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Abstract

We present a multigrid approach for simulating elastic deformable objects in real time on recent NVIDIA GPU architectures. To

accurately simulate large deformations we consider the co-rotated strain formulation. Our method is based on a finite element

discretization of the deformable object using hexahedra. It draws upon recent work on multigrid schemes for the efficient numerical

solution of partial differential equations on such discretizations. Due to the regular shape of the numerical stencil induced by

the hexahedral regime, and since we use matrix-free formulations of all multigrid steps, computations and data layout can be

restructured to avoid execution divergence of parallel running threads and to enable coalescing of memory accesses into single

memory transactions. This enables to effectively exploit the GPU’s parallel processing units and high memory bandwidth via the

CUDA parallel programming API. We demonstrate performance gains of up to a factor of 27 and 4 compared to a highly optimized

CPU implementation on a single CPU core and 8 CPU cores, respectively. For hexahedral models consisting of as many as 269,000

elements our approach achieves physics-based simulation at 11 time steps per second.
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1. Introduction

Over the last years, graphics processing units (GPUs) have

shown a substantial performance increase on intrinsically par-

allel computations. Key to this evolution is the GPU’s design

for massively parallel tasks, with the emphasis on maximizing

total throughput of all parallel units. The ability to simulta-

neously use many processing units and to exploit thread level

parallelism to hide latency have led to impressive performance

increases in a number of scientific applications.

One prominent example is NVIDIA’s Fermi GPU [1], on

which we have based our current developments. It consists

of 15 multiprocessors, on each of which several hundreds of

co-resident threads can execute integer as well as single and

double precision floating point operations. Double precision

operations are running at 1/2 of the speed of single precision

operations. Each multiprocessor is equipped with a register file

that is partitioned among the threads residing on the multipro-

cessor, as well as a small low-latency on-chip memory block

which can be randomly accessed by these threads. Threads are

further provided with direct read/write access to global off-chip

video memory. These accesses are cached using a two level

cache hierarchy.

The threads on each multiprocessor are executed in groups

of 32 called warps, and all threads within one warp run in lock-

step. Due to this reason the GPU works most efficiently if all
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threads within one warp follow the same execution path. Au-

tomatic hardware multi-threading is used to schedule warps in

such a way as to hide latency caused by memory access oper-

ations. Switching between warps is virtually at no cost, since

threads are permanently resident on a multiprocessor (indepen-

dently of whether they are running, blocked, or waiting). As

a consequence, however, the registers are partitioned among

all threads residing on a multiprocessor, which significantly re-

duces the number of registers available to each thread.

The Fermi GPU executes global memory accesses at a fix

granularity of 128 bytes, i.e., the GPU reads or writes contigu-

ous blocks of 128 bytes that are aligned at 128-byte bound-

aries. The hardware coalesces parallel accesses of the threads

of a warp that lie in the same 128-byte segment into a single

memory transaction. To effectively exploit the GPU’s memory

bandwidth, parallel accesses of the threads of a warp should

therefore lie closely packed in memory to reduce the number

of memory transactions and to avoid transferring of unneces-

sary data. Specifically, if the i-th thread of a warp (half warp)

accesses the i-th 32-bit (64-bit) word of a 128-byte segment,

these accesses are combined into a single memory transaction

and the GPU’s memory bandwidth is optimally used.

Contribution. We present a novel geometric multigrid finite el-

ement method on the GPU, and we show the potential of this

method for simulating elastic material in real time on desktop

PCs. To the best of our knowledge, this is the first multigrid fi-

nite element approach for solving linear elasticity problems that

is realized entirely on the GPU. Since we use the co-rotational
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Figure 1: Left: A deformed hexahedral object consisting of 30,000 elements is shown. Right: By using a high-resolution render surface that is bound to the deformed

representation a visually continuous appearance is achieved.

formulation of strain, even large deformations can be simulated

at high physical accuracy. The CUDA API [2] is used because

in contrast to graphics APIs like OpenGL or Direct3D it gives

the programmer direct control over all available computing and

memory resources.

To effectively exploit the GPU’s massively parallel multi-

threading architecture, an algorithm must be restructured to ex-

pose a sufficient amount of fine-grained parallelism down or

beyond one thread per data element. These threads should fol-

low one common execution path and exhibit memory access

patterns which enable coalescing of memory accesses to effec-

tively exploit the massive memory bandwidth available on the

GPU.

The particular restructuring we propose is based on a regu-

lar hexahedral discretization of the simulation domain, which

provides a number of advantages for GPU-based deformable

object simulation: First, a hexahedral discretization of a given

object boundary surface can be generated at very high speed,

including a multi-resolution representation that is required in

a geometric multigrid approach. Second, the regular topology

of the hexahedral grid leads to a numerical stencil of the same

regular shape at each simulation vertex. This enables parallel

processing of vertices using the same execution path and al-

lows for memory layouts that support coalescing of memory

access operations. Third, since all hexahedral elements have

the same shape, only a single pre-computed element stiffness

matrix is needed, which greatly reduces memory requirements.

The stiffness matrix of a specific finite element is obtained from

this matrix by scaling with the element’s elastic modulus and

by applying the current element rotation according to the co-

rotated strain formulation.

Due to these advantages, we achieve performance gains of

up to a factor of 27 compared to an optimized parallel CPU

implementation running on a single CPU core. Even com-

pared to the CPU implementation running on 8 CPU cores, our

GPU implementation is a factor of up to 4 faster. This speed-

up results from both the arithmetic and memory throughput

on the Fermi GPU. Our CUDA implementation of the multi-

grid method achieves update rates of 120 time steps per sec-

ond for models consisting of 12,000 hexahedral elements. For

large models consisting of 269,000 elements, 11 time steps per

second can still be achieved. Each time step includes the re-

assembly of the system of equations, which is necessary due

to the co-rotated strain formulation, as well as two multigrid

V-cycles for solving this system. In combination with a high-

resolution render surface, which is bound to the simulation

model via pre-computed interpolation weights, a visually con-

tinuous rendering of the deformable body is achieved (see Fig-

ure 1).

2. Related Work

Over the last years, considerable effort has been spent on the

efficient realization of general techniques of numerical comput-

ing on programmable GPUs [3, 4]. Recent work in this field has

increasingly focused on the use of the CUDA API [2], address-

ing a multitude of different applications ranging from image

processing and scientific visualization to fluid simulation and

protein folding. CUDA provides a programming model and

software environment for high-performance parallel comput-

ing on NVIDIA GPU architectures, allowing the programmer

to flexibly adapt the parallel workload to the underlying hard-

ware architecture. There is a vast body of literature related to

this field and a comprehensive review is beyond the scope of

this paper. However, [5] and [6] discuss the basic principles un-

derlying the CUDA API and provide many practical details on

the effective exploitation of the GPU’s capacities via CUDA.

