
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JULY 2010 1

A Hexahedral Multigrid Approach for
Simulating Cuts in Deformable Objects

Christian Dick, Joachim Georgii, and Rüdiger Westermann

Abstract—We present a hexahedral finite element method for simulating cuts in deformable bodies using the corotational

formulation of strain at high computational efficiency. Key to our approach is a novel embedding of adaptive element refinements

and topological changes of the simulation grid into a geometric multigrid solver. Starting with a coarse hexahedral simulation

grid, this grid is adaptively refined at the surface of a cutting tool until a finest resolution level, and the cut is modeled by

separating elements along the cell faces at this level. To represent the induced discontinuities on successive multigrid levels,

the affected coarse grid cells are duplicated and the resulting connectivity components are distributed to either side of the cut.

Drawing upon recent work on octree and multigrid schemes for the numerical solution of partial differential equations, we develop

efficient algorithms for updating the systems of equations of the adaptive finite element discretization and the multigrid hierarchy.

To construct a surface that accurately aligns with the cuts, we adapt the splitting cubes algorithm to the specific linked voxel

representation of the simulation domain we use. The paper is completed by a convergence analysis of the finite element solver

and a performance comparison to alternative numerical solution methods. These investigations show that our approach offers

high computational efficiency and physical accuracy, and that it enables cutting of deformable bodies at very high resolutions.

Index Terms—Deformable objects, cutting, finite elements, multigrid, octree meshes.

F

1 INTRODUCTION

In this work we propose a method for realisti-
cally simulating complicated cuts in linear elastic
deformable objects. Our approach is different from
previous approaches in that it does not treat the
cutting procedure and the numerical solution scheme
independently, but intertwines both procedures in a
way that enables high computational efficiency. We
achieve this by developing a novel embedding of
adaptive finite element refinements and topological
changes of the simulation grid into a geometric multi-
grid method [1], [2], [3]. Adaptivity enables repre-
senting complicated cuts at very high resolution, and
the multigrid method achieves optimal computational
complexity that is linear in the number of simulation
elements. Figure 1 shows some cuts that have been
performed using our approach.

Underlying the basic multigrid idea is the principle
of coupling multiple scales, for instance, by using a
geometric model hierarchy equipped with transfer op-
erators to propagate quantities across the scales. The
use of such a hierarchy, in general, imposes perfor-
mance limitations when using multigrid schemes in
combination with cutting schemes based on tetrahe-
dral [4], [5], [6] or polyhedral [7] finite elements. Since
element subdivision generates unstructured meshes
in general, there are no canonical coarse versions
of the mesh and the construction of a geometric

∙ C. Dick, J. Georgii, and R. Westermann are with Computer Graphics
and Visualization Group, Technische Universität München, Germany.
E-mail: {dick, georgii, westermann}@tum.de

model hierarchy becomes very complicated. Due to
this reason, incorporating subdivision based cutting
into geometric multigrid schemes has not yet been
considered.

Instead of explicitly modeling the boundary in-
duced by a cut in the finite element discretization,
this boundary can also be incorporated into the basis
functions of the finite dimensional solution spaces [8],
[9]. This enables using a coarse simulation grid that
does not depend on the shape of the object. The same
principle is underlying the extended finite element
method (XFEM) [10], which enriches the finite element
spaces by employing additional step functions to
represent material discontinuities. XFEM has mainly
been used to accurately simulate material interfaces
and crack propagation [11], [12], and just recently its
potential for cutting and fracturing deformable objects
in graphics applications has been recognized [13], [14],
[15].

Since the XFEM method uses a static simulation
grid for which a hierarchy can be constructed in a
pre-process, its embedding into a multigrid solver is
possible in principle. However, the modeling of high
resolution cuts, for instance via enrichment textures
[15], requires large systems of equations to be solved,
and it comes at the expense of increasing the compu-
tational cost of element integration.

2 OUR CONTRIBUTION

We propose a novel algorithm for physics based cut-
ting of linear elastic deformable bodies using hexa-
hedral finite elements. Simulation elements that are

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JULY 2010 2

Fig. 1. Cuts in the Stanford Armadillo model. An adaptive finite hexahedra model consisting of 493K simulation

elements is used. Adaptive refinements of the simulation mesh along the cuts result in 76K, 150K, and 153K

additional elements, from left to right. Cutting and simulation is performed at 9 to 11 seconds per time step.

touched by the cutting tool are recursively subdivided
using a regular octree refinement. This results in an
adaptive finite hexahedron approximation of the cut
object. An example is given in Figure 2.

The octree is refined until a sufficient approxima-
tion is reached, and on this subdivision level cutting
is performed along the element faces. The adaptive
refinement allows arbitrarily thin and complicated
structures to be sliced, and it can be employed to
adapt the octree to material jumps in heterogeneous
materials. Examples demonstrating these possibilities
are shown in Figures 13 and 14, respectively. Since
all elements have the same shape the method only
requires scaled instances of one local stiffness matrix
to accommodate whatever deformation is applied.
Thus, it has small storage requirements and only
needs to consider a few cases in the construction and
update of the multigrid hierarchy.

The deformable object has to be discretized on
the adaptive octree that is generated by the cutting
algorithm. Since none of the previous multigrid ap-
proaches considers cuts of the simulation grid, we
propose a novel algorithm to embed the induced
discontinuities in the geometric multigrid hierarchy,
including fast algorithms for updating the result-
ing systems of equations. On the coarse resolution
levels the algorithm duplicates respective cells and
distributes the per-cell equations to the duplicates
according to the separated material components. To
represent the cuts on the coarse grid levels where
the structure of the object boundary is not resolved
adequately, we present a new boundary treatment
method which is based on the principle of potential
energy minimization underlying the variational for-
mulation of elasticity problems. To reflect that cells
on the coarser grids might be only partially filled with
material, this method computes the potential energy
always with respect to the finest grid. We present
a detailed convergence analysis of our solver and a
thorough comparison to alternative solution methods.

Rendering a smooth polygon surface that aligns
with the cuts is very difficult since it can undergo
complicated topological changes. In particular, a ren-
der surface that is bound to the initial simulation grid
as proposed in [16], [17], [18], [19] cannot easily be
employed for this purpose. Due to this reason we use
the splitting cubes algorithm [20] on a dual grid to
compute a watertight boundary surface directly from
the 3D simulation grid. By using for each triangle
vertex either a vertex or a face normal, high quality
rendering is achieved.

To clearly focus our work on the efficient cutting
and simulation of a finite element model, throughout
this paper collision detection and response is not
considered. Please note that this is not a limitation
of the presented approach. In fact, any state of the
art collision handling algorithm which uses surface
meshes for collision detection and external forces for
collision response could be directly integrated.

The remainder of this paper is as follows: In the
next section we review work that is related to ours.
Then we describe the cutting algorithm from a purely
geometric perspective. In Section 5 we review the
fundamentals of the corotated finite element method
which we use in our work. Section 6 discusses the
embedding of adaptive finite element refinements
and topological changes of the simulation grid into
the multigrid scheme. Section 7 presents the spe-
cific adaptations to the splitting cubes algorithm to
reconstruct an accurate boundary surface from the
simulation grid. A detailed analysis of the proposed
algorithm, both with respect to performance and
convergence is given in Section 8. We conclude the
paper with a comparison to alternative approaches
and some ideas on future challenges in the field.

