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Figure 1: Arbitrary cuts in the Stanford Armadillo model. An octree finite hexahedra model consisting of 307,000 simulation elements is
used. From left to right, 46,000, 90,000, and 92,000 additional elements were induced by the cuts. Cutting and simulation of this model is
performed at four to five seconds per time step.

Abstract

We present a hierarchical finite element method for interactively
simulating cuts in linear elastic deformable bodies. Our method
draws upon recent work on octree and multigrid schemes for the
efficient numerical solution of partial differential equations. We
propose a novel approach for incorporating topological changes in
octree grids into multigrid schemes, including algorithms for up-
dating the system equations on successive multigrid levels. A hex-
ahedral grid is adaptively refined at the surface of a cutting tool
until a finest resolution level, and the cut is simulated by separat-
ing elements along the cell faces at this level. Since all elements
have the same shape, only a scaling of a pre-computed matrix is re-
quired to construct the stiffness matrices of new elements. To build
a multigrid hierarchy that reflects the induced discontinuities, ele-
ments at coarse-grid levels are duplicated to represent the resulting
connectivity components. An extension of the splitting cubes al-
gorithm is used to construct a surface that accurately aligns with
the simulated cuts. A comparison to finite element simulations on
tetrahedral grids in which cuts have been modeled explicitly shows
very high accuracy of the proposed technique. By using our ap-
proach, interactive cuts at an effective object resolution of 2563 can
be achieved.

Keywords: Interactive cutting, deformable objects, finite ele-
ments, multigrid, octree meshes

1 Introduction

Interactive, yet realistic simulations of incisions and cuts in de-
formable bodies place strong requirements on the used algorithms
and technologies. Simulation tools supporting this kind of operabil-
ity must be able to handle topological changes of the underlying
simulation domain and to accurately predict the movement of the
resulting deformable body parts due to internal and external loads.
The efficient construction of an accurate boundary surface of the
separated parts is crucial for using such tools in virtual environ-
ments.

Starting with the seminal work of Terzopoulos and co-workers
[1987; 1988], physics based methods for simulating deformable
models have been researched extensively in computer graphics for
the last two decades. In numerous publications the many aspects
of deformable body simulation have been addressed, resulting in
a multitude of strategies to realistically simulate the movement of
such objects. Among these, especially finite element methods have
been shown to be able to effectively model the relevant physical and
mechanical principles underlying deformable body simulation.

To efficiently simulate cuts in deformable bodies, the cutting algo-
rithm has to be designed on par with the simulation technique used
to predict the resulting body movements. Finite element methods
on tetrahedral grids often make use of tetrahedral subdivision to
cut the mesh [Bielser et al. 1999; Bielser and Gross 2000; Mor
and Kanade 2000]. This enables efficient element refinements
and makes element integration straightforward, but it can create
severely ill-conditioned simulation elements. Moreover, it is not
clear how efficient solvers like geometric multigrid methods can be
used on such refining grids. Since the resulting meshes are unstruc-
tured, in general, the construction of a mesh hierarchy at rates that
are suitable for interactive applications is very difficult to achieve.

From a simulation point of view, tetrahedral subdivision requires
adding new element equations to the system matrix and updating
the equations of elements affected by a cut. To assemble these
equations, the stiffness matrices of new elements have to be com-
puted via element-wise integration. Since tetrahedral subdivision
creates a large number of additional elements, the size of the sys-
tem of equations as well as the computational cost for updating this
system grow rapidly if many cuts are performed.

Polyhedral subdivision [Wicke et al. 2007] creates significantly less
elements than tetrahedral subdivision, but it requires a numerically
more involved integration. The virtual node algorithm [Molino
et al. 2004] avoids element splitting by duplicating elements that
are cut and distributing the resulting material components to the
duplicates. It thus avoids ill-shaped elements and only moderately
increases the element count. On the other hand, both approaches
restrict a cut to the resolution of the simulation grid, which makes
it difficult to partially cut an element or to perform a non-planar cut



Figure 2: A cross-section through an adaptive octree grid without (left) and with (right) a cut.

through an element.

Extended finite elements (XFEM) [Abdelaziz and Hamouine 2008;
Jeřábková and Kuhlen 2009] can overcome this limitation by us-
ing additional step functions to represent material discontinuities
that accurately align with a cut. Enrichment fields for XFEM as
proposed in [Kaufmann et al. 2009] for simulating cuts in 2D struc-
tures also show this potential. However, since XFEM come at the
expense of significantly increasing computational cost of element
integration they may not be well suited for interactive 3D applica-
tions. [Sifakis et al. 2007a] combine the virtual node algorithm with
a method to accurately compute polyhedral material components in
the cut elements. This allows keeping the number of simulation
elements low, but it requires an exhaustive geometric clipping pro-
cedure to determine the components on either side of a cut.