Over the last decades, extensive research has been pursued

on the use of three-dimensional finite element (FE) methods to

predict the mechanical response of deformable materials to ap-

plied forces (see, for example, [7] for a thorough overview). FE

methods are attractive because they can realistically simulate
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the dynamic behavior of elastic materials, including the sim-

ulation of internal stresses due to exerted forces. Algorithmic

improvements of FE methods, steering towards real-time sim-

ulation for computer animation and virtual surgery simulation

have been addressed in [8, 9, 10, 11].

Among the fastest numerical solution methods for solving

the systems of linear equations arising in deformable model

simulation are multigrid methods [12, 13, 14]. In a number

of previous works, geometric multigrid schemes for solving

the partial differential equations describing elastic deformations

have been developed [15, 16, 17]. Interactive multigrid ap-

proaches for simulating linear elastic materials on tetrahedral

and hexahedral grids have been proposed in [18, 19] and [20],

respectively.

In real-time applications, most commonly the linearized

strain tensor, i.e. the Cauchy strain tensor, is used. However,

since the Cauchy strain tensor is not invariant under rotations,

computed element displacements tend to diverge from the cor-

rect solution in case of large deformations. The co-rotational

formulation of finite elements [21] accounts explicitly for the

per-element rotations in the strain computation and thus can

handle non-linear relations in the elastic quantities. The effi-

cient integration of the co-rotational formulation into real-time

approaches has been demonstrated in [10, 22, 23].

FE-based deformable body simulation on the GPU has been

addressed in a number of publications. The exploitation of

a GPU-based conjugate gradient solver for accelerating the

numerical simulation of the FE model has been reported in

[24, 25]. [26] presented a GPU-based FE surface method

for cloth simulation. An overview of early GPU-accelerated

techniques for surgical simulation is given by [27]. These

approaches are mainly based on mass-spring systems [28].

Non-linear finite element solvers for elasticity simulation us-

ing graphics APIs and CUDA were presented by [29] and [30],

respectively. Both approaches build upon Lagrangian explicit

dynamics [31] to avoid locking effects. While [29] employed

a tetrahedral domain discretization, a discretization using hex-

ahedral finite elements was used by [30]. [32] demonstrated

clear performance gains for a multigrid Poisson solver on the

GPU.

3. GPU-Aware Elasticity Simulation

In the following we describe the physical model underlying

our approach for real-time elasticity simulation, and we outline

the algorithms that are used to enable fast and stable numerical

simulation of this model. Special emphasis is put on the restruc-

turing of these algorithms to support an efficient mapping to the

GPU, involving matrix-free formulations of all computational

steps.

3.1. Co-rotated Linear Elasticity

Underlying our simulation is a linear elasticity model com-

bined with a co-rotational formulation of strain. In this model,

we describe deformations as a mapping from the object’s refer-

ence configuration Ω to its deformed configuration {x + u(x) |

x ∈ Ω} using a displacement function u : R3 → R
3. Using a

finite element discretization, the dynamic behavior of an object

is governed by the Lagrangian equation of motion [7]

Mü +Cu̇ + Ku = f , (1)

where M, C, and K denote the mass, damping and stiffness ma-

trix, respectively. u is a vector built from the displacement vec-

tors of all vertices and f is analogously built from the per-vertex

force vectors. The stiffness matrix K is constructed by assem-

bling the element stiffness matrices Ke, which are obtained by

applying the principle of virtual work to each specific element.

Linear elasticity has the drawback that it is accurate only for

relatively small deformations. It is based on a linear approxi-

mation of the strain tensor—meaning that there is a linear rela-

tionship between strains and displacements—and therefore can

result in a significant volume increase in case of large deforma-

tions. To overcome this limitation we use the co-rotated strain

formulation in our approach, which, in principle, rotates the

element from the deformed to the reference configuration be-

fore the linear (Cauchy) strain is computed. This co-rotation is

carried out on the finite element discretization by rotating the

element stiffness matrices Ke accordingly.

3.2. Model Construction

Our approach is based on a hexahedral discretization of the

deformable object. The discretization is built from a voxeliza-

tion of the object into a Cartesian grid structure, i.e., each grid

cell is classified as inside or outside of the object boundary.

The simulation model is then obtained by creating a hexahe-

dral finite element for each interior cell. The regular hexahedral

structure gives rise to a very efficient construction of a nested

grid hierarchy that is essential for exploiting geometric multi-

grid schemes at their full potential. Due to the regular struc-

ture of the hexahedral discretization, computations can be par-

allelized effectively on SIMD architectures like GPUs.

From a given hexahedral model an octree hierarchy is built in

a bottom-up process by successively considering grids of dou-

ble cell size, i.e., the domain of a cell on the next coarser level

coincides with the domain of a block of 23 cells on the current

level. The respective next coarser level is constructed by creat-

ing a hexahedral element for exactly those cells which cover at

least one hexahedral element on the current level. This process

is repeated until the number of elements on the coarsest level

is below a given threshold. On each hierarchy level a shared

vertex representation is computed for the set of elements. Note

that this construction process does not impose any restrictions

on the size of the initial hexahedral model on the finest level.

In particular, an element on the next coarser level is allowed to

be only partially ‘filled’ with elements on the current level, for

instance, at the object boundary.

In the numerical simulation, tri-linear shape functions are as-

signed to the finite hexahedral elements. Since all elements

have the same shape, the same stiffness matrix

Ke =

∫

Ωe

BTDB dx (2)
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can be used for all of them (up to scaling according to the re-

spective element’s elastic modulus). Here, B is the strain ma-

trix and D is the material law. Requiring only a single ele-

ment stiffness matrix significantly accelerates the setup phase

for the simulation and greatly reduces memory demands. Note

that even if the object geometry deforms and hexahedra become

different shapes, no further calculations are required, since the

discretization of the underlying partial differential equation al-

ways refers to the undeformed model state. Thus, the element

stiffness matrices do not change.

3.3. Multigrid Solver

Iterative methods such as Gauss-Seidel-type relaxation can

be used in principle to solve the linear system of equations as

it arises in the current application, because such methods can

effectively exploit the system’s sparsity. Such methods, on the

other hand, require a large number of iterations until conver-

gence of the solution. However, looking at the frequency spec-

trum of the error reveals that high frequencies are damped out

very quickly by the relaxation, which yields the idea to solve

the residual equation at a coarser grid, where the remaining low

frequencies appear more oscillatory. This principle of coupling

multiple scales to achieve improved convergence is underlying

the basic multigrid idea. Specifically it can be shown that a

linear time complexity of the solver in the number of unknowns

can be achieved by applying this idea recursively on a hierarchy

of successively coarser grids, yielding the so-called multigrid

V-cycle scheme.

