector. The weighted average is finally written back

into global memory, constituting the right-hand side of the per-

vertex equation of the thread’s vertex. Additionally, the thread

initializes the displacement vector of its vertex with 0.

The interpolation operator is implemented in a similar way.

Each thread iterates over the corresponding neighborhood in

the next coarser level and computes a weighted average of the

coarse grid correction vectors. This vector is added to the dis-

placement vector of the thread’s vertex.

Note that the transfer operators have to be implemented as

gathering operations. Scattering would require atomic read-

modify-write accesses to global GPU memory, since multiple

threads might scatter to the same memory location. Further-

more, scattering would lead to a significantly higher memory

traffic due to the absence of a cache for global GPU memory.

This implies that for each scatter operation the current value

must first be fetched from global memory before it can be mod-

ified and written back.

Conjugate Gradient Solver for the Coarsest Level. Consid-

ering that the number of vertices on the coarsest level is too

small to fully exploit the parallelism offered by the GPU, and

that global synchronization via multiple kernel calls is rather

expensive, we run the conjugate gradient solver for the coarsest

level on a single multiprocessor. To store all temporary data

in on-chip shared memory and to assign one CUDA thread to

each scalar unknown, we use as many multigrid levels as are

required to reduce the number of vertices on the coarsest level

to less than 200.

In the CUDA threading model, threads are organized in

larger groups called thread blocks. All threads in a thread block

are scheduled on the same multiprocessor and can cooperate

via its on-chip shared memory. For our implementation, exper-

iments showed that using a thread block size of 64 threads (2

warps) yields the best performance, i.e., the highest memory

throughput. However, our implementation is rather insensitive
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to the choice of the thread block size in that it exhibits a con-

stantly high performance for a wide range of 32-512 threads per

block.

4.3. CUDA-friendly Memory Layout

The simulation of deformable objects comes with high mem-

ory requirements. Due to the underlying finite element dis-

cretization, the numerical stencil of a single vertex consists of

27 coefficients, with each coefficient being a 3×3 matrix. More-

over, the stencil is not constant for all vertices, but it varies due

to different material parameters associated with each element as

well as due to the corotated strain formulation. Therefore, we

have an overall memory consumption of about 2 KB per ver-

tex using 64-bit double floating point precision (1 KB for single

precision).

The ultimate goal of our CUDA implementation is to ef-

fectively exploit the high memory bandwidth available on the

GPU. In contrast to CPUs—which are equipped with cache

hierarchies of several MB—current GPUs do not provide any

caching of global memory accesses (with the exception of a

very small texture cache for reading global memory via tex-

tures). Thus, maintaining data locality is not the main crite-

rion for optimizing memory throughput on the GPU. Due to

the specific hardware architecture of CUDA-enabled GPUs, it

is mandatory to thoroughly coordinate memory access opera-

tions of parallel running threads in such a way that multiple

memory accesses can be coalesced into single memory transac-

tions. In particular, if the memory accesses of the threads of a

half-warp (consisting of 16 threads running in lock-step) all fit

into a 128-byte segment aligned at a 128-byte boundary, these

memory accesses can be coalesced into one single transaction.

To maximize memory throughput, data should be organized in

such a way that the i-th thread of a half-warp accesses the i-th

word of the segment. It is worth noting that without coalesced

memory accesses, only up to 1/4 (when reading 64-bit double

precision floating point values) of the maximal memory band-

width can be exploited, since 32 byte is the smallest memory

transaction size. Furthermore, since all threads in a half-warp

are blocked until all memory access operations of that half-warp

are finished, considerably higher latencies are introduced.

In the following, we describe how the data used in our ap-

plication are stored in memory to allow for coalesced mem-

ory access operations. The main principle is to store each ar-

ray of vectors or matrices such that their scalar components are

grouped into separate memory blocks, i.e., the j-th components

of all vectors/matrices of the array are sequentially stored in the

j-th block. For the assignment of indices to the finite elements

and vertices, we enumerate the elements as well as the vertices

of each subset (for the multi-color Gauss-Seidel algorithm) in

lexicographical order according to their 3D integer position (z

first, y second, x third), with the vertices being enumerated con-

tinuously over all subsets and multigrid levels.

To align the memory accesses of half warps at multiples of

128 byte, the number of vertices per subset are rounded up to

multiples of 16, i.e, the index of the first vertex of each subset

is a multiple of 16. (The additional dummy vertices are marked

as invalid by storing -1 in all index structures corresponding to

v0
0

· · · v15
0

v16
0

· · · v31
0...
...

· · · vn−1
0

128 byte

128 byte

128 byte

Component 0

v0
1

· · · v15
1

v16
1

· · · v31
1...
...

· · · vn−1
1

128 byte

128 byte

128 byte

Component 1

...
...

v0
m−1

· · · v15
m−1

v16
m−1

· · · v31
m−1...
...