Our contribution. We present a fast and accurate approach for
simulating cuts in deformable objects. This approach alleviates
many of the limitations of previous approaches. For example,
it is independent of the initial grid resolution and creates well-
conditioned simulation elements. We achieve this by introducing
a multigrid finite hexahedron method for physics based simula-
tion on adaptive grids. Because the method only requires scaled
instances of one local stiffness matrix to accommodate whatever
shape is needed, it has small storage requirements and only needs
to consider a few cases in the construction and update of the multi-
grid hierarchy. Figure 1 shows some cuts that have been performed
using our approach.

Instead of remeshing the simulation grid along a cut as in tetrahe-
dral subdivision, an adaptive finite hexahedron approximation of
the cut object is built from the actual precise location of the cut.
Simulation elements that are touched by the cutting tool are recur-
sively subdivided using a regular octree refinement, so that the re-
finement levels of adjacent cells do not differ more than one. An
example is given in Figure 2. The refinement is performed un-
til a sufficient approximation is reached, and on this subdivision
level cutting is performed along the element faces. To render a
smooth polygon surface that aligns with the cut, we extend the split-
ting cubes algorithm [Pietroni et al. 2009] to compute a watertight
boundary surface from the 3D octree grid.

Since the refinement process results in an increasing element num-
ber, a scalable method is required to enable interactive, yet realistic
simulation of the deforming body parts. To achieve this goal, we
first discretize the linear elastic finite element model on the octree
that is generated by the cutting algorithm. The corotated strain for-
mulation [Müller et al. 2002; Müller and Gross 2004; Hauth and
Straßer 2004; Georgii and Westermann 2008] is extended to hex-
ahedral elements to enable large deformations. Our method em-
ploys previous results on octree-based finite difference and finite
element discretizations [Popinet 2003; Losasso et al. 2004; Haber
and Heldmann 2007; Sampath and Biros 2009] for building the ele-
ment equations, but we extend these approaches to handle topolog-
ical changes of the simulation grid.

We then introduce a novel multigrid solver for the octree discretiza-
tion to achieve linear time complexity. The hexahedral simulation
grid accommodates fast updates of the multigrid hierarchy to reflect
the adaptive refinements induced by a cut. In contrast to tetrahedral
grids, the regular structure of the octree allows building a nested
geometric hierarchy as well as the corresponding interpolation and
restriction operators straightforwardly.

Since none of the previous multigrid approaches considers topolog-
ical changes of the simulation grid, we propose a novel algorithm
that provides this functionality. Incorporating topological changes
into a multigrid scheme requires transferring these changes to the
coarser grids, involving special treatment of the coarse-grid finite
elements that cover topological splits. We present a new approach
to efficiently handle these cases by duplicating respective elements
and distributing the system equations to the duplicates according to
the resulting material components.

2 Related Work

In computer graphics, deformable models were first introduced by
Terzopolous et al. [1987; 1988]. A good overview of the multitude
of methods for realistically simulating deformable bodies can be
found in [Nealen et al. 2005]. For example, boundary element mod-
els [James and Pai 1999], adaptive and multiresolution approaches
[Debunne et al. 2001; Capell et al. 2002; Grinspun et al. 2002], grid-
less techniques [Müller et al. 2005; Sifakis et al. 2007b], and finite
element methods [Bro-Nielsen and Cotin 1996; Wu et al. 2001]



have been proposed. The simulation of brittle fracture based on fi-
nite elements was described by O’Brien and Hodgins [1999] and
later extended to ductile fracture [O’Brien et al. 2002]. Nesme et
al. [2009] proposed a composite element formulation that considers
varying material properties within a coarse element.

Tetrahedral subdivision methods for cutting deformable objects
were introduced in [Bielser et al. 1999; Mor and Kanade 2000].
To reduce the number of ill-shaped elements, Nienhuys and van der
Stappen [2000] proposed cutting along the element faces. Cotin
et al. [2000] and Forest et al. [2002] deleted elements that were
cut. Smooth cuts that also reduce the number of ill-shaped ele-
ments were achieved in [Nienhuys and Stappen 2001; Serby et al.
2001; Steinemann et al. 2006] by adaptively aligning mesh edges
and faces with the cutting surface. By restricting subdivisions to
a few refinement patterns [Bielser and Gross 2000; Bielser et al.
2003] the number of additional simulation elements caused by a
cut can be reduced. A multi-resolution approach for this method
was presented in [Ganovelli et al. 2000]. The virtual node algo-
rithm [Molino et al. 2004] avoids ill-shaped elements by duplicat-
ing simulation elements and re-assigning material components on
both sides of a cut.