Numerical multigrid solvers are known to be among the most

efficient solvers for elliptic partial differential equations of the

form described above, and their potential has been exploited

for simulating deformations using tetrahedral and hexahedral

model discretizations. Our geometric multigrid solver builds

upon these approaches, and it extends previous work by intro-

ducing a method to perform the computations for every element

or vertex in lock-step using only coordinated memory accesses.

Due to this property, the solver can effectively be mapped to the

GPU via the CUDA API.

Before we discuss the GPU implementation in detail, we first

derive the equations for the finite element simulation and the

multigrid solver. Here, we put special emphasis on a matrix-

free formulation that can be directly mapped to CUDA compute

kernels.

Simulation Level Equations. In a hexahedral setting using the

co-rotational strain formulation, the static elasticity problem for

a single finite element is described by the following set of equa-

tions:

8∑

j=1

R Ki j

(

RT
(

p0
j + u j

)

− p0
j

)

= fi , i = 1, . . . , 8. (3)

Here, Ki j denotes a 3 × 3 block of the element stiffness matrix

Ke, R is the rotation matrix determined for the element, u j are

the displacements vectors at the element vertices, p0
j

are the

positions of the element vertices in the undeformed state, and

fi are the forces acting on the element at its vertices. Solving

for the unknown displacements u j is performed by rearranging

terms as

8∑

j=1

R Ki j RT

︸   ︷︷   ︸

Âi j

u j = fi −

8∑

j=1

R Ki j

(

RT p0
j − p0

j

)

︸                            ︷︷                            ︸

b̂i

. (4)

For the simulation of the dynamic behavior of the deformable

object, the Newmark time integration scheme

u̇i =
2

dt

(

ui − uold
i

)

− u̇old
i (5)

üi =
4

dt2

(

ui − uold
i − u̇old

i dt
)

− üold
i (6)

is applied to the Lagrangian equation of motion

8∑

j=1

(

Mi jü j +Ci ju̇ j + Âi ju j

)

= b̂i , i = 1, . . . , 8, (7)

leading to equations

8∑

j=1

(

4

dt2
Mi j +

2

dt
Ci j + Âi j

)

︸                        ︷︷                        ︸

Ai j

u j =

b̂i +

8∑

j=1

(

Mi j

(

4

dt2

(

uold
j + u̇old

j dt
)

+ üold
j

)

+Ci j

(

2

dt
uold

j + u̇old
j

))

︸                                                                           ︷︷                                                                           ︸

bi

. (8)

Here, uold
j

, u̇old
j

, and üold
j

are the displacement vectors and their

derivatives of the previous time step, and dt denotes the length

of the time step. The 3 × 3 matrix coefficients Ai j and right-

hand side vectors bi are introduced to simplify the upcoming

discussion. In our implementation, we use mass proportional

damping (C = αM with α ∈ R) and mass lumping (Mii = miI3

with vertex masses mi, and Mi j = 0 for i , j).

The global system of equations can then be derived by ac-

cumulating the single equations of all hexahedral elements,

thereby taking into account that elements share vertices, i.e.,

that there is one common ui and fi at a shared vertex. More

precisely, an equation is built for every vertex x = (x1, x2, x3) of

the mesh by gathering the corresponding equations from the 8

incident hexahedra. x denotes integer coordinates of the vertex

with respect to the underlying hexahedral grid. This results in

per-vertex equations that reside on a 33 stencil of 27 adjacent

vertices:
1∑

i=−1

Ax
i ux+i = bx. (9)

Here, Ax
i

are the accumulated 3 × 3 matrix coefficients as-

sociated with the adjacent vertex x + i, where i = (i1, i2, i3)

is the relative position of the adjacent vertex with re-

spect to vertex x. The notation i = −1, . . . , 1 means

iterating over all 27 3-tupels of the set {−1, 0, 1}3, i.e.

(−1,−1,−1), (0,−1,−1), (1,−1,−1), . . . , (1, 1, 1). ux+i denotes

the displacement vector at vertex x + i, and bx is the accumu-

lated right-hand side vector at vertex x. Dirichlet boundary con-

ditions are implemented by replacing the per-vertex equations

of fixed vertices with dummy equations I3ux = 0.
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Figure 2: Weights used to transfer quantities from a coarse grid (blue vertices)

to the next finer grid (red vertices) of the multigrid hierarchy (interpolation).

For the restriction from the coarser grid to the finer grid, the same weights are

used. For simplicity, the weights are shown only for selected vertices in 2D.

Coarse Grid Equations. The geometric multigrid solver oper-

ates on a hexahedral grid hierarchy which is constructed in the

setup phase. In the following, the respective current level and

the next coarser level are indicated by sub- and superscripts h

and 2h, referring to the levels’ grid spacings. The multigrid

solver requires coarse grid versions of the system matrix A as

well as restriction and interpolation operators to transfer quan-

tities between subsequent grid levels. We use tri-linear interpo-

lation for the multigrid interpolation operator Ih
2h

, and the multi-

grid restriction operator R2h
h

is chosen to be the transpose of the

interpolation operator, i.e., R2h
h
=

(

Ih
2h

)T
. Furthermore, we use

Galerkin-based coarsening, i.e., the coarse grid versions of the

system matrix are successively built from fine to coarse grids

via A2h = R2h
h

Ah Ih
2h

. In a matrix-free formulation, the coarse

grid equations are built by distributing the equations at the fine

grid vertices to coarse grid vertices and by simultaneously inter-

polating the displacement vectors at the fine grid vertices from

the coarse grid vertices, using the weights illustrated in Figure

2.