· · · vn−1
m−1

128 byte

128 byte

128 byte

Component m − 1

Figure 4: Memory layout for a generic array v with n elements, with each

element consisting of m scalar components. vi
j

denotes the j-th component of

the i-th element of the array. The j-th components of all elements are stored

sequentially in a separate memory block. If the i-th thread accesses the i-th

element, the memory accesses can be coalesced into single 128 byte memory

transactions (blue).

these vertices.) In Figure 4, we illustrate this memory layout for

a generic array consisting of n elements with m components per

element. For each kernel call, we map each contiguous block of

32 indices to a warp of 32 threads. If the i-th thread accesses the

i-th element of the array, the memory accesses are maximally

coalesced and yield optimal memory throughput.

In our application, this setting is always met when a thread

assigned to a specific element or vertex accesses data that is spe-

cific to that element or thread. However, when a thread accesses

data belonging to a neighboring vertex (for example, when ac-

cessing the displacement vectors u in the Gauss-Seidel relax-

ation step), the situation is slightly different. In this case, the

threads belonging to a half-warp still read a contiguous block

of memory (except at the object’s boundary), as illustrated in

Figure 5. Since this block is in general not aligned at a 128-

byte boundary (or 64-byte boundary for 32-bit elements), the

hardware can only coalesce these memory accesses in two in-

stead of one memory transaction. Note, however, that in our ap-

plication, all memory accesses to neighboring vertices are read

accesses. This enables performing these read accesses through

textures, resulting in almost maximal memory throughput due

to the small on-chip texture cache.
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Figure 5: Illustration of the efficiency for accessing data at the neighboring ver-

tices. The colors of the vertices correspond to the subsets used for Gauss-Seidel

relaxation. The numbers denote the indices of the vertices, which correspond

to the relative location of the per-vertex data in memory. In the example, the

green vertices access data stored at their lower-left neighbors, which are all in

the same subset (red vertices). Note that if the threads are sequentially assigned

to the green vertices, the threads access their neighbors’ data in contiguous

memory blocks (except at the object’s boundary).

5. Rendering

Even though the proposed CUDA implementation of elas-

ticity simulation allows using model discretizations at reason-

able resolution, a high-resolution render surface is required to

achieve a visually continuous representation. To maintain and

render such a representation efficiently on the GPU, we use

CUDA and the graphics API OpenGL in combination.

In a preprocess, a triangular object boundary surface is con-

structed, for instance by using a super-resolution hexahedral

discretization and reconstructing a triangular iso-surface from

this discretization. The surface is stored in GPU memory, rep-

resented as an OpenGL index array that contains for every tri-

angle references into a shared vertex array with associated per-

vertex attributes. The shared vertex array as well as the array

containing the vertices of the simulation grid are stored on the

GPU as an OpenGL buffer object. Notably CUDA can directly

write into these OpenGL resources, thereby avoiding any copy-

ing operations.

Vertices of the render surface are bound to vertices of the

simulation grid via interpolation weights as illustrated in Fig-

ure 6. For every render vertex, we determine the simulation el-

ement closest to this vertex—by using the distance between the

vertex and the element center—and compute the tri-linear inter-

polation/extrapolation weights of the element vertices. These

weights, together with respective references to the simulation

vertices, are computed in the preprocess and stored in GPU

memory.

At run-time, the displacement vectors of the simulation ver-

tices are computed via CUDA as proposed in the previous

Chapter, and the render surface vertices are updated according

to these displacements using the pre-computed weights. Note

that also the last step is performed via a CUDA compute kernel,

which directly updates the OpenGL vertex arrays. Finally, the

render surface is displayed using triangle rasterization.

6. Results

We analyze the performance of the CUDA-based multigrid

approach for simulating deformable objects for a number of

models with different resolutions (see Figures 7 to 9). All of

our experiments were run on a desktop PC, equipped with an

Intel Xeon X5482 3.2 GHz processor, 8 GB of RAM, and an

NVIDIA Quadro FX 5800 graphics card with 4 GB of video

memory. Updating and rendering a high-resolution render sur-

face that was bound to the simulation grid took less than 3 ms

in all examples.

Since all models were initially given as triangle surfaces, in

the third column of Table 1 we first analyze the time which was

required to construct a finite hexahedral representation from

these models. As can be seen, the preprocessing times are al-

ways below one second, allowing instant construction and up-

dates of the simulation grid.

For the models used in this paper, the second column in Ta-

ble 1 provides the number of finite hexahedra used to represent

these models as well as the number of degrees of freedom in the

resulting systems of equations. The times given in columns 4

and 5 refer to one update step, including the computation of

element rotations, the assembly of per-vertex equations, and

the computation of the coarse grid equations, and one solve

step, including two multigrid V-cycles using two pre-smoothing

and one post-smoothing Gauss-Seidel step. Since our approach

simulates the dynamics of deformable bodies, the solution from

the last time step provides a very good initial guess to start with

in the current time step. Due to this, we achieve high simulation

accuracy using only 2 V-cycles per time step.