[Wicke et al. 2007; Kaufmann et al. 2008] introduced polyhedral
subdivision, which splits initial tetrahedra into polyhedra and then
subdivides these elements further. Extended finite element methods
[Belytschko and Black 1999] enrich a finite element model with
specific basis functions to capture discontinuities in the simulation
elements. The use of XFEM for virtual surgery simulation and cut
simulation in 2D thin shells was demonstrated in [Abdelaziz and
Hamouine 2008; Jeřábková and Kuhlen 2009] and [Kaufmann et al.
2009], respectively. [Sifakis et al. 2007a] clipped a high-resolution
material boundary surface mesh against a coarse simulation mesh to
consider fine material components in a coarse elasticity simulation.

Octree-based physical simulation of fluids and gases was shown
in [Popinet 2003; Shi and Yu 2004; Losasso et al. 2004]. Both
restricted and unrestricted octrees were used. To achieve high res-
olution of small scale details, one focus was on deriving adaptive
finite difference discretizations of the governing equations. Finite
element discretizations for the numerical solution of partial differ-
ential equations on restricted octrees were introduced in [Haber and
Heldmann 2007; Sampath and Biros 2009].

Multigrid approaches [Briggs et al. 2000] for the solution of large
linear systems have recently gained much attention in the computer
graphics community due to their linear time complexity. Applica-
tions range from fluid simulation [Bolz et al. 2003] over deformable
body simulation [Wu and Tendick 2004; Georgii and Westermann
2006; Shi et al. 2006] to image processing [Kazhdan and Hoppe
2008].

3 Cutting Algorithm

To enable interactive cuts, we propose an efficient algorithm that
cuts along the element faces in a hexahedral grid. For the sake of
simplicity, we will first describe the cutting procedure in a uniform
grid before we introduce the extension towards non-uniform octree
grids.

3.1 Cuts - Uniform Grid

Therefore, let us assume that the object to be cut has been dis-
cretized into a hexahedral grid with sufficient resolution to capture
all relevant details. Discretization means building a binary repre-
sentation, where every hexahedron is classified as inside or outside
depending on whether it’s center is in the interior of the object or

not. We call a hexahedron that belongs to the object a voxel. Vox-
els represent the finite elements that are used in the physics based
simulation.

We leverage a linked volume representation [Frisken-Gibson 1999]
that connects the centers of face adjacent voxels via links. Initially,
each 3D voxel has six links. Cutting the FE-model is performed by
disconnecting the links that are cut by the cutting blade (see Figure
3 for an illustration). In our implementation the blade is realized
as a triangle mesh, which is built from consecutive cut-lines that
are induced via a cutting tool. To find the links that are cut, all
links in the vicinity of the cutting front, i.e., the surface spanned
by the current and the last cut-line, are tested for an intersection
with the triangles representing this front. Note that in the deformed
state the displaced voxel centers have to be considered to find the
intersections. To prune as many links as possible in the intersection
test, we compute a bounding box hierarchy for the deformed state
based on the octree representation introduced below.

Figure 3: Illustration of the linked volume representation of the
object, consisting of a set of voxels (gray) which are connected via
links (red) (for simplicity in 2D). These links are released (dashed,
gray) when cut by a cutting surface (violet). An adaptive octree
representation is built by successively merging blocks of 23 voxels
with full connectivity into larger voxels.

3.2 Cuts - Octree Grid

An adaptive object discretization is built from the uniform hexahe-
dral discretization in a bottom-up process. Contiguous blocks of
2
3 voxels that do not have been cut are merged into larger hexahe-

dra. This process is recursively repeated up to a coarsest level. The
octree is restricted to not have level differences between adjacent
cells of more than one. This is later required for the construction
of a multigrid hierarchy, where equations of fine grid vertices are
distributed to corresponding coarse grid vertices. If an unrestricted
octree would be used, the corresponding vertices might be hang-
ing as illustrated in Figure 4, and therefore the equations cannot be
distributed to these vertices [Wang 2000; Sampath and Biros 2009].