To construct the equations on the coarse grids, we propose

a two-step approach as illustrated in Figure 3. First, equations

at fine grid vertices are distributed to coarse grid vertices (re-

striction, corresponding to computing linear combinations of

the rows of Ah), yielding a 53 stencil on the fine grid with asso-

ciated coefficients B. Second, these coefficients are distributed

to the coarse grid vertices (interpolation, corresponding to com-

puting linear combinations of the columns of Ah), thereby re-

ducing the stencil to a 33 domain on the coarse grid. Note that

the coarse grid vertex x corresponds to the fine grid vertex 2x

due to the different grid spacings. The construction is described

by the following equations:

hBx
i =

1∑

k=−1
|i j−k j |≤1 , j=1,2,3

wk
hA2x+k

i−k , i = −2, . . . , 2, (10)

2hAx
i =

1∑

k=−1
|2i j+k j |≤2 , j=1,2,3

wk
hBx

2i+k , i = −1, . . . , 1. (11)

In these equations, wk = (2 − |k1|) (2 − |k2|) (2 − |k3|)/8 are the

weights used for restriction and interpolation. The additional

conditions for the summation index variables ensure that no co-

efficients are fetched outside the valid ranges (−1, . . . , 1 for co-

1/4 1/4

1/4 1/4

1/2

1/2 1/2

1/2

1

1/2 1/2

1/4

1/4

1/4

1/4

1

Figure 3: Illustration of the construction of the coarse grid equation for a spe-

cific vertex (center vertex marked with a blue arrow). In the first step, a linear

combination of the per-vertex equations (their stencils and the used weights are

shown in different colors and line styles) in the 33 fine grid (red vertices) neigh-

borhood of the considered vertex is computed. The resulting equation resides

on a 53 stencil on the fine grid. In the second step, this equations is restricted to

a 33 stencil on the coarse grid (blue vertices) by substituting the displacement

vectors at the fine grid vertices by interpolation from the coarse grid vertices,

corresponding to a distribution of the respective coefficients from the fine grid

to the coarse grid vertices (black arrows and interpolation weights). Note that

the weights shown in the figure correspond to the 2D case; the weights for the

3D case are given in the text.

efficients A and −2, . . . , 2 for coefficients B).

Multigrid V-Cycle. The linear system of equations is solved by

performing multigrid V-cycles, each consisting of the following

steps:

1. Gauss-Seidel relaxation of the per-vertex equations (Equa-

tion 9) (n1 steps).

2. Computation of the residual rh
x:

rh
x = bh

x −

1∑

k=−1

hAx
k uh

x+k. (12)

3. Restriction of the residual to the next coarser grid:

r2h
x =

1∑

k=−1

wk rh
2x+k. (13)

4. On the coarser grid, the error e2h
x corresponding to the

residual is determined by the residual equation

1∑

k=−1

2hAx
k e2h

x+k = r2h
x . (14)

The residual equation is solved by applying this scheme

recursively (e2h
x ≡ u2h

x , r2h
x ≡ b2h

x ) or solved directly if the

coarsest level is reached.

5. Interpolation of the error back to the finer grid:

eh
x =

1∑

k=−1
x+k≡ 0 (mod 2)

wk e2h
(x+k)/2 . (15)

The condition x + k ≡ 0 (mod 2) ensures that only coarse

grid locations are considered.
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6. Coarse grid correction: uh
x += eh

x.

7. Gauss-Seidel relaxation of the per-vertex equations (Equa-

tion 9) (n2 steps).

In our implementation, we use n1 = 2 pre-smoothing and

n2 = 1 post-smoothing Gauss-Seidel steps per V-cycle. On the

coarsest level, a conjugate gradient solver is employed.

4. CUDA Implementation

The CUDA implementation of the multigrid finite hexahe-

dra method consists of two parts: a pre-process for creating

the finite element model and the real-time simulation of the de-

formable model. In the pre-process, the finite element model is

constructed and packed into several index arrays that are stored

in GPU memory. Then, the finite element model is used for the

real-time simulation of the object’s deformations due to applied

forces.

In the following, we first explain the data structures used to

represent the finite element model in GPU memory (Section

4.1). We then show how the computations are parallelized and

mapped onto the CUDA threading model (Section 4.2). The

description of our CUDA implementation is completed by pre-

senting a memory layout that enables coalesced memory ac-

cesses and thus facilitates using the full memory bandwidth

available on the GPU (Section 4.3).

4.1. Data Structures

The finite element model, including the multigrid hierarchy,

is stored on the GPU using an indexed representation, i.e., finite

elements and vertices1 are addressed via indices. These indices

are determined by enumerating the finite elements and the ver-

tices in a specific order that will be explained in Section 4.3.

The indices are counted from 0 and represented as 32-bit inte-

ger values. When referencing neighbors, parents, ..., a special

index value of −1 is used to specify that an element or vertex is

not existing.

For each finite element, we store its incident vertices, yield-

ing an array with eight indices per element. For each vertex in

the multigrid hierarchy, we store its neighbor vertices, i.e., the

vertices in the 33 domain of the numerical stencil (array with

27 indices per vertex), the vertices on the next finer level which

restrict to the considered vertex (array with 27 indices per ver-

tex), as well as the vertices on the next coarser level which the

considered vertex interpolates from (array with eight indices

per vertex). Note that only up to 8 of the potential 27 indices

in Equation 15 are required due to the condition that vertices

have to lie on the coarse grid. If less vertices are required, we

store −1 to mark invalid indices. For each vertex on the sim-

ulation level, we additionally store its incident elements (array

with eight indices per vertex), as well as its initial position in

the undeformed state (array with three scalars per vertex). Note

1Note that the term ‘finite element’ only refers to the elements on the finest

level of the multigrid hierarchy, but ‘vertices’ refers to the vertices at all levels

of the multigrid hierarchy, unless noted otherwise.

that these arrays are read-only, i.e., do not change during run-

time.

Furthermore, for each finite element, we store the elastic

modulus and density (two arrays, each with one scalar per el-

ement), and for each vertex on the simulation level, we store

the external force vector acting at that vertex (array with three

scalars per vertex) and whether the vertex is fixed or not (array

with one bool per vertex). These three arrays can be written

during runtime, for example to interactively change the applied

forces or to adapt the stiffness of the finite elements.

The numerical simulation requires further arrays: For each

finite element, we store a rotation matrix according to the co-

rotational strain formulation (array with nine scalars per ele-

ment). For each vertex in the multigrid hierarchy, we allocate

memory for the per-vertex equations, i.e., the 3 × 3 matrix coef-

ficients hAx
i

(array with 27 · 9 scalars per vertex), the right-hand

side vectors bh
x (array with three scalars per vertex), the dis-

placement vectors uh
x (array with three scalars per vertex), and

the residual vectors rh
x (array with three scalars per vertex). For

each vertex on the simulation level, we furthermore store the

displacement vectors uold
x and their first and second derivatives

u̇old
x , üold

x of the previous time step for Newmark time integration

(three arrays, each with three scalars per vertex).

It is worth noting that the index-based representation of the

finite element model—in contrast to an index-free representa-

tion based on a rectangular domain with implicit neighborhood

relationships—has the advantage of requiring significantly less

memory. This is due to the fact that the memory overhead in-

duced by the index structures is small compared to the memory

which would have to be allocated for the per-vertex equations

for void regions outside of the object. Another advantage of

the index-based representation is that it yields compact lists of

elements and vertices (no void ranges), which greatly simpli-

fies an efficient mapping of the computation onto the CUDA

threading model, as shown in the next section. Despite of its

slightly more irregular nature, we will show in Section 4.3 that

the index-based representation nevertheless allows for CUDA-

friendly memory layouts and can thus exploit the full bandwidth

provided by the GPU.