3 RELATED WORK

Starting with the seminal work of Terzopoulos and
co-workers [21], [22], physics based methods for simu-
lating deformable models have been researched exten-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JULY 2010 3

Fig. 2. Cross-section through an adaptive octree grid

without (top) and with (bottom) a cut.

sively in computer graphics for the last two decades.
A good overview of the multitude of methods for re-
alistically simulating deformable bodies can be found
in [23]. For example, boundary element models [24],
adaptive and multiresolution approaches [25], [26],
[27], grid-less techniques [28], [29], and finite ele-
ment methods [30], [31] have been proposed. The
simulation of brittle fracture based on finite elements
was described by O’Brien and Hodgins [32] and later
extended to ductile fracture [33]. [34] proposed a
composite element formulation that considers varying
material properties within a coarse element.

Tetrahedral subdivision methods for cutting de-
formable objects were introduced in [4], [6]. To reduce
the number of ill-shaped elements, Nienhuys and van
der Stappen proposed cutting along the element faces
[35]. Cotin et al. and Forest et al. deleted elements
that were cut [36], [37]. Smooth cuts that also reduce
the number of ill-shaped elements were achieved by
adaptively aligning mesh edges and faces with the
cutting surface [38], [39], [40]. By restricting subdivi-
sions to a few refinement patterns [5], [41] the number
of additional simulation elements caused by a cut
can be reduced. A multi-resolution approach for this
method was presented by Ganovelli et al. [42]. The
virtual node algorithm [43] avoids ill-shaped elements

by duplicating simulation elements and re-assigning
material components on both sides of a cut.

Wicke et al. and Kaufmann et al. introduced poly-
hedral subdivision [7], [44], which splits initial tetra-
hedra into polyhedra and then subdivides these ele-
ments further. Extended finite element methods [10]
enrich a finite element model with specific basis
functions to capture discontinuities in the simulation
elements. The use of XFEM for virtual surgery sim-
ulation [13], [14] and cutting in 2D thin shells [15]
has been demonstrated. Sifakis et al. clipped a high-
resolution material boundary surface mesh against
a coarse simulation mesh to consider fine material
components in a coarse elasticity simulation [45].

Octree-based physical simulation of fluids and
gases was shown in [46], [47], [48]. Both restricted
and unrestricted octrees were used. To achieve high
resolution of small scale details, one focus was on de-
riving adaptive finite difference discretizations of the
governing equations. Finite element discretizations for
the numerical solution of partial differential equations
on restricted octrees were introduced in [49], [50].

Multigrid approaches have recently gained much
attention in the computer graphics community due to
their optimal computational complexity. The applica-
tions range from fluid simulation [51] and deformable
body simulation [52], [53], [54] to image processing
[55] and texture synthesis [56]. Interactive multigrid
approaches for simulating linear elastic materials on
hexahedral grids were presented in [57], [58]. Since
it is well known that the multigrid convergence is
lowered in case of complicated material boundaries,
[58] proposed a numerical boundary smoother for
finite difference schemes. An adaptation of the basis
functions on the coarser levels to more accurately
represent the covered boundary was proposed in [59],
[60], [61].

4 CUTTING ALGORITHM

To enable the efficient embedding of the cutting algo-
rithm into a geometric multigrid scheme, we avoid
any unstructured grid refinement and instead cut
along the element faces in a hexahedral simulation
grid that adaptively refines along the cut. This re-
sults in an adaptive octree grid. The octree’s leaf
cells represent the simulation elements and store the
corresponding vertices. At the cells on the finest level
we store links that are marked as connected or dis-
connected depending on whether the corresponding
elements have been detached by the cut. The links
that are cut by the object’s boundary are also marked
as disconnected. Each octree cell is equipped with
memory references to its child cells, its parent cell,
and the neighboring cells on the same level.

For the sake of simplicity, we first describe the cut-
ting algorithm in an uniform grid before we introduce
the extensions that are necessary to perform a cut in
an adaptive octree grid.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JULY 2010 4

Fig. 3. Left: 2D illustration of the linked volume repre-

sentation, consisting of a set of finite elements (gray)

which are connected via links (red). These links are

disconnected (dashed, gray) at the object boundary

(blue) and when cut by a cutting surface (violet). Right:

Bounding boxes (dashed) of deformed finite elements

used to accelerate the link/blade intersection test. The

links are deformed according to the (tri-linear) defor-

mation of the elements. Each element’s bounding box

covers half of each link emanating from this element.

4.1 Cuts - Uniform Grid

In the following we assume that the object to be cut
has been discretized into a uniform hexahedral (voxel)
grid. Discretization means building a binary repre-
sentation, where every voxel is classified as inside
or outside depending on whether its center is in the
interior of the object or not. Inside voxels represent
the finite elements that are used in the physics based
simulation.

We leverage a linked volume representation [62]
in which the centers of face adjacent elements are
connected via links. Initially, each 3D element has
six links, and the links which are intersected by the
surface of the object are marked as disconnected.
Cutting the FE-model is performed by disconnecting
the links that are cut by the cutting blade (see Figure
3 (left) for an illustration).

The blade is realized as a triangle mesh, which is
built from consecutive cut-lines that are induced via
a cutting tool. To find the links that are cut, all links
in the vicinity of the cutting front, i.e., the surface
spanned by the current and the last cut-line, are tested
for an intersection with the triangles representing this
front.

Since the intersection test has to be performed in
the deformed object state, in general the cutting blade
needs to be tested against all connected links. To
prune as many links as possible before testing against
the blade, the blade’s axis-aligned bounding box is
tested first. In addition, every finite element stores its
axis-aligned bounding box (see Figure 3 (right)), and
a bounding box hierarchy is created to prune need-
less tests. By using this information the broad phase
intersection test reduces to simple bounding box tests,
and only a few link-triangle tests are required in the
narrow phase.

Fig. 4. Illustration of the bounding boxes (dashed) of

the octree finite elements (gray) used in the link/blade

intersection test.

4.2 Cuts - Octree Grid

In order to avoid using a uniform finite element
representation at the finest resolution level, we em-
ploy an adaptive object discretization, i.e., an octree
grid, where the octree’s leaf cells represent the finite
elements. An adaptive representation allows using
the fine level simulation elements at the locations
where they are needed to resolve the object boundary
accurately. Thus, it can reduce the number of simu-
lation elements significantly, and therefore improves
the performance of the finite element simulation.

The octree grid is built from an initial uniform
object discretization in a coarse-to-fine procedure. The
resolution of this discretization is chosen such that it
can adequately model the physical behavior of the
object’s inner part. In an interactive application, it
can be set to a resolution that allows simulating the
deforming body at reasonable speed.

Starting with this discretization, at each level the
cells containing at least one link that would be cut
by the object boundary are refined regularly into 23

smaller cells. Finally, all cells that do not contain at
least one finest level cell center that is in the object’s
interior are deleted from the octree structure. Note
that the cell centers at the finest level, and thus also
the link positions, can be computed without that a
cell has to be refined explicitly down to the finest
resolution.

The octree refines adaptively along the object’s
boundary while it models the object’s interior away
from the boundary at the selected coarser resolution.
It is restricted to not have level differences between
adjacent elements—sharing a vertex, an edge, or a
face—of more than one (see Figure 2). In this way
abrupt changes in the structural material representa-
tion are avoided.