Voxels on the coarser octree levels do not establish links as on the
finest level (level zero), but instead the links associated to the voxels
on the finest level are pulled up to the respective coarse grid voxel
(see Figure 3). For example, on the first level a voxel contains 8 ·
6 links, on the second level it contains 8 · 8 · 6 links, and so on.
The reason therefore is that in our implementation cutting is always
performed by disconnecting links on the finest level. Even if a cut is
through a voxel on one of the coarser levels, we test for intersections
between the blade and the finest level links. Fortunately, because
every voxel on a particular coarse level carries full connectivity, the
respective links do not have to be stored explicitly.

If a coarse grid voxel is cut, all links in this voxel that are inter-
sected by the blade are disconnected, and the voxel is adaptively



Figure 4: Equations of fine grid vertices (black) are distributed to
corresponding coarse grid vertices (red). In case of an unrestricted
octree, some coarse grid vertices might be hanging (white with red
border).

refined down to the finest level along the disconnected links. This
procedure creates additional elements, which number increases pro-
portional to the surface increase of the object that is cut.

4 Multigrid Solver Supporting Cuts

Once the adaptive discretization of the cut object has been gener-
ated, the governing equations describing the dynamic behavior of
this object under the influence of external forces have to be dis-
cretized accordingly. We use a finite element approach with im-
plicit second-order Newmark time integration to discretize the La-
grangian equations of motion for a linear elastic body on the hexa-
hedral grid [Bathe 2002]. The discretization results in a large sys-
tem of equations Ku = f that needs to be solved in every time
integration step. Here, u is the linearized displacement vector and
f contains the forces applied to the finite element vertices. The
global stiffness matrix K assembles all element stiffness matrices,
which are constructed using tri-linear shape functions. We extended
the corotated Cauchy strain formulation [Müller et al. 2002; Müller
and Gross 2004; Hauth and Straßer 2004; Georgii and Westermann
2008] to hexahedral finite elements, which allows to simulate large
deformations. Specifically, the polar decomposition is used to de-
termine a hexahedron’s rotation from its average deformation gra-
dient.

In general, the system of equations can be solved with many dif-
ferent solvers like a conjugate gradient solver or Cholesky factor-
ization. However, our particular scenario requires a solver that can
efficiently handle a system that changes in every time step: the sys-
tem has to respect topological changes due to cuts and it has to be
updated with respect to the current element rotations to incorporate
the corotated strain formulation.

Geometric multigrid solvers on hexahedral grids meet these re-
quirements, since (a) the construction of the multigrid hierarchy
on such grids can be performed very efficiently due to the straight-
forward realization of the restriction and prolongation operators,
and (b) the linear-time complexity of multigrid solvers makes them
particular attractive in scenarios like ours where scalability in the
number of elements is required. It is worth noting that algebraic
multigrid methods, which construct the transfer operators from the
system matrix, do not conform to the first requirement in general.

It now also becomes apparent why we favor an adaptive hexahedral
discretization over, for instance, a tetrahedral discretization. Since
all simulation elements have the same shape and only differ in size,
we need only one instance of an element stiffness matrix. If we
denote by Ke this instance for an uniform hexahedron with side
length 1, then an uniform hexahedron with side length s has the
element stiffness matrix sKe [Jeřábková et al. 2004].

The challenge in developing a multigrid approach that supports

topological changes of the simulation grid lies in constructing the
coarse grid hierarchy. Since cuts also have to be represented on the
coarser levels, voxels cannot simply be merged based on their spa-
tial relationship. This would correspond to merging physically and
mechanically disconnected parts, and it would result in low approx-
imation quality and very slow convergence rate or even divergence
of the solver. For the sake of clarity, we first describe the construc-
tion of a multigrid hierarchy for a uniform hexahedral grid with
cuts.

4.1 Hierarchy Construction - Uniform Grid

Without cuts, building the multigrid hierarchy simply involves
merging blocks of 2

3 cells into one coarse grid cell. The corre-
sponding coarse grid equations are formed by regularly distributing
the equations of the fine grid vertices to the respective coarse grid
vertices [Briggs et al. 2000]. This requires only 4 different cases to
be considered in 3D (see Figure 5 for an illustration of the respec-
tive cases).

Figure 5: Weights used to distribute the per-vertex equations of a
fine grid cell (red) to its corresponding coarse grid cell (blue). For
the interpolation of the unknowns from the coarse grid, the same
weights are used at the fine grid (Galerkin condition). For simplic-
ity reasons, the distribution is only illustrated for selected vertices.