4.2. Parallelization

In the following we discuss how the substeps of one simu-

lation time step are parallelized and mapped onto the CUDA

threading model. Note that we are using the co-rotated strain

formulation, which requires to update the underlying system of

equations as well as the multigrid hierarchy in every time step

to consider the current element rotations.

Computation of the Element Rotations. The element rotations

are computed by polar decomposition [33] of the elements’ av-

erage deformation gradients. To parallelize these computations,

we assign one CUDA thread to each finite element. Each thread

fetches the current displacement vectors at the element’s ver-

tices from global GPU memory, determines the average defor-

mation gradient, and iteratively computes its polar decomposi-

tion using five iteration steps. The resulting rotation matrix is

stored in global memory.
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Assembly of Simulation Level Equations. For the assembly of

the per-vertex equations on the simulation level, we assign one

CUDA thread to each vertex. Each thread fetches the indices

of the incident elements, and then loads the elements’ density

and elastic modulus values as well as the elements’ current rota-

tions. Furthermore, the thread fetches the external force applied

to its vertex, as well as the original position, the displacement

vector and its first and second derivatives of the previous time

step, and the fixation status of the vertex. By using the sin-

gle, pre-computed element stiffness matrix which is stored in

cached constant memory, the thread assembles the per-vertex

equation consisting of the 27 3 × 3 matrix coefficients as well as

the right-hand side vector. Trading using an excessive number

of registers per thread for an increase of memory traffic, the co-

efficients are assembled in global memory using read-modify-

write operations.

Assembly of Coarse Grid Equations. The levels of the multi-

grid hierarchy are assembled successively with one kernel call

per level. We assign 9 CUDA threads to each vertex of the

current level. The 9 threads first load the vertex indices of the

corresponding 33 neighborhood on the previous finer level into

shared memory. They then assemble the 27 3 × 3 matrix coeffi-

cients of the per-vertex equation. Each thread computes one of

the 9 scalar components of every coefficient. To avoid costly

read-modify-write operations to global memory, each thread

uses 27 registers to store the intermediate values. To ensure

lock-step execution, we map groups of 32 vertices to 9 warps

(9 × 32 threads) such that the i-th thread of each warp is as-

signed to the i-th vertex.

Gauss-Seidel Relaxation. The sequential version of the Gauss-

Seidel algorithm traverses the vertices at a particular level and

successively relaxes each per-vertex equation. For the relax-

ation of an equation, the updated displacement vectors at the

previously visited vertices are used. To parallelize the Gauss-

Seidel algorithm, these dependencies have to be considered.

We employ the so-called multi-color Gauss-Seidel algorithm,

which partitions the set of vertices into multiple subsets such

that the vertices within each subset can be relaxed in paral-

lel. The subsets, however, have to be processed sequentially.

For the numerical stencil in our application, 8 subsets are re-

quired. They are defined by {x | x1 mod 2 = i1, x2 mod 2 =

i2, x3 mod 2 = i3}, i ∈ {0, 1}3, i.e., when dividing the domain

into blocks of 23 vertices, the k-th vertex (k = 1, . . . , 8) of each

block belongs to the k-th subset.

To process the subsets sequentially, we issue one CUDA ker-

nel call per subset. To compensate the reduced parallelism,

which is especially important for medium-resolution finite el-

ement models having only a moderate number of vertices, we

assign 13 CUDA threads to each vertex. Each thread computes

two summands of the sum in Equation 9. For each summand,

the thread first fetches the index of the respective neighbor ver-

tex, and then fetches the corresponding displacement vector.

The respective 3 × 3 matrix coefficients are also loaded from

global memory. The sum is then computed by a logarithmic

reduction operation. The first thread finally computes the new

displacement vector and writes it back into global memory. To

ensure lock-step execution, we map groups of 32 vertices to 13

warps (13 × 32 threads) such that the i-th thread of each warp

is assigned to the i-th vertex.

Computation of Residual. For the computation of the residual,

we assign one CUDA thread to each vertex. The computation

is similar to the computation performed in the Gauss-Seidel re-

laxation step. In contrast, however, the residual computation

does not exhibit any data dependencies, thus all vertices can be

processed in parallel.

Transfer Operators. For the transfer operators, we again as-

sign one CUDA thread to each vertex. For the restriction oper-

ator, each thread iterates over the corresponding neighborhood

on the next finer level to compute a weighted average of the

residual vectors. For each neighbor, the thread first fetches

the respective vertex index, and then loads the corresponding

residual vector. The weighted average is finally written back

into global memory, constituting the right-hand side vector of

the per-vertex equation of the thread’s vertex. Additionally, the

thread initializes the displacement vector of its vertex with 0.

The interpolation operator is implemented in a similar way.

Each thread iterates over the corresponding neighborhood on

the next coarser level and computes a weighted average of the

coarse grid correction vectors. This vector is added to the dis-

placement vector of the thread’s vertex.

Note that the transfer operators have to be implemented as

gathering operations. Scattering would require atomic read-

modify-write accesses to global GPU memory, since multiple

threads might scatter to the same memory location. Further-

more, read-modify-write operations would increase memory

traffic.

Conjugate Gradient Solver on the Coarsest Level. Consid-

ering that the number of vertices on the coarsest level is too

small to fully exploit the parallelism offered by the GPU,

and that global synchronization via multiple kernel calls is

rather expensive, we run the conjugate gradient solver for the

coarsest level on a single multiprocessor. We assign one CUDA

thread to each vertex. The maximum number of vertices on

the coarsest level is thus limited by the maximum number of

threads per thread block (1024 on the Fermi GPU). To obtain

an efficient multigrid V-cycle we use as many multigrid levels

as are required to reduce the number of vertices on the coarsest

level to less than 512.

In the CUDA threading model, threads are organized in

larger groups called thread blocks. All threads in a thread block

are scheduled on the same multiprocessor and can cooperate

via its on-chip shared memory. For our implementation, exper-

iments have shown that using a thread block of minimum size

(32 elements/vertices per thread block) yields the best perfor-

mance.

4.3. CUDA-friendly Memory Layout

The simulation of deformable objects comes with high mem-

ory requirements. Due to the underlying finite element dis-
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cretization, the numerical stencil of a single vertex consists

of 27 coefficients, with each coefficient being a 3 × 3 matrix.

Moreover, the stencil is not constant for all vertices, but it varies

due to different material parameters associated with each ele-

ment and due to the co-rotated strain formulation. The numeri-

cal stencil leads to memory requirements of about 1 KB per ver-

tex using 32-bit single floating point precision (2 KB per vertex

using double precision).