In order to analyze the performance gain that is achieved

by our CUDA implementation, it is compared to a memory-

optimized CPU implementation of the finite element approach

described in Section 3. In contrast to the GPU implementation,

which stores the data interleaved (see Section 4.3), on the CPU

the data is stored linearly in memory to allow for cache coherent

memory access operations and efficient hardware prefetching.

The simulation vertices are stored in Z-order (Morton-order) to

exploit coherence in the sequential processing of the simula-

tion elements. As can be seen in column 6 of Table 1, the sin-

gle threaded CPU implementation shows an average memory

throughput that is close to the theoretical memory bandwidth

of the system (8.3 GB/s). In particular this indicates that a par-

allelization on multi-core desktop PCs with standard memory

interfaces can only marginally increase the performance.

For the CUDA implementation the timings in Table 1 indi-

Figure 6: Binding of a high-resolution render surface (blue) to the hexahedral

simulation grid. Each render surface vertex is bound to the closest hexahedron

with respect to the center of the elements (gray dashed lines). Magenta arrows

indicate the element vertices used for tri-linear interpolation/extrapolation (for

simplicity shown only for two selected vertices).
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Time [ms] Time CPU [ms] Time GPU [ms] Memory throughput

Model #Hexahedra #DOFs Preprocess Update Solve Update Solve CPU GPU

Liver 29,256 105,480 94 133 116 27 22 4.2 GB/s 21 GB/s

Horse 65,927 238,773 192 312 264 52 39 4.1 GB/s 26 GB/s

Dragon 119,698 442,428 375 581 496 59 50 4.1 GB/s 40 GB/s

Cube 262,144 823,875 821 1,191 1,030 105 83 3.7 GB/s 44 GB/s

Table 1: Simulation performance and average memory throughput on the CPU and the GPU for deformable models at different resolutions.

cate a speed-up of up to a factor of 12 compared to the CPU

implementation. The speed-up is measured at double float-

ing point precision. Switching to floating point precision on

both the CPU and the GPU roughly doubles the performances,

which attests once again that the simulation is memory bound.

In fact, an analysis of the average memory throughput of the

CUDA implementation (last column in Table 1) shows that we

are close to the theoretical memory bandwidth of 102 GB/s of

the NVIDIA Quadro FX 5800. This indicates that the appli-

cation is well-optimized with respect to memory access opera-

tions, and, thus, a further speed-up on this architecture cannot

be achieved.

In summary, the multigrid finite hexahedra methods we have

implemented on the GPU using CUDA and on the CPU are

both memory bound. As a consequence one can expect that

the performance that can be achieved on future architectures is

strongly related to the memory bandwidth available on these

architectures. On Intel’s new Core i7 processors, a theoret-

ical memory bandwidth of 32 GB/s is possible, which yields

a maximal speed-up of four on this CPU. On the other hand,

NVIDIA’s GTX 285 already has a theoretical memory band-

width of 159 GB/s, and the upcoming NVIDIA Fermi architec-

ture has an even higher bandwidth of 177.4 GB/s. Therefore, we

expect the performance gap between the CUDA and the CPU

implementation to remain in the future.

7. Conclusion

In this work we have presented a real-time method for

physics-based elasticity simulation using CUDA. The method

employs the power of numerical multigrid schemes for the ef-

ficient solution of the corresponding partial differential equa-

tion. Underlying our approach is a hexahedral discretization

of the simulation domain, giving rise to efficient algorithms

for model construction and parallel simulation. By introducing

Figure 7: Real-time deformations for surgical simulation systems. The liver

model consists of 29,000 elements, and the simulation runs with 20 time steps

per second.

Figure 8: Simulation of the cube model (643 elements) runs with 5 time steps

per second.

a discretization-specific restructuring on the algorithmic level,

the multigrid simulation scheme can efficiently be mapped to

the GPU via the CUDA parallel programming API. In this way,

significant speed-ups can be achieved compared to an opti-

mized CPU solution. The performance of our approach makes

it amenable for model discretizations at high resolution, and,

thus, it is well suited for interactive applications like virtual

surgery simulation.

Our method also opens a number of areas for future research.

One interesting question is how to parallelize the method on

GPU clusters. Parallelization strategies similar to the one pro-

posed in (Sampath and Biros, 2009) will be considered, with

the focus on minimizing inter-GPU communication. An addi-

tional challenge is to integrate GPU-based collision detection

and handling in real-time deformable body simulations. Image-

based techniques as proposed in (Georgii et al., 2007; Faure

et al., 2008) will be investigated for this purpose. Finally, in

order to further enhance the simulation tool towards interactive

medical applications, research has to be pursued on the integra-

tion of real-time cutting algorithms.
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