To respect cuts in the simulation domain, a similar merging strategy
is performed but the connectivity between merged voxels is consid-
ered to eventually generate more than one coarse grid cell at the
same position. Starting on the initial voxel grid, where links have
been established as described in Section 3, the following steps are
performed subsequently at each level to build the coarse grid hier-
archy (see also the 2D example in Figure 6):

Step 1: Analogously to the case without cuts, the blocks of dou-
ble fine grid cell size are processed independently, and for each
of these blocks all fine grid cells are considered that lie inside the
block. However, these cells are interpreted as nodes of an undi-
rected graph, in which the edges correspond to the links between
the cells. Links to cells which are not in the same block are ex-
cluded. On this graph, we determine the connected components
using a depth-first search. For each component, one coarse grid cell
that merges the cells belonging to this component is created. Sim-
ilar to the virtual node algorithm [Molino et al. 2004], at the same
geometric position multiple cells might be created in this way. In
contrast to the virtual node algorithm, however, these cells do not
have any physical or mechanical relevance in our approach, since
they are only used to accelerate the solution process of the mechan-
ical equations given by the voxels. Hence, our algorithm avoids



Level 0 Level 1 Level 2

Figure 6: Construction of the coarse multigrid levels based on
the undirected graph representation (red) in a uniform grid. The
blocks of double cell size, in which connected components (green)
are searched, are marked in blue. Blocks with duplicated cells are
dark gray.

duplicating elements that have a mechanical relevance, and there-
fore respects the underlying physical model more accurately.

Step 2: The connectivity between cells on the coarse grid level is
established. Therefore we consider exactly those links which had
been excluded in the first step. If a link between any two cells
in two adjacent coarse grid cells exists, a link between these two
coarse grid cells is established and stored. Cells which are con-
nected via links share their vertices to allow equations to be built at
these vertices.

The hierarchy that is constructed in this way has the property that
small cuts disappear at coarser resolution levels. This is in-line with
the multigrid idea that the coarse grid levels describe the macro-
scopic behavior of the body. Small cuts do not strongly affect this
behavior and can therefore be neglected at one of the coarser levels.

4.2 Hierarchy Construction - Octree Grid

The multigrid scheme on the adaptive octree grid has to consider
that the grid has hanging vertices which require special treatment.
We use the special finite elements introduced by Wang [2000] and
extended to 3D by Sampath and Biros [2009], in which hanging
vertices are replaced by linear (along edges) and bilinear (on faces)
interpolation of adjacent vertices. For each voxel configuration in
which a hanging vertex occurs we determine an element striffness
matrix by adapting our pre-computed element stiffness matrix Ke

accordingly. The resulting 18 instances [Sampath and Biros 2009]
are cached in a small lookup table. In this way, hanging vertices are
removed from the finite element model.

Building the hierarchy proceeds similar to the uniform case, with
the exception that on each level it must be considered that cells
with different size exist. At the transition from level l to level l+1,
only cells of size 2

l are merged. All other cell are passed to the
next coarser level. Allowing also larger cells on each level to be
merged would require a rebalancing to ensure the restrictedness of
the octree. This is avoided by our approach, which only slightly
increases the number of coarse grid cells. In Figure 7 a 2D example
of the construction process is given.

Finally, once the cell hierarchy has been constructed the coarse
grid equations have to be built correspondingly to use the multi-
grid solver. Therefore, the fine grid equations are propagated to the
respective coarse grid vertices as shown in Figure 5. Since the coro-
tated strain formulation is used, the equations change in every time
step to account for the element rotations.

Level 0 Level 1 Level 2

Figure 7: Construction of the coarse multigrid levels based on the
undirected graph representation in an octree grid. The notation is
analogously to Figure 6.

The equations on each hierarchy level are computed and stored per
cell. This results in constant memory requirements per cell to store
the equations and in constant memory access patterns during equa-
tion construction. In contrast, storing and constructing the equa-
tions per vertex would yield varying memory requirements and ac-
cess patterns, since due to the cutting vertices can have a varying
number of adjacent vertices. Note that there is no need to store the
equations on the finest level, since they can be built on-the-fly from
the generic element stiffness matrix and the element rotations. In
our implementation this gives a performance gain of a factor of 2.5
due to increased cache coherence.