A primary goal of our CUDA implementation thus is to ef-

fectively exploit the high memory bandwidth available on the

GPU. In contrast to CPUs, maintaining data locality is not the

main criterion for optimizing memory throughput on the GPU.

Due to the specific hardware architecture of CUDA-enabled

GPUs, it is mandatory to thoroughly coordinate memory ac-

cess operations of parallel running threads in such a way that

multiple memory accesses can be coalesced into single mem-

ory transactions. The Fermi GPU performs memory accesses

at a fix granularity of 128 bytes, i.e., the GPU reads and writes

entire blocks of 128 bytes which are aligned at 128-byte bound-

aries. Parallel memory accesses of the threads of a warp (con-

sisting of 32 threads running in lock-step) that lie in the same

128-byte segment are coalesced into one single transaction. To

maximize memory throughput, data thus should be organized

in such a way that the i-th thread of a warp (half warp) accesses

the i-th 32-bit (64-bit) word of a 128-byte segment. It is worth

noting that without coalesced memory accesses, the effective

memory throughput can decrease down to 1/32 of the GPU’s

memory bandwidth (in the case of requiring just a single 32-bit

word of a 128-byte segment). Furthermore, since all threads in

a warp are blocked until all memory access operations of the

warp are finished, considerably higher latencies are introduced.

In the following, we describe how the data used in our ap-

plication are stored in memory to allow for coalesced mem-

ory access operations. The main principle is to store each ar-

ray of vectors or matrices such that their scalar components are

grouped into separate memory blocks, i.e., the j-th components

of all vectors/matrices of the array are sequentially stored in the

j-th block. For the assignment of indices to the finite elements

and vertices, we enumerate the elements as well as the vertices

of each subset (for the multi-color Gauss-Seidel algorithm) in

lexicographical order according to their 3D integer position (z

first, y second, x third), with the vertices being enumerated con-

tinuously over all subsets and multigrid levels.

To align the memory accesses of warps at multiples of 128

bytes, the number of vertices per subset are rounded up to mul-

tiples of 32, i.e, the index of the first vertex of each subset is

a multiple of 32. (The additional dummy vertices are marked

as invalid by storing −1 in all index structures corresponding

to these vertices.) In Figure 4, we illustrate this memory lay-

out for a generic array consisting of n elements with m scalar

components per element. For each kernel call, we map each

contiguous block of 32 indices to a warp (or several warps) of

32 threads. If the i-th thread accesses the i-th element of the

array, the memory accesses are maximally coalesced and yield

optimal memory throughput.

In our application, this setting is always met when a thread

assigned to a specific element or vertex accesses data that are

v0
0

· · · v31
0

v32
0

· · · v63
0...
...

· · · vn−1
0

128 byte

128 byte

128 byte

Component 0

v0
1

· · · v31
1

v32
1

· · · v63
1...
...

· · · vn−1
1

128 byte

128 byte

128 byte

Component 1

...
...

v0
m−1

· · · v31
m−1

v32
m−1

· · · v63
m−1...
...

· · · vn−1
m−1

128 byte

128 byte

128 byte

Component m − 1

Figure 4: Memory layout for a generic array v with n elements, each consisting

of m 32-bit scalar components. vi
j

denotes the j-th component of the i-th ele-

ment of the array. The j-th components of all elements are stored sequentially

in a separate memory block. If the i-th thread accesses the i-th element, the

memory accesses can be optimally coalesced into 128-byte memory transac-

tions (blue).

specific to that element or thread. However, when a thread

accesses data belonging to a neighboring vertex (for example,

when accessing the displacement vectors u in the Gauss-Seidel

relaxation step), the situation is slightly different. In this case,

the threads belonging to a warp still read a contiguous block

of memory (except at the object’s boundary), as illustrated in

Figure 5. However, since this block in general is not aligned

at a 128-byte boundary, the hardware can only coalesce these

memory accesses into two instead of one memory transaction.

5. Rendering

Even though the proposed CUDA implementation of elas-

ticity simulation allows using model discretizations at reason-

able resolution, a high-resolution render surface is required to

achieve a visually continuous representation. To maintain and

render such a representation efficiently on the GPU, we use

CUDA and the graphics API OpenGL in combination.

We use the triangle surface mesh which is initially used to

build the finite element model by voxelization. This surface

mesh is stored in GPU memory, represented as an OpenGL

index array that contains for every triangle references into a

shared vertex array with associated per-vertex attributes. The

shared vertex array is stored on the GPU as an OpenGL buffer

object. Notably CUDA can directly write into OpenGL re-

sources, thereby avoiding any copying operations.
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Figure 5: Illustration of the efficiency for accessing data at the neighboring ver-

tices. The colors of the vertices correspond to the subsets used for Gauss-Seidel

relaxation. The numbers denote the indices of the vertices and correspond to the

relative location of the per-vertex data in memory. In the example, the green

vertices access data stored at their lower-left neighbors, which are all in the

same subset (red vertices). Note that if the threads are sequentially assigned to

the green vertices, the threads access their neighbors’ data in contiguous mem-

ory blocks (except at the object’s boundary).

The vertices of the render surface are bound to the vertices

of the simulation grid via interpolation weights as illustrated

in Figure 6. For every render vertex, we determine the sim-

ulation element closest to this vertex—by using the distance

between the vertex and the element center—and compute the

tri-linear interpolation/extrapolation weights of the element ver-

tices. These weights, together with respective references to the

simulation vertices, are computed in the pre-process and stored

in GPU memory.

At run-time, the displacement vectors of the simulation ver-

tices are computed via CUDA as proposed in the previous Sec-

tion, and the render surface vertices are updated according to

these displacements using the pre-computed weights. Note that

also the last step is performed via a CUDA compute kernel,

which directly updates the OpenGL vertex array. Finally, the

render surface is displayed using triangle rasterization.

6. Results

We analyze the performance of our CUDA-based multigrid

finite element approach for simulating deformable objects us-

ing the Stanford bunny model at different resolutions, ranging

from 12,000 to 269,000 hexahedral finite elements (see Figure

12). All of our experiments were run on a high-end workstation,

equipped with two quad core Intel Xeon X5560 Nehalem pro-

cessors running at 3.2 GHz, 48 GB of DDR3 1333 MHz RAM,

and an NVIDIA GeForce GTX 480 graphics card with 1.5 GB

of video memory. Respectively half of the RAM is attached

to each CPU’s internal memory controller via triple channel,

yielding an overall theoretical memory bandwidth of 29.7 GB/s

per CPU. The two CPUs and the northbridge communicate via

point-to-point quick path interconnect (QPI), which provides

a theoretical bandwidth of 11.9 GB/s in each direction. Note

that our system has a non-uniform memory access (NUMA) ar-

chitecture, since accesses to a CPU’s respective local memory

are faster than accesses to its respective remote memory, which

have to be performed via quick path interconnect.