Cutting is performed by traversing the octree and
performing a regular 1:8 split of the leaf cells to
be refined. The refinement criterion is the same as
is used to initially refine the octree grid along the
object boundary. On the finest level no split is per-
formed but the links that are cut are disconnected.
To accelerate the intersection test between the blade
and the elements, each element stores its axis-aligned
bounding box. Figure 4 illustrates the bounding boxes
for adjacent elements at different resolution levels.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JULY 2010 5

The refinement procedure creates additional ele-
ments, which number increases proportional to the
object’s surface increase. Upon refining an element,
the octree is updated to ensure only level transitions
of at most one. The bounding boxes of new elements
are computed on-the-fly.

5 FINITE ELEMENT DISCRETIZATION

We follow the variational formulation of linear elastic-
ity, which is based on the principle of potential energy
minimization. By using a finite element discretization
of the displacement field—we use hexahedral finite
elements and tri-linear shape functions—the static
behavior of the object is described by a linear system
of equations Ku = f . Here, K denotes the stiffness
matrix, and u and f are the linearized vertex displace-
ments and external forces exerting at these vertices,
respectively.

The linear system is assembled from the element
equations Keue = fe. The element stiffness matrix
Ke is computed by Ke =

∫

Ωe

BTDB dx. Ωe is the
domain of the finite element, B is the Cauchy strain
matrix, and D is the linear material law. A detailed
explanation of the numerical finite element scheme to
solve linear elasticity problems can be found in [63].

We employ a rotational invariant formulation of
the Cauchy strain tensor using the corotated strain
of linear elasticity [64]. In this formulation finite el-
ements are first rotated into their reference configu-
ration before the strain is computed. Although the
strain is still approximated linearly, artificial forces as
they occur when using the Cauchy strain are reduced
significantly.

The current element rotations Re are determined
from the current element deformations. We follow the
approach proposed by Georgii and Westermann [65],
which seeks to minimize the distance between the
rotated deformed and the undeformed configuration.
The ‘energy’ Ee measures this distance as

Ee =

∫

Ωe

dTd dx,

d = RT
e (x+ u− c)− (x− c0),

where c and c0 are the centers of mass of the deformed
and undeformed element, respectively. The rotation
that results in the minimum energy is computed using
a quaternion formulation [66]. Once the element ro-
tations have been determined, the element equations
become

[Re]Ke

(
[Re]

T (xe + ue)− xe

)
= fe.

[Re] is a 24× 24 matrix with 8 instances of Re on the
diagonal, and xe is a vector containing the element’s
vertex positions in the undeformed state. Rewriting
the equations for ue allows assembling the element
contributions into one linear equation system Âu = b̂.

The dynamic behavior of a deformable object is
described by the Lagrangian equation of motion

Mü+ Cu̇+ Âu = b̂,

where M and C denote the mass and damping matrix,
respectively. Time discretization using the classical
Newmark integration method [63] yields the linear
equation system Au = b. This system needs to be
solved for the unknown displacements u in every time
integration step.

6 DISCONTINUOUS MULTIGRID SOLVER

In the following we describe the design and imple-
mentation of the geometric multigrid approach for
solving the equations of deformable body motions.
The solver is specifically tailored to an equation sys-
tem that changes in every time step due to topological
changes of the simulation grid and the use of the
corotated strain formulation.

6.1 Geometric Multigrid

Basic iterative methods like Jacobi or Gauss-Seidel
relaxation effectively reduce high-frequency (oscilla-
tory) error components, but they are ineffective in
reducing low-frequency (smooth) components, which
typically causes the error reduction to stall after a few
iteration steps.

Consider the linear equation system Au = b with
exact solution u. Let ũ be the current approximate
solution and r = b−Aũ the current residual. When the
error reduction stalls, the current error e determined
by the residual equation Ae = r is smooth. The basic
idea of multigrid is to solve the residual equation
on a coarser grid, since there the error appears more
oscillatory and the basic relaxation methods are more
effective. This leads to the so-called two-grid correction
scheme.

In the following, superscripts ℎ and 2ℎ denote the
respective grid spacings and are used to refer to the
original and the coarser grid. The main components
of the two-grid correction scheme are a coarse grid
version of Aℎ, denoted A2ℎ, a transfer operator R2ℎ

ℎ to
restrict the residual to the coarser grid, and a transfer
operator Iℎ2ℎ to interpolate the error from the coarser
grid. Let ũℎ be the current approximate solution.
The two-grid correction scheme then consists of the
following steps:

1) Relax Aℎũℎ ≈ bℎ (n1 times).
2) Compute residual rℎ = bℎ −Aℎũℎ.
3) Restrict residual: r2ℎ = R2ℎ

ℎ rℎ.
4) Solve residual equation A2ℎe2ℎ = r2ℎ.
5) Interpolate error: ẽℎ = Iℎ2ℎe

2ℎ.
6) Apply coarse grid correction: ũℎ ← ũℎ + ẽℎ.
7) Relax Aℎũℎ ≈ bℎ (n2 times).

Typical values for the number n1 and n2 of pre- and
post-smoothing steps are 1 or 2. In our application,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JULY 2010 6

we employ 1 pre- and 1 post-smoothing Gauss-Seidel
relaxation step with an overrelaxation parameter of
1.7. Recursive application of the two-grid correction
scheme on a hierarchy of successively coarser grids
to solve the residual equation (step 4) leads to a
multigrid V-cycle scheme. On the coarsest level, where
the number of unknowns is small, a direct solver—
we employ a Cholesky solver—is typically used to
solve the residual equation. The resulting multigrid
solver exhibits linear time complexity in the number
of unknowns.

Coarse grid hierarchy. A nested hierarchy of ever
coarser grids is constructed in a bottom-up process.
Contiguous blocks of 23 cells are successively grouped
into one cell on the next coarser level. A coarse grid
cell is created if it contains at least one cell at the finer
level. This basic construction principle, which has
already been used in the context of composite finite
elements [61], enables to automatically create a coarse
grid hierarchy independent of the complexity of the
shape of the object. However, since in this approach
cells are merged solely based on their spatial location,
for objects with complicated (concave) boundaries,
physically disconnected parts might be merged into
the same coarse grid cell, leading to a reduced coarse
grid approximation quality and thus to reduced con-
vergence rates. Especially in the current scenario, the
cutting of the finite element model leads to highly
complex boundaries, with disconnected parts of the
object lying closely together. To avoid a reduction
of convergence rates, we propose a grid hierarchy
that reflects the cuts on the coarser grids to correctly
approximate the physical separation of the material
parts. The construction of this hierarchy will be ex-
plained in Section 6.2.

Coarse grid operators and transfer operators. We
use Galerkin-based coarsening to construct the coarse
grid versions of Aℎ, i.e., these operators are succes-
sively constructed via A2ℎ = R2ℎ

ℎ AℎIℎ2ℎ. Furthermore,
we employ tri-linear interpolation operators Iℎ2ℎ, and
the restriction operators are obtained by transposition

of the interpolation operators, i.e., R2ℎ
ℎ =

(
Iℎ2ℎ

)T
.

Using a finite element discretization with tri-linear
shape functions, these choices of the coarse grid and
transfer operators naturally arise from the principle
of potential energy minimization underlying the vari-
ational formulation of elasticity problems: The total
potential energy, consisting of the potential energy of
the deformable body and the potential energy of the
external forces is

E
(
uℎ

)
=

1

2

(
uℎ

)T
Kℎuℎ −

(
fℎ

)T
uℎ. (1)

Solving the elasticity problem is equivalent to mini-
mizing the potential energy, i.e., equivalent to solving
∂

∂uℎE
(
uℎ

)
= Kℎuℎ − fℎ = 0.