We now explain the construction of the per-cell equations on the
coarse grid levels. The equations for each element c are stored as a
8 × 8 matrix Kc, with each coefficient being a 3 × 3 matrix. The
matrix KC for a coarse grid cell C is computed from the matrices
Kc of all cells c on the finer level that are merged into cell C as
follows:

KC
mn =

∑

c in C

8∑

i=1

8∑

j=1

wc→C
i→m wC→c

n→j Kc
ij , m, n = 1 . . . 8. (1)

In this equation, i, j,m, n are element-local vertex indices, and
wc→C

i→m and wC→c
n→j are the corresponding weights for restriction and

prolongation between the fine grid cells c and the coarse grid cell
C, respectively (see Figure 5).

To finally solve the system of equations, in the relaxation steps of
the multigrid V-cycle, one has to consider the equations per vertex.
The per-vertex equations are assembled on-the-fly during the relax-
ation step from the per-element equations as follows: Considering
a vertex v, we accumulate the contributions of the corresponding
element vertices V ⊂ C × {1 . . . 8}, where c ∈ C denotes the ele-
ment and i, j ∈ {1 . . . 8} denote local vertex indices. The equation
at vertex v then is

∑

(c,i)∈V

8∑

j=1

Kc
iju

c
j = fv, (2)

where uc
j are the displacement vectors at the vertices of element c,

and fv is the force acting on the vertex v.

5 Surface Construction

To reconstruct a smooth surface that is aligned with the cut ob-
ject one can simply store the respective parts of the cut surface at
each surface hexahedron. These parts can then be attached to the
deforming vertices via tri-linear interpolation to move accordingly.
However, this implies that a left and a right side of the cut surface



has to be generated, of which only one lies within the simulation
elements while the other one is outside. Although this problem can
be solved by introducing new cells that cover the respective other
part of the surface, this approach results in quite complex cases to
be considered.

For this reason, we provide a simpler and more elegant approach
based on a dual grid representation. The dual grid is built from the
links between the voxel centers. These links define the connectivity
between the simulation elements, and exactly these links are cut by
the cutting tool. At each link that is cut we store two distances that
describe the exact cut points on this link, thereby allowing a link to
be cut multiple times. In this way, the cubic cells of the dual grid
are cut at their edges, which results in a representation that allows
us to directly apply the splitting cubes algorithm [Pietroni et al.
2009] at these cells. The splitting cubes algorithm constructs the cut
surface in the interior of a cell by distinguishing the different cases
from the patterns of the cut edges. The algorithm introduces interior
points in the cell by considering the normals of the cut surface at
the intersection points, such that a smooth surface is constructed in
the interior of a cell as shown in Figure 8.

Figure 8: Dual grid (bold lines) consisting of the links between
the voxels (thin gray lines). Using the splitting cubes algorithm, for
each cell of the dual grid a local rendering surface is built. The
surface is spanned by the intersection points (red) of the links with
the cutting surface as well as the cutting surface’s normals at these
points (red arrows). For the deformation, vertices are bound to the
nearest voxel of the respective connected component (thin blue and
magenta arrows to the respective voxel centers).

A question that remains to be answered is how the surface along the
cut is bound to the simulation grid, such that it deforms accordingly.
For vertices on the links that are cut, the corresponding simulation
element is found by following the links to the left or to the right,
respectively. To handle interior vertices we utilize the fact that each
interior vertex is dedicated to a unique surface patch in the splitting
cubes approach. Therefore, the respective hexahedra can be found
by following the links of the edges that are cut by the respective
surface patch. From the determined set of hexahedra we choose
the one that has the shortest distance to the surface vertex. The
interior vertex is then bound to this hexahedron by means of tri-
linear interpolation or extrapolation.

6 Results and Analysis

Performance. All of our experiments were run on a desktop PC,
equipped with an Intel Xeon X5560 2.8 GHz processor, 8 GB of
RAM, and an NVIDIA GeForce GTX 280 graphics card. Table 1
provides information on the simulation models we have used and
the performance of our approach for cutting and simulation. The
first column gives the initial number of simulation elements we
started with and the maximal number of elements that were gen-
erated due to cuts. The next column shows the time spent on adapt-
ing the octree, rebuilding the multigrid hierarchy by determining
the connected components, and constructing the splitting cubes sur-
face. Note that these steps are only required while the cutting tool
is moved through the object. Finally, the time it takes to simulate
one time step (we use a fix time step of 0.05 seconds) is given,
which includes recomputing the coarse grid equations (as shown in
Equation 1) and performing two multigrid V-cycles. Note that this
time is measured for the maximal number of hexahedra. As can be
seen, for grids of moderate size, interactive rates for both cutting
and physics-based simulation can be achieved.

#Hexahedra Time [sec]
Model Initial Max Cutting Simulate

Liver 16,426 17,511 0.042 0.175
Bunny 117,650 177437 0.371 1.851

Armadillo 307,354 397,171 1.057 4.154
Cube 133,232 440,168 1.198 4.537

Table 1: Timing statistics for various models using our adaptive
octree approach for cutting and simulation.

For the high-resolution Armadillo model shown in Figure 1, the oc-
tree approach results in a performance gain (cutting and simulation)
of a factor of 4.5 over a uniform simulation grid on the finest res-
olution level. At the same time, in the octree approach the number
of simulation elements is only 1/6 of the number of elements in the
uniform setting.

Validation. To validate the accuracy of our approach, we compare
the octree-based simulation of a cut object to a simulation using a
finite tetrahedra model where the same cut is modeled explicitly.
For the tetrahedral model a geometric multigrid solver was used on
a non-nested mesh hierarchy. This hierarchy was generated in a
pre-process using successive coarsening, which alone took several
minutes; it is not clear how a tetrahedral mesh hierarchy can be effi-
ciently constructed to make tetrahedral models amenable to multi-
grid solvers in scenarios where cuts are induced. In contrast, our
approach avoids time-consuming mesh computations. Our adap-
tive finite hexahedra approach was performed on 140,757 elements,

Figure 9: Simulation validation. Left: Reference simulation on a
tetrahedral grid (166,000 elements). Right: Our octree approach
using 141,000 hexahedral simulation elements.



Figure 10: A cube model is simultaneously cut at many positions using a grid-like cutting tool consisting of square blades, resulting in
355,000 (left) and 440,000 (right) hexahedra. A radial force field is applied to fan out the resulting rods. Note that rods with different size
bend differently. Cutting and simulation takes less than 4.8 seconds (left) and 5.7 seconds (right) per time step.

while the reference simulation used a tetrahedral grid with 165,806
elements. In both cases, the same cut was carried out, and the same
external forces were applied to open the cut. As can be seen in Fig-
ure 9, the two approaches do not show any noticeable differences,
besides the geometric differences in the two boundary surfaces.

Multigrid Analysis. Since we carry out a simulation of the dy-
namics of a deformable body, the solution from the last time step
already gives a good initial guess to start with in the current time
step. Due to this reason we observed high accuracy using 2 V-cyles
per time step, each with 1 pre- and 1 post-smoothing step. Specifi-
cally, the residual was then already reduced to 1/4 in our examples,
yielding maximal errors in the computed displacement field below
the voxel size1. Since a V-cycle is rather cheap compared to the
update of the multigrid equations, one can apply more V-cycles per
time step without substantially affecting the overall performance.

It is clear, on the other hand, that the convergence rates we achieve
are not as good as, for instance, reported in [Kazhdan and Hoppe
2008] for solving a Laplacian system. The elastic problem we con-
sider in this work is numerically far more involved, and it has to deal
with a complex boundary setting that is known for it’s tendency
to decrease the convergence rate. Regardless these issues, how-
ever, especially due to its efficient update mechanism for incorpo-
rating topological changes and its capability to effectively scale in
the number of simulation elements, the multigrid scheme on finite
hexahedra showed extremely well suited for the particular applica-
tion. A conjugate gradient solver, for instance, which is widely used
in numerical simulation techniques, showed a significantly slower
convergence in our application due to the stiffness of the equations.
Direct solvers like the Cholesky factorization, on the other hand,
turned out to be impractical in this application. This is due to the
change of the system of equations in every time step, which re-
quires performing the time-consuming factorization in every time
step, too.

Examples. In Figure 10 we applied multiple simultaneous cuts in
a cube using a uniform grid of blades consisting of many squared
cutting surfaces. The finite element model consists of 133,232 hex-

1Please note that the voxel size is the approximation made to represent

the mechanic properties at the cuts, and a more accurate solution of the

displacement vectors does not necessarily provide a better solution.

ahedra (up to 440,168 hexahedra after cutting). Even such a com-
plex topology modification can still be performed at roughly 5 sec-
onds per time step, including cutting and simulation. The different
bending and twisting of the resulting rods indicates high quality
in resembling the underlying physical model. Figure 11 shows ar-
bitrary cuts through the Stanford bunny model. Note that in con-
trast to many previous approaches, multiple cuts through the same
object point as demonstrated in the middle image can be handled
accurately by our method. Therefore, our approach alleviates the
restriction to a limited number of cuts, which is inherent to many
other approaches.

7 Conclusion and Future Work

We presented a flexible and interactive approach for cutting de-
formable objects. The method uses an adaptive octree grid to rep-
resent cuts at an arbitrary scale. Due to a novel multigrid approach,
topological changes in the octree grid can be handled efficiently,
thereby allowing a large amount of finite elements to be cut and de-
formed interactively. An extension of the splitting cubes approach
has been proposed, which allows to construct a smooth surface from
the cut simulation grid, which can be either used to render the ob-
ject or to detect collisions. The performance and flexibility of our
approach makes it amenable for a large range of applications, in-
cluding virtual surgery environments as demonstrated in Figure 12.

The method opens also interesting areas for future research. So
far we assumed homogeneous objects to be simulated. For hetero-
geneous objects, however, the way the simulation octree is gener-
ated has to be modified, such that the octree also adapts to material
jumps in the object. In future we will investigate how our multi-
grid approach can be optimized for this scenario. Furthermore, we
will also integrate collision handling into our approach. We plan
to use the deforming splitting cubes surface to detect self-collisions
[Teschner et al. 2005], while the collision response is then propa-
gated to the respective simulation voxels.
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proach to cutting into finite element models. In MICCAI ’01:
Proceedings of the 4th International Conference on Medical Im-
age Computing and Computer-Assisted Intervention, Springer-
Verlag, London, UK, 425–433.

SHI, L., AND YU, Y. 2004. Visual smoke simulation with adaptive
octree refinement. Computer Graphics and Imaging, 1319.

SHI, L., YU, Y., BELL, N., AND FENG, W.-W. 2006. A fast
multigrid algorithm for mesh deformation. ACM Trans. Graph.
25, 3, 1108–1117.

SIFAKIS, E., DER, K. G., AND FEDKIW, R. 2007. Arbitrary cut-
ting of deformable tetrahedralized objects. In SCA ’07: Proceed-
ings of the 2007 ACM SIGGRAPH/Eurographics symposium on
Computer animation, Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, 73–80.

SIFAKIS, E., SHINAR, T., IRVING, G., AND FEDKIW, R. 2007.
Hybrid simulation of deformable solids. In SCA ’07: Proceed-
ings of the 2007 ACM SIGGRAPH/Eurographics symposium on
Computer animation, Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, 81–90.

STEINEMANN, D., OTADUY, M. A., AND GROSS, M. 2006. Fast
arbitrary splitting of deforming objects. In SCA ’06: Proceed-
ings of the 2006 ACM SIGGRAPH/Eurographics symposium on
Computer animation, Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, 63–72.

TERZOPOULOS, D., AND FLEISCHER, K. 1988. Modeling inelas-
tic deformation: Viscoelasticity, plasticity, fracture. In Proceed-
ings of SIGGRAPH, 269–278.

TERZOPOULOS, D., PLATT, J., BARR, A., AND FLEISCHER, K.
1987. Elastically deformable models. In Proceedings of SIG-
GRAPH, 205–214.

TESCHNER, M., KIMMERLE, S., HEIDELBERGER, B., ZACH-
MANN, G., RAGHUPATHI, L., FUHRMANN, A., CANI, M.-
P., FAURE, F., MAGNENAT-THALMANN, N., STRASSER, W.,
AND VOLINO, P. 2005. Collision detection for deformable ob-
jects. Computer Graphics Forum 24, 1, 61–81.

WANG, W. 2000. Special bilinear quadrilateral elements for locally
refined finite element grids. SIAM J. Sci. Comput. 22, 6, 2029–
2050.



WICKE, M., BOTSCH, M., AND GROSS, M. 2007. A finite el-
ement method on convex polyhedra. In Proceedings of Euro-
graphics.

WU, X., AND TENDICK, F. 2004. Multigrid integration for inter-
active deformable body simulation. In Proceedings of Interna-
tional Symposium on Medical Simulation, 92–104.

WU, X., DOWNES, M. S., GOKTEKIN, T., AND TENDICK, F.
2001. Adaptive nonlinear finite elements for deformable body
simulation using dynamic progressive meshes. In Proceedings
of Eurographics, 349–358.


	Introduction
	Related Work
	Cutting Algorithm
	Cuts - Uniform Grid
	Cuts - Octree Grid

	Multigrid Solver Supporting Cuts
	Hierarchy Construction - Uniform Grid
	Hierarchy Construction - Octree Grid

	Surface Construction
	Results and Analysis
	Conclusion and Future Work