The Fermi GPU on the graphics card has 480 scalar CUDA

cores, running at 1401 MHz. Theoretically, each of these cores

Figure 6: Binding of a high-resolution render surface (blue) to the hexahedral

simulation grid. Each render surface vertex is bound to the closest hexahedron

with respect to the center of the elements (gray dashed lines). Magenta arrows

indicate the element vertices used for tri-linear interpolation/extrapolation (for

simplicity shown only for two selected vertices).

is capable of performing one fused multiply-add (FMA) opera-

tion per clock at single floating point precision, or one FMA op-

eration every two clocks at double precision. This corresponds

to a theoretical arithmetic throughput of 1.34 TFLOPS for sin-

gle and 672 GFLOPS for double precision. The theoretical

memory bandwidth between the GPU and the video memory

is 165 GB/s.

Tables 1 and 2 show the performance of our implementation

using single and double floating point precision, respectively.

The construction of the simulation model is performed in a pre-

process on the CPU. Each time step includes the computation of

the element rotations, the assembly of the per-vertex equations

on the simulation level and on the coarse grids of the multi-

grid hierarchy, as well as two multigrid V-cycles, each with

two pre-smoothing and one post-smoothing Gauss-Seidel relax-

ation steps. The sustained rate of floating point operations per-

formed per second in GFLOPS as well as the sustained mem-

ory throughput in GB/s are obtained by manually counting the

number of floating point operations performed by each kernel,

as well as the number of bytes read and written by each kernel

(see Table 3).

The statistics thus report the effective memory throughput,

i.e., the transfer of unnecessary data due to the fix memory

transaction size of 128 bytes and cache hits are not consid-

ered. Note, however, that due to our optimized memory lay-

out which facilitates coalescing of memory accesses and due to

the fact that almost all data—the coefficients of the per-vertex

equations—are not accessed repeatedly in a kernel, the effective

memory throughput should be close to the physical memory

throughput. On the GPU using single floating point precision,

we achieve 120 time steps per second for the 12,000 element

model and 11 time steps per second for the 269,000 element

model. For double precision, the update rates are 92 and 6.5

time steps per second, respectively.

Updating and rendering a high-resolution render surface

(70,000 triangles) that was bound to the simulation grid took

less than 6.5 ms in all examples. This time is not included in

the timings in Tables 1 and 2.

In order to analyze the performance gain that is achieved by

our GPU-based implementation, we compare it to an optimized

CPU-based implementation which has been parallelized using

OpenMP. The CPU implementation is very similar to the GPU
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Model GPU CPU, 1 Core CPU, 4 Cores CPU, 8 Cores

#Hex. #Vert. Steps/s GFLOPS GB/s Steps/s GFLOPS GB/s Steps/s GFLOPS GB/s Steps/s GFLOPS GB/s

11,900 14,600 120 33.3 45.6 7.92 2.21 3.02 26.0 7.24 9.89 41.1 11.5 15.7

33,300 38,700 61.9 44.6 60.5 2.99 2.15 2.92 10.2 7.36 9.99 17.2 12.4 16.8

94,300 105,000 27.5 52.7 71.3 1.09 2.09 2.83 3.78 7.24 9.80 6.67 12.8 17.3

269,000 291,000 10.8 56.2 75.7 0.396 2.05 2.79 1.39 7.24 9.74 2.43 12.7 17.1

Table 1: Simulation performance on the GPU and CPU for different finite element models using single floating point precision. For each resolution, we first specify

the number of hexahedral elements and the number of vertices (on the simulation level). We then specify the simulation time steps per second, the sustained rate of

floating point operations per second in GFLOPS, and the sustained effective memory throughput in GB/s achieved on the GPU and on the CPU using 1, 4, and 8

cores, respectively.

Model GPU CPU, 1 Core CPU, 4 Cores CPU, 8 Cores

#Hex. #Vert. Steps/s GFLOPS GB/s Steps/s GFLOPS GB/s Steps/s GFLOPS GB/s Steps/s GFLOPS GB/s

11,900 14,600 91.9 25.6 67.7 6.93 1.93 5.11 20.6 5.73 15.1 31.6 8.81 23.3

33,300 38,700 41.4 29.8 78.3 2.58 1.86 4.88 7.70 5.54 14.5 12.9 9.32 24.5

94,300 105,000 17.1 32.7 85.4 0.951 1.82 4.76 2.85 5.47 14.3 4.75 9.09 23.8

269,000 291,000 6.54 34.2 88.8 0.345 1.80 4.68 1.02 5.34 13.9 1.69 8.81 22.9

Table 2: Simulation performance using double floating point precision. The columns are analogous to Table 1.
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Figure 7: Simulation time steps per second achieved for different model sizes as

well as single and double floating point precision. Each group of five columns

shows the performance obtained on the GPU and on the CPU using 1, 2, 4, and

8 cores. Each time step includes the re-assembly of the system of equations as

well as two multigrid V-cycles.

implementation in that we use the same data structures and al-

gorithms. The differences are as follows: On the CPU, we use

one thread per core (with a fix assignment of threads to cores),

and each thread processes a block of elements or vertices—in

contrast to the GPU, where we use one or several threads per

element or vertex. Corresponding to the different mapping of

the work to threads, we use different memory layouts on the

CPU and GPU. On the CPU, we store the scalar components of

each element of an array directly one after another, whereas on

the GPU the elements are stored interleaved by grouping corre-

sponding scalar components of the array elements into separate

memory blocks, as described in Section 4.3.

To achieve optimal performance on our NUMA CPU target

architecture operated under Windows 7, we store the thread-

local per-element and per-vertex data in the respective CPU’s

local memory. The operating system’s default strategy for as-

signing a memory page to a memory frame is to choose a

page from the local memory of the CPU that performs the first

read/write access to the frame (‘first touch’ strategy). Thus,
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Figure 8: Speed-ups achieved by parallelization on the GPU and on the CPU.

All speed-ups are calculated with respect to a single CPU core.

by initializing the respective memory addresses from within the

respective thread directly after virtual memory allocation, the

intended memory assignment is obtained.

We compare the GPU-based implementation to the CPU-

based implementation running on 1, 2, 4, and 8 CPU cores,

respectively. When using 1, 2, and 4 cores, we use cores be-

longing to the same CPU. For 1, 4 and 8 cores, the time steps

per second, GFLOPS, and memory throughputs are listed in Ta-

bles 1 and 2. Figure 7 shows the simulation time steps per sec-

ond on the GPU and on the CPU for 1, 2, 4, and 8 cores. The

respective speed-up factors, measured with respect to a single

CPU core, are given in Figure 8.