Given an approximate solution ũℎ, its error eℎ is
solved for on a coarser grid. By using a tri-linear in-

terpolation operator Iℎ2ℎ, i.e., ẽℎ = Iℎ2ℎe
2ℎ, the error eℎ

is approximated on the coarser grid by tri-linear shape
functions with twice the support (in each dimension)
as on the fine grid. Applying the coarse grid correc-
tion, according to Equation 1 the potential energy is

E
(
ũℎ + Iℎ2ℎe

2ℎ
)
= E

(
ũℎ

)
+ 1

2

(
e2ℎ

)T (
Iℎ2ℎ

)T
KℎIℎ2ℎe

2ℎ−
((

fℎ
)T
−
(
uℎ

)T
Kℎ

)

Iℎ2ℎe
2ℎ. e2ℎ is determined by

minimizing the potential energy, i.e., by solving

∂

∂e2ℎ
E
(
ũℎ + Iℎ2ℎe

2ℎ
)

=
(
Iℎ2ℎ

)T
KℎIℎ2ℎ

︸ ︷︷ ︸

=K2ℎ

e2ℎ −
(
Iℎ2ℎ

)T

︸ ︷︷ ︸

=R2ℎ

ℎ

(
fℎ −Kℎũℎ

)

︸ ︷︷ ︸

=rℎ

= 0,

which directly yields the Galerkin coarse grid oper-
ator and the restriction operator. Note that the error
e2ℎ resides on the coarser grid, but that the potential
energy E is always calculated with respect to the
discretization of the object on the finest grid. It is
thus considered that on the coarser grids cells at the
object’s boundary might be only partially filled with
material.

We use a matrix-free implementation of all multi-
grid components. Details on the construction of the
coarse grid equations will be given in Section 6.4.

6.2 Hierarchy Construction - Uniform Grid

The challenge in developing a multigrid approach that
supports topological changes of the simulation grid
lies in constructing the coarse grid hierarchy. Since
cuts on the finest level also have to be modeled on the
coarser levels, cells cannot simply be merged based
on their spatial relationship. This would correspond
to merging physically and mechanically disconnected
parts, and it would result in low approximation qual-
ity on the coarse grids and very slow convergence rate
of the solver. In the following we describe the novel
principle underlying our hierarchy construction. For
the sake of clarity we first restrict the discussion to a
uniform hexahedral grid with cuts.

The common approach to build a hexahedral multi-
grid hierarchy is to merge blocks of 23 cells into one
coarse grid cell. To respect physically disconnected
parts of the simulation domain, a similar merging
strategy is performed but the connectivity between
the merged cells is considered to possibly generate
more than one coarse grid cell at the same position.
A similar strategy has been pursued by Aftosmis et al.
[67] to handle complex embedded object boundaries
in a multigrid solver for computational fluid dynam-
ics.

The basic idea underlying our construction is to
interpret each grid of the hierarchy as an undirected
graph (Cℓ, ℰℓ). The level number ℓ = 0 denotes the
finest level of the hierarchy, and ascending numbers
denote successively coarser levels. The nodes Cℓ of
each graph represent the cells of the respective grid,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JULY 2010 7

Level 0 Level 1 Level 2

0

1

2

3

4

5

6

7

8

43210

0

1

2

3

4

210

0

1

2

10

Fig. 5. Construction of the coarse multigrid levels

based on the undirected graph representation (red)

in a uniform grid. The blocks of double cell size, in

which connected components (green) are searched,

are marked in blue. Duplicated cells are indicated in

dark gray. The numbers denote integer coordinates in

the underlying lattice.

and the edges ℰℓ ⊆ Cℓ × Cℓ describe the connectiv-
ity between face-adjacent cells. Connected cells share
their vertices. In the following, a cell c ∈ Cℓ with
domain [xc, xc + 1] × [yc, yc + 1] × [zc, zc + 1] in the
underlying lattice (with a spacing of 2ℓ relative to the
spacing of the finest level) is associated with position
(xc, yc, zc).

At the finest level, the nodes C0 correspond to the
finite elements, and the edges ℰ0 correspond to the
links introduced in Section 4.1. Starting on the finest
level and proceeding to the coarsest level, the fol-
lowing two steps are performed subsequently at each
level ℓ = 0, 1, . . . to build the coarse grid hierarchy
(see also the 2D example in Figure 5):

Step 1: Analogous to the common approach, blocks
of double grid cell size are considered. Let Cℓ(x,y,z) ⊆

Cℓ, x, y, z ∈ Z denote the set of nodes corresponding
to the cells of such a block, defined by Cℓ(x,y,z) =
{
c ∈ Cℓ ∣ ⌊xc/2⌋ = x, ⌊yc/2⌋ = y, ⌊zc/2⌋ = z

}
. By per-

forming a depth first search on the subgraph of
(Cℓ, ℰℓ) induced by the nodes Cℓ(x,y,z), the connected
components of this subgraph are determined. For each
connected component, a coarse grid cell C ∈ Cℓ+1

at position (xC , yC , zC) = (x, y, z) is created, which
subsumes the finer grid cells belonging to this com-
ponent.

Step 2: The connectivity between cells on the coarse
grid level is determined from the connectivity on
the finer level. Two coarse grid cells C1 and C2

are connected iff there exist two connected fine grid
cells c1 and c2 which are merged into C1 and C2,
respectively. I.e., it is (C1, C2) ∈ ℰ

ℓ+1 iff there exist
c1 in C1 and c2 in C2 such that (c1, c2) ∈ ℰ

ℓ. The
notation c in C denotes that the finer grid cell c is
belonging to the connected component corresponding
to the coarse grid cell C.

The hierarchy that is constructed in this way has
the property that small cuts disappear at coarser res-
olution levels. This is in-line with the multigrid idea
that the coarse grid levels describe the macroscopic

Level 0 Level 1 Level 2

Fig. 6. Construction of the coarse multigrid levels

based on the undirected graph representation in an

octree grid. The notation is analogous to Figure 5.

behavior of the body. Small cuts do not strongly affect
this behavior and can therefore be neglected at one of
the coarser levels.

6.3 Hierarchy Construction - Octree Grid

Building the hierarchy on the octree grid proceeds
similar to the uniform case, with the exception that
on each multigrid level it must be considered that
cells with different size exist. At the transition from
multigrid level ℓ to level ℓ+1, only cells of size 2ℓ are
merged. All other cells are passed to the next coarser
level. In Figure 6 a 2D example of the construction
process is given.

6.4 Construction of Coarse Grid Equations

Once the cell hierarchy has been constructed, the
coarse grid equations have to be built correspond-
ingly. Since the corotated strain formulation is used,
the equations have to be rebuilt in every time step to
account for the element rotations.

Since all simulation elements have the same shape
and only differ in size, we need to pre-compute only
one element stiffness matrix. If we denote by Ke this
instance for a uniform hexahedron with side length
1, then a uniform hexahedron with side length s has
the element stiffness matrix sKe [68].

The restricted octree discretization leads to hanging
vertices lying in the interior of other cells’ edges or
faces. To obtain a continuous discretization of the
displacement (finest grid) or the error (coarse grids)
using tri-linear shape functions, a hanging vertex does
not represent a degree of freedom but the value at
this vertex is determined by linear (along edges) or
bilinear (on faces) interpolation. Thus, we substitute
unknowns at hanging vertices by interpolation from
unknowns at non-hanging vertices. Each cell finally
depends on eight non-hanging vertices (which are not
necessarily the geometric vertices of the cell), and we
associate the cell with these vertices. This approach
corresponds to the special finite elements introduced
by Wang [69] and extended to 3D by Sampath and
Biros [50].

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JULY 2010 8

Fig. 7. Tri-linear weights used to distribute the per-

cell equations of a fine grid cell (red) to its corre-

sponding coarse grid cell (blue) (restriction). For the

interpolation of the unknowns from the coarse grid,

the same weights are used. For simplicity reasons, the

distribution is only illustrated for selected vertices.

Computing the Galerkin coarse grid operators
A2ℎ = R2ℎ

ℎ AℎIℎ2ℎ means distributing the equations
at the fine grid vertices to the respective coarse grid
vertices (restriction R2ℎ

ℎ), at the same time substituting
the unknowns at the fine grid vertices by interpolation
from the unknowns at the coarse grid vertices (inter-
polation Iℎ2ℎ). The respective weights of the tri-linear
interpolation operator Iℎ2ℎ and the restriction operator

R2ℎ
ℎ =

(
Iℎ2ℎ

)T
are illustrated in Figure 7.

We compute the equations on each level per multi-
grid cell, since this leads to constant memory require-
ments per cell to store the equations and to constant
memory access patterns during equation construction.
In contrast, constructing the equations per shared
vertex would yield varying memory requirements and
access patterns, since vertices can have a varying
number of adjacent vertices due to the irregular topol-
ogy induced by cutting.

At a specific level, the left-hand sides of the equa-
tions for each cell c are stored as rows of an 8 × 8
matrix Ac, with each entry being itself a 3× 3 matrix.
The matrix AC for a coarse grid cell C on the next
coarser level is then computed from the matrices Ac of
those cells c which are merged into cell C as follows:

AC
mn =

∑

c in C

8∑

i=1

⎛

⎜
⎝wc→C

i→m
︸ ︷︷ ︸

Restr.

8∑

j=1

wC→c
n→j

︸ ︷︷ ︸

Interp.

Ac
ij

⎞

⎟
⎠ ,

m, n = 1, . . . , 8.

(2)

In this equation, i, j,m, n are cell-local vertex in-
dices, and wc→C

i→m and wC→c
n→j are the corresponding

weights for restriction and interpolation between the
cells c on the finer grid and the coarse grid cell C, re-
spectively (see Figure 7). Since all element matrices are
symmetric (considering 24 × 24 matrices with scalar
entries, i.e., Ac

pq = Ac
qp

T, p, q = 1, . . . , 24), we only

have to compute and store the matrices’ lower trian-
gular parts. To simulate very large models consisting
of millions of elements, memory requirements can be
reduced significantly by not storing the equations on
the finest level, since they can be built on-the-fly from
the generic element stiffness matrix and the element
rotations.

To finally solve the system of equations, in the
relaxation step and the residual computation step
of the multigrid V-cycle equations per shared vertex
have to be considered. These per-vertex equations
are assembled from the per-cell equations as follows:
At a shared vertex V , described by the set of cell
vertices V ⊂ Cℓ × {1, . . . , 8} that are coalesced into
this vertex, we accumulate the per-cell equations at
these cell vertices. The resulting per-vertex equation
at the shared vertex V then is

∑

(c,i)∈V

8∑

j=1

Ac
iju

V (c,j) = bV .

Here, c ∈ Cℓ denotes a cell incident to the shared
vertex and i, j ∈ {1, . . . , 8} denote cell-local vertex
indices. V (c, j) is the shared vertex corresponding to
vertex j of cell c, and uV (c,j) is the displacement/error
at this vertex. bV is the right-hand side/residual at
vertex V .

7 SURFACE CONSTRUCTION

To reconstruct a smooth polygonal surface that is
aligned with the separated object parts we use the
splitting cubes algorithm [20]. In a hexahedral sim-
ulation grid the splitting cubes algorithm constructs
the surface topology in each cell depending on the
patterns of the edges that are cut. The algorithm
introduces additional points in the interior of the
cells to construct a smooth surface representation. The
placement of these points is driven by the normals of
the cut surface at the intersection points (see Figure
8).

In order to use the splitting cubes algorithm in
our approach we have to adapt the algorithm to the
particular simulation data structure we use, i.e., the
linked voxel representation. Therefore, we consider
the dual grid representation that is built from the links
between the simulation elements. These links define
the connectivity between the simulation elements, and
exactly these links are cut by the cutting tool. For each
link that is cut we store two distances from the link
end points to the respective nearest cut point on that
link. In this way, the cubic cells of the dual grid are
cut at their edges, which results in a representation
that allows us to directly apply the splitting cubes
algorithm at these cells.

To let the reconstructed surface move according to
the object deformations we bind the surface to the
simulation vertices. For vertices on the links that are
cut, the corresponding simulation element is found

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JULY 2010 9

Fig. 8. Dual grid (bold lines) consisting of the links

between the elements. For each cell of the dual grid

a local render surface is built via the splitting cubes

algorithm. The surface is spanned by the intersection

points (red) between the cutting blade and the element

links, and by the normal of the cutting tool at these

points (red arrows). Vertices are bound to the nearest

element of the respective connected component (thin

blue and magenta arrows to the respective element

centers).

by following the links to the left or to the right,
respectively. To handle interior vertices we utilize the
fact that each interior vertex is associated to a unique
surface patch in the splitting cubes approach. There-
fore, for an interior vertex the respective hexahedra
can be found by following the links of the edges
that are cut by the respective surface patch. From the
determined set of hexahedra we choose the one that
has the shortest distance to the surface vertex. The
interior vertex is then bound to this hexahedron by
means of tri-linear interpolation or extrapolation.

Using standard per-vertex normals, which are com-
puted by averaging the face normals of all triangles
incident to the vertex, leads to rendering artifacts
at cutting edges as shown in Figure 9. To achieve
a visually pleasant rendering of the splitting cubes
surface, we render both sharp cutting edges as well
as smooth cutting surfaces by employing per-face
and per-vertex normals, respectively. To compute the
respective normals, we make use of a cut surface
ID, which is incremented for each new cut and then
stored at the links intersected by this cut together
with the distances. These IDs are distributed to the
incident triangles of the splitting cubes surface, and
the normals for each triangle vertex are computed by
only averaging the face normals of triangles with the
same ID. The cut surface IDs can also be used to color
the arising cutting surfaces differently (see Figure 1
right).

Fig. 9. Left: Standard per-vertex normals computed by

averaging the face normals of all incident triangles lead

to rendering artifacts at cutting edges. Right: Only face

normals of triangles with the same cut ID are averaged,

enabling smooth rendering of cutting surfaces while

preserving sharp cutting edges.

8 RESULTS AND ANALYSIS

In the following we analyze our method and show re-
sults that have been produced using this method. The
analysis includes performance measures, a detailed
evaluation of the convergence rates of the multigrid
solver, and a comparison to alternative numerical
solvers. All of our experiments were run on a desk-
top PC, equipped with an Intel Xeon X5560 2.8 GHz
processor (we use a single core), 8 GB of RAM, and
an NVIDIA GeForce GTX 280 graphics card.

8.1 Performance

Table 1 lists the deformable models we used and gives
timings for cutting and simulation. The first three
entries correspond to Figures 15 (left), 11 (right), and
1 (middle). The last two entries also correspond to the
model shown in Figure 15 (left), but using an adaptive
octree discretization reduced by one (Bunny 2) or
two (Bunny 3) octree levels. The first two columns
give the initial number of simulation elements and
the number of elements due to adaptive refinements
along the cuts. The next column shows the time spent
on adaptively refining the octree and rebuilding the
finite element model. Note that these steps are only
required when the cutting tool is moved. Finally, the
time required to perform one time step is given. It
includes the times it takes to recompute the equations
on the simulation level and all coarse grids (as shown
in Equation 2) and to perform three multigrid V-cycles
with one pre- and one post-smoothing Gauss-Seidel
step. In a dynamic simulation this is a reasonable
choice since the solution from the last time step
typically gives a good initial guess to start with in
the current time step. These times are measured for

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JULY 2010 10

#Hexahedra Time [sec]
Model Initial Cut Cutting Simulation
Bunny 118K (755K) 197K 0.693 2.42 (9.31)

Cube 83.3K (512K) 230K 0.781 3.13 (7.05)
Armadillo 493K (3717K) 643K 2.24 8.24 (47.2)

Bunny 2 26.1K (94.3K) 42.4K 0.143 0.498 (1.12)
Bunny 3 5.48K (11.9K) 8.27K 0.0286 0.0928 (0.130)

TABLE 1

Timing statistics for cutting different deformable

models using our adaptive finite element approach.

Numbers in parentheses show respective measures

for a uniform grid at the finest resolution level.

the adaptively refined models. Times in parentheses
are for a uniform grid at the finest resolution level.

Table 1 demonstrates the advantages of an adaptive
octree discretization over a uniform discretization. It
shows that a considerable amount of elements can
be saved, yet modeling the induced discontinuities
at equal resolution. For the higher resolution models
only 1/6 of the number of elements of the uniform
grid are required. In general, this allows resolving the
boundaries at a significantly higher resolution than
would be possible in a uniform setting, giving the
possibility to apply very complicated and thin cuts.
Remarkably, even though the numerical simulation
on an octree discretization is much more complicated
than on a uniform discretization, the reduced number
of elements also results in a significant performance
gain over the uniform setting. In our scenarios, speed-
ups between a factor of 4 and 5 are achieved. Further-
more, the statistics show that the computation time
per simulation step depends linearly on the number
of finite elements.

To demonstrate the computational efficiency and
accuracy of the adaptive MG approach, in Table 2 we
show a comparison of the experiments in Table 1 to
the very same setup using a CG solver with Jacobi
preconditioner. In this table only the solver times, i.e.,
the times required for solving the equations on the
finest level, are considered. For the MG solver this
means that the given times (2nd column) also include
the construction of the equations on the coarser multi-
grid levels. The 3rd column gives the error reduction
that was achieved by the adaptive MG solver. In the
4th column we show the error reduction by the CG
solver within the same period of time as given in the
2nd column. Finally, the 5th column shows the times
required by the CG solver to achieve the same error
reduction as the MG solver.

8.2 Multigrid Convergence Analysis

To demonstrate the effectiveness of the multigrid
solver for simulating objects with complicated bound-
aries as induced by a cut, in Figure 10 (left) we show
the solver’s convergence for the scenario in Figure
11 (right). The curves show the total error reduction
∥ek∥2 / ∥e0∥2 dependent on the number k of V-cycles,

Model MG Time MG Error CG Error CG Time
[sec] Reduction Reduction [sec]

Bunny 1.30 0.100 0.935 9.76
Cube 1.94 0.0145 0.870 31.9

Armadillo 4.35 0.0190 0.973 101
Bunny 2 0.270 0.107 0.864 1.22
Bunny 3 0.0532 0.0734 0.655 0.172

TABLE 2

Comparison of the adaptive MG solver to a CG solver

with Jacobi preconditioner. Solver times are given for

one time step. The error reduction is computed as

∥e3∥2 / ∥e0∥2, where e0 and e3 are the linearized error

vectors before and after the time step, respectively.

The last column shows the time that is required by CG

to achieved the same error reduction as MG.

with ek denoting the error after the k-th V-cycle. The
error is determined by using the solution obtained by
a direct solver (Cholesky) as ground truth.

Three different tests were performed, all of them
using a cube model aligned with the axes of the
simulation grid: a) no cuts were performed, b) a grid-
like cutting tool consisting of square blades aligned
with the simulation grid was moved into the cube for
a distance of half the cube’s edge length, c) the cutting
tool was rotated against the axes of the simulation
grid to create cuts that are not aligned with the
simulation grid. In each of the experiments the cuts
were performed at a single point in time, and the
solver’s performance was measured for simulating
the next time step right after the model was cut.

In experiment a) the grids of all multigrid levels
exactly cover the domain of the cube, giving rise to
an optimal multigrid hierarchy. A convergence rate
� = 0.66 is achieved. The convergence rate is com-

puted as � = (∥ek2
∥2 / ∥ek1

∥2)
1/(k2−k1) and denotes the

average error reduction per V-cycle for those cycles k1
through k2 which exhibit a stable convergence rate.
Experiments b) and c) demonstrate the influence of
complicated boundaries on the convergence. In b) and
c) the same spacing between the individual blades is
used, but in contrast to b) a jagged object boundary
is generated in c) due to the cut orientation.

In both scenarios the convergence rate decreases
to 0.75. This decrease is in line with previous find-

1e-12

1e-11

1e-10

1e-9

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

 0 10 20 30 40 50 60 70 80 90

E
rr

o
r

re
d
u
ct

io
n
 ||

e k
|| 2

/|
|e

0
|| 2

Number of V-cycles

Multigrid convergence: Influence of cuts

Cube, uncut
Cube, cut aligned

Cube, cut diagonal

1e-12

1e-11

1e-10

1e-9

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

 0 25 50 75 100 125 150 175

E
rr

o
r

re
d
u
ct

io
n
 ||

e k
|| 2

/|
|e

0
|| 2

Number of V-cycles

Multigrid convergence: Influence of dynamics

Armadillo, split, high mass
Armadillo, split, medium mass

Armadillo, split, low mass
Armadillo, split, zero mass (static)

Fig. 10. Multigrid convergence. Left: Differently ori-

ented cuts through a cube (Figure 11 right). Right:

The Armadillo model (Figure 1 middle) having different

mass.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JULY 2010 11

Fig. 11. In one time step a cube model (83K hexahedral elements) is cut using a grid-like cutting tool consisting

of square blades, resulting in 204K (left) and 230K (right) elements. A radial force field is applied to fan out

the resulting rods. Note that rods with different size bend differently. Cutting and simulation takes less than 3.5

seconds (left) and 3.9 seconds (right) per time step.

ings in the context of geometric multigrid schemes,
which have indicated decreasing convergence in case
the coarse grid cells can no longer approximate the
object’s domain accurately, which is the case if the
material is cut into disconnected parts. Notably, how-
ever, the convergence behavior does not depend on
the smoothness of the boundary of the object.

In another example we analyze the influence of
the model dynamics on the solver’s convergence.
Since the values on the main diagonal of our system
matrix depend on the mass of the object, the system’s
numerical stiffness is decreased proportionally to the
mass. As a result, higher element masses yield better
convergence rates, as indicated in Figure 10 (right) for
the model shown in Figure 1 (middle). In comparison
we have also simulated the static problem where
the dynamics is not considered (gray curve). This
curve indicates that independent of the object’s mass
a convergence rate of at least 0.85 can be achieved for
this model by the multigrid solver.

8.3 Solver Comparison

In the following we compare the performance of
the multigrid solver to alternative solvers that are
widely used for simulating deformable objects. One
important aspect in this analysis is the potential of the
solver to reduce the error at most in a given period
of time. This is required, for instance, to guarantee a
given response time in interactive scenarios.

For the models shown in Figures 11 (right), and
1 (middle) with medium and zero mass, Figure 12
shows the error reduction of different numerical
solvers over time for the solution of the first simu-
lation time step, i.e., the cuts are performed to the
object in its initial position, and an initial guess of
0 is used for the displacements. Here, e(t) is the
error after the respective solver has run for time t. In

this comparison the respective initialization times of
the solvers are included, i.e., each solver starts solely
from the finest level equations and all computations
specific to the solver—in case of the multigrid solver
the construction of the coarse grids, the assembly of
the coarse grid equations, and the initialization of the
direct solver on the coarsest level—are included in the
timings.

We analyze the Cholesky solver of the TAUCS li-
brary [70], a CG solver with Jacobi preconditioner, and
the proposed multigrid solver. The multigrid solver
is either used directly (MG) or as a preconditioner
for the conjugate gradient method (CGMG). For each
solver a cross on the respective curve highlights the
structural initialization time that is only required in
case of topological changes. For the Cholesky solver,
structural initialization consists of the symbolical fac-
torization of the system matrix. For the multigrid
solver, structural initialization refers to the construc-
tion of the coarse grid hierarchy. (For MG and CGMG
the crosses fall onto the same position.) CG does not
have a structural initialization time.

Besides needing a vast amount of time to solve the
system of linear equations, Cholesky turns out to be
impractical for applications requiring a first approx-
imation of the solution within a short time interval.
CG-Jacobi shows a significantly slower convergence
rate than MG and CGMG. Both multigrid solvers
converge much faster towards the solution than their
competitors and, in particular, they are able to provide
good approximations in a significantly shorter time.
CGMG increases the error reduction per time slightly,
but this benefit only pays off if a large number of
cycles is performed.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JULY 2010 12

1e-12

1e-11

1e-10

1e-9

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

 0 10 20 30 40 50 60 70 80 90 100

E
rr

o
r

re
d

u
ct

io
n

 ||
e(

t)
|| 2

/|
|e

(0
)|

| 2

Time (s)

Solver comparison: Cube, cut diagonal

MG CGMG CG-Jacobi Cholesky

1e-12

1e-11

1e-10

1e-9

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

 0 120 240 360 480 600 720 840 960 1080 1200

E
rr

o
r

re
d

u
ct

io
n

 ||
e(

t)
|| 2

/|
|e

(0
)|

| 2

Time (s)

Solver comparison: Armadillo, split, medium mass

MG CGMG CG-Jacobi Cholesky

1e-12

1e-11

1e-10

1e-9

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

 0 120 240 360 480 600 720 840 960 1080 1200

E
rr

o
r

re
d

u
ct

io
n

 ||
e(

t)
|| 2

/|
|e

(0
)|

| 2

Time (s)

Solver comparison: Armadillo, split, zero mass (static)

MG CGMG CG-Jacobi Cholesky

Fig. 12. Computational efficiency of different numerical solvers for deformable object simulation.

9 CONCLUSION AND FUTURE WORK

We have proposed an efficient approach for physics
based cutting of deformable objects. This approach
employs an adaptive octree grid to represent cuts at
very fine scales. The cutting algorithm is incorporated
into a multigrid scheme, giving rise to a numerical
solver that can handle topological changes in the
simulation grid at high computational efficiency. To
reconstruct a smooth surface from the disconnected
object parts, an extension of the splitting cubes ap-
proach has been proposed. This extension uses the
dual simulation grid to build a boundary surface that
is consistent with the cuts in the simulation grid.

It is worth noting that in a particular scenario,
the unrestricted refinement along a cut may result
in more elements than would actually be required
to solve accurately. For instance, homogenization ap-
proaches [34], [71] could possibly reduce the number
of elements by identifying the material properties at
coarser scales from those of their constituents and
using only the respective coarse grid cells in the simu-
lation. Thus, even with less efficient numerical solvers
homogenization approaches can often simulate very
fast. In the general case, however, such approaches
yield an approximation to the numerical solution on
a finer discretization using ‘non-homogenized’ finite

Fig. 13. Cutting of thin slices (initially 345,000 hexa-

hedra, 429,000 hexahedra after cutting). Cutting and

simulation take 7.3 seconds per time step.

elements, since they reduce the number of degrees
of freedom to solve for. The principle underlying our
approach is to simulate on a finite element model
that has as many degrees of freedom as given by the
initial discretization and to achieve high speed by em-
ploying a computationally efficient numerical solver.
Thus, our approach always simulates accurately at the
possible expense of a higher number of simulation
elements.

The proposed method opens a number of future
research directions. Since in the current approach
we fix the resolution of the simulation grid in the
interior of the deforming object, the resulting number
of degrees of freedom might not be sufficient to accu-
rately represent the induced deformations. Therefore,
a dynamic adaption of the finite element discretization
in the object’s interior is desirable. This can directly
be integrated into our approach, but it first requires to
develop an a priori oracle to decide where to refine.

Another interesting question is how to efficiently
adapt a high resolution render surface to the topo-
logical changes of the simulation mesh. In the current
approach the resolution of the finite element model
and the render surface are coupled due to the use

Fig. 14. Cutting of a heterogeneous model (initially

83,000 hexahedra, 321,000 hexahedra after cutting).

The cube consists of very stiff material, except of a

thin horizontal layer at half height, leading to buckling

of the rods. Cutting and simulation are performed at 5.5

seconds per time step.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JULY 2010 13

Fig. 15. A potpourri of different cuts is applied to the Stanford bunny model to demonstrate the flexibility of our

approach. Multiple overlapping cuts (middle) can be handled accurately. From left to right, the cut models consist

of 197,000, 166,000, and 177,000 hexahedral elements. Cutting and simulation are performed at approximately

3.1, 2.6, and 2.8 seconds per time step, respectively.

of the splitting cubes algorithm. Even though it is
possible to bind a higher resolution render surface to
the vertices of the initial simulation grid, it is unclear
how to adapt this surface to the induced topological
changes at the same speed than the simulation.

Furthermore, we will also integrate collision han-
dling into our approach. In particular we plan to use
the deforming splitting cubes surface to detect self-
collisions [72] and to propagate the collision response
to the respective simulation elements.

ACKNOWLEDGMENTS

The first author is funded by the International Gradu-
ate School of Science and Engineering (IGSSE) of the
Technische Universität München. The authors thank
Peter Schröder for helpful discussions and hints.

REFERENCES

[1] A. Brandt, “Multi-level adaptive solutions to boundary-value
problems,” Mathematics of Computation, vol. 31, no. 138, pp.
333–390, 1977.

[2] W. Hackbusch, Multi-Grid Methods and Applications, ser.
Springer Series in Computational Mathematics. Springer,
1985.

[3] W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid
Tutorial, 2nd ed. SIAM, 2000.

[4] D. Bielser, V. A. Maiwald, and M. H. Gross, “Interactive cuts
through 3-dimensional soft tissue,” Computer Graphics Forum,
vol. 18, no. 3, pp. 31–38, 1999.

[5] D. Bielser and M. H. Gross, “Interactive simulation of surgical
cuts,” in Proc. Pacific Graphics, 2000, pp. 116–125.

[6] A. B. Mor and T. Kanade, “Modifying soft tissue models:
Progressive cutting with minimal new element creation,” in
Proc. MICCAI, ser. Lecture Notes in Computer Science, vol.
1935, 2000, pp. 598–608.

[7] M. Wicke, M. Botsch, and M. Gross, “A finite element method
on convex polyhedra,” Computer Graphics Forum, vol. 26, no. 3,
pp. 355–364, 2007.

[8] I. Babuška and J. M. Melenk, “The partition of unity method,”
International Journal for Numerical Methods in Engineering,
vol. 40, no. 4, pp. 727–758, 1997.

[9] T. Strouboulis, K. Copps, and I. Babuška, “The generalized
finite element method,” Computer Methods in Applied Mechanics
and Engineering, vol. 190, no. 32-33, pp. 4081–4193, 2001.

[10] T. Belytschko and T. Black, “Elastic crack growth in finite
elements with minimal remeshing,” International Journal for
Numerical Methods in Engineering, vol. 45, no. 5, pp. 601–620,
1999.

[11] N. Moës, J. Dolbow, and T. Belytschko, “A finite element
method for crack growth without remeshing,” International
Journal for Numerical Methods in Engineering, vol. 46, no. 1, pp.
131–150, 1999.

[12] N. Sukumar, N. Moës, B. Moran, and T. Belytschko, “Ex-
tended finite element method for three-dimensional crack
modelling,” International Journal for Numerical Methods in En-
gineering, vol. 48, no. 11, pp. 1549–1570, 2000.

[13] Y. Abdelaziz and A. Hamouine, “A survey of the extended
finite element,” Computers & Structures, vol. 86, no. 11-12, pp.
1141–1151, 2008.

[14] L. Jeřábková and T. Kuhlen, “Stable cutting of deformable
objects in virtual environments using XFEM,” IEEE Computer
Graphics and Applications, vol. 29, no. 2, pp. 61–71, 2009.

[15] P. Kaufmann, S. Martin, M. Botsch, E. Grinspun, and M. Gross,
“Enrichment textures for detailed cutting of shells,” ACM
TOG, vol. 28, no. 3, pp. 50:1–50:10, 2009.

[16] G. Debunne, M. Desbrun, A. H. Barr, and M.-P. Cani, “Interac-
tive multiresolution animation of deformable models,” in Proc.
Eurographics Workshop on Computer Animation and Simulation,
1999, pp. 133–144.

[17] M. Müller and M. Gross, “Interactive virtual materials,” in
Proc. Graphics Interface, 2004, pp. 239–246.

[18] J. Georgii and R. Westermann, “Interactive simulation and ren-
dering of heterogeneous deformable bodies,” in Proc. Vision,
Modeling and Visualization, 2005, pp. 383–390.

[19] M. Botsch, M. Pauly, M. Wicke, and M. Gross, “Adaptive space
deformations based on rigid cells,” Computer Graphics Forum,
vol. 26, no. 3, pp. 339–347, 2007.

[20] N. Pietroni, F. Ganovelli, P. Cignoni, and R. Scopigno, “Split-
ting cubes: a fast and robust technique for virtual cutting,” The
Visual Computer, vol. 25, no. 3, pp. 227–239, 2009.

[21] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer, “Elastically
deformable models,” in Proc. ACM SIGGRAPH, 1987, pp. 205–
214.

[22] D. Terzopoulos and K. Fleischer, “Modeling inelastic defor-
mation: Viscoelasticity, plasticity, fracture,” in Proc. ACM SIG-
GRAPH, 1988, pp. 269–278.

[23] A. Nealen, M. Müller, R. Keiser, E. Boxerman, and M. Carlson,
“Physically based deformable models in computer graphics,”
Computer Graphics Forum, vol. 25, no. 4, pp. 809–836, 2006.

[24] D. L. James and D. K. Pai, “ArtDefo: Accurate real time
deformable objects,” in Proc. ACM SIGGRAPH, 1999, pp. 65–
72.

[25] G. Debunne, M. Desbrun, M.-P. Cani, and A. H. Barr, “Dy-
namic real-time deformations using space & time adaptive
sampling,” in Proc. ACM SIGGRAPH, 2001, pp. 31–36.

[26] S. Capell, S. Green, B. Curless, T. Duchamp, and Z. Popović,
“A multiresolution framework for dynamic deformations,” in
Proc. ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, 2002, pp. 41–47.

[27] E. Grinspun, P. Krysl, and P. Schröder, “CHARMS: A simple
framework for adaptive simulation,” ACM TOG, vol. 21, no. 3,
pp. 281–290, 2002.

[28] M. Müller, B. Heidelberger, M. Teschner, and M. Gross, “Mesh-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JULY 2010 14

less deformations based on shape matching,” ACM TOG,
vol. 24, no. 3, pp. 471–478, 2005.

[29] E. Sifakis, T. Shinar, G. Irving, and R. Fedkiw, “Hy-
brid simulation of deformable solids,” in Proc. ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, 2007,
pp. 81–90.

[30] M. Bro-Nielsen and S. Cotin, “Real-time volumetric de-
formable models for surgery simulation using finite elements
and condensation,” Computer Graphics Forum, vol. 15, no. 3,
pp. 57–66, 1996.

[31] X. Wu, M. S. Downes, T. Goktekin, and F. Tendick, “Adaptive
nonlinear finite elements for deformable body simulation us-
ing dynamic progressive meshes,” Computer Graphics Forum,
vol. 20, no. 3, pp. 349–358, 2001.

[32] J. F. O’Brien and J. K. Hodgins, “Graphical modeling and
animation of brittle fracture,” in Proc. ACM SIGGRAPH, 1999,
pp. 137–146.

[33] J. F. O’Brien, A. W. Bargteil, and J. K. Hodgins, “Graphical
modeling and animation of ductile fracture,” ACM TOG,
vol. 21, no. 3, pp. 291–294, 2002.

[34] M. Nesme, P. G. Kry, L. Jeřábková, and F. Faure, “Preserving
topology and elasticity for embedded deformable models,”
ACM TOG, vol. 28, no. 3, pp. 52:1–52:9, 2009.

[35] H.-W. Nienhuys and A. F. van der Stappen, “Combining finite
element deformation with cutting for surgery simulations,” in
Proc. Eurographics - Short Presentations, 2000, pp. 43–52.

[36] S. Cotin, H. Delingette, and N. Ayache, “A hybrid elastic
model for real-time cutting, deformations, and force feedback
for surgery training and simulation,” The Visual Computer,
vol. 16, no. 8, pp. 437–452, 2000.

[37] C. Forest, H. Delingette, and N. Ayache, “Removing tetrahedra
from a manifold mesh,” in Proc. Computer Animation, 2002, pp.
225–229.

[38] H.-W. Nienhuys and A. F. van der Stappen, “A surgery
simulation supporting cuts and finite element deformation,”
in Proc. MICCAI, ser. Lecture Notes in Computer Science, vol.
2208, 2001, pp. 145–152.

[39] D. Serby, M. Harders, and G. Székely, “A new approach to
cutting into finite element models,” in Proc. MICCAI, ser.
Lecture Notes in Computer Science, vol. 2208, 2001, pp. 425–
433.

[40] D. Steinemann, M. A. Otaduy, and M. Gross, “Fast arbi-
trary splitting of deforming objects,” in Proc. ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, 2006,
pp. 63–72.

[41] D. Bielser, P. Glardon, M. Teschner, and M. Gross, “A state
machine for real-time cutting of tetrahedral meshes,” in Proc.
Pacific Graphics, 2003, pp. 377–386.

[42] F. Ganovelli, P. Cignoni, C. Montani, and R