The diagram shows that the speed-up on the GPU increases

with the model resolution due to a better utilization of the

GPU’s massive parallel architecture with increasing model size.

For the largest model consisting of 269,000 finite elements,

with respect to a single CPU core we achieve a speed-up of 27

for single and of 19 for double floating point precision. Even

with respect to 8 CPU cores, the GPU is still a factor of about

4 faster for single and double precision. Figures 9 and 10 show

the floating point performance in GFLOPS and the memory
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CUDA Kernel FLOPs % Bytes R/W % % GPU Time

Single Double Single Double

Computation of element rotations 470 2 160 300 1 0 1

Assembly of simulation level equations 10000 51 6600 13000 23 33 30

Assembly of coarse grid equations 3200 17 5100 10000 18 24 21

Gauss-Seidel relaxation 6 × 660 20 6 × 1800 6 × 3500 39 27 33

Computation of residual 2 × 620 6 2 × 1800 2 × 3500 13 11 12

Restriction of residual 2 × 210 2 2 × 580 2 × 1000 4 1 1

Interpolation of error and coarse grid corr. 2 × 39 0 2 × 200 2 × 350 1 2 1

CG solver on coarsest level 2 × 3 0 2 × 1 2 × 1 0 1 1

Total (per finite element per time step) 19000 28000 54000

Table 3: Detailed analysis of the costs per finite element per time step (total costs per time step divided by the number of finite elements) for each individual CUDA

kernel. The analysis is based on the bunny model with 269,000 elements. From left to right, the columns contain the kernel, the number of FLOPs, the respective

percentage of the total number of FLOPs, the number of bytes read and written for single and double floating point precision, the respective percentage of the total

number of bytes read and written, and finally the measured percentage of GPU time spent for each individual kernel using single and double precision, respectively.

The factors 6× and 2× correspond to performing 2 V-cycles per time step, each with 2 pre- and 1 post-smoothing Gauss-Seidel steps.
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Figure 9: Floating point performance (in GFLOPS) achieved on the GPU and

on the CPU.

throughput (in GB/s), respectively.

For the largest model we achieve 56 GFLOPS (single pre-

cision) and 34 GFLOPS (double precision) on the GPU.

Since these values are clearly below the theoretical arithmetic

throughput of the GPU, we assume that our GPU implementa-

tion is memory-bound. This is confirmed by the statistics on

memory throughput, which report sustained rates of 76 GB/s

for single and 89 GB/s for double precision, which is about half

of the theoretical memory bandwidth. The decrease of perfor-

mance when switching from single to double precision thus re-

sults from the doubled memory size of double precision values

compared to single precision values. On the CPU using 1 core,

we achieve about 2 GFLOPS for both single and double pre-

cision. 2 cores almost yield twice the performance of 1 core.

Since the two cores are on the same CPU and thus use the same

memory connection, this indicates that our CPU implementa-

tion is compute-bound on a single core. The statistics further

show a better scalability in the number of cores for single preci-

sion than for double precision, and further report an increasing

impact on performance when switching from single to double

precision with an increasing number of cores. This indicates

that for double precision the CPU implementation is becoming

memory-bound as more and more CPU cores are used. For the

269K element model, the CPU implementation achieves speed-
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Figure 10: Memory throughput (in GB/s) achieved on the GPU and on the CPU.

ups of 1.76 and 1.65 using single and double precision, respec-

tively, when going from 1 to 2 CPUs (4 to 8 cores).

In the future, we will also investigate the parallelization of

our implementation on multiple GPUs. Since on current archi-

tectures GPU-to-GPU communication has to be initiated by the

CPU and performed via PCI Express, we expect the scalability

to be limited by the high latencies that are introduced.

In summary, the speed-ups achieved by the GPU compared to

the CPU result from both the higher floating point performance

and memory bandwidth on the GPU. Since for our application

the limiting factor on the GPU is memory throughput, we ex-

pect the performance on future GPU architectures to be strongly

related to the available memory bandwidth.

Finally, we also analyze the convergence behavior of our

multigrid solver to demonstrate its suitability for the simula-

tion on complicated domains. Figure 11 shows the reduction

of the norm of the residual achieved by the multigrid solver

(red curves) with respect to computing time. The convergence

behavior of a conjugate gradient (CG) solver with Jacobi pre-

conditioner (green curves) is shown for comparison. Note that

the timings were performed on the CPU (using 1 core) to al-

low for a precise measurement of the individual solver cycles.

As can be seen, the multigrid solver exhibits a constant rate

of residual reduction over time, which is characteristic for this

solver type. Furthermore, the multigrid solver is significantly
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Figure 11: Convergence of our multigrid solver (red) and a conjugate gradient

solver with Jacobi pre-conditioner (green) with respect to computing time on a

single CPU core, using two different model sizes as well as single and double

floating point precision. The ordinate shows the reduction of the norm of the

residual with respect to the start of the solver. (E = 106 Pa, ν = 0.3, ρ =

105 kg/m3, dt = 50 ms, edge length of hexahedral elements is 2.8 mm and

1.4 mm, respectively)

more efficient than a CG solver, in that in a given time budget it

reduces the residual by a much higher factor than the CG solver.

Note that we simulate the dynamics of deformable objects, thus

the solution from the previous time step provides a very good

initial guess to start with in the current time step. Due to this,

we achieve high simulation accuracy using only 2 V-cycles per

time step.

7. Conclusion

In this work we have presented a real-time method for

physics-based elasticity simulation using CUDA on NVIDIA’s

Fermi GPU. The method employs the power of numerical

multigrid schemes for the efficient solution of the governing

differential equation. Underlying our approach is a hexahedral

discretization of the simulation domain, giving rise to efficient

algorithms for model construction and parallel simulation. By

introducing a discretization-specific restructuring on the algo-

rithmic level, the multigrid simulation scheme can efficiently

be mapped to the GPU via the CUDA parallel programming

API. In this way, significant performance gains can be achieved

compared to our optimized parallel CPU implementation.

Our method also opens a number of areas for future research.

Since our application is memory-bound, a mixed floating point

precision approach as proposed in [34] might alleviate mem-

ory bandwidth limitations and further increase simulation per-

formance. Another interesting question is how to parallelize

the method on GPU clusters. Parallelization strategies similar

to the one proposed in [17] will be considered, with the focus

on minimizing inter-GPU communication. An additional chal-

lenge is to integrate GPU-based collision detection and han-

dling in real-time deformable body simulations. Image-based

techniques as proposed in [35] will be investigated for this pur-

pose.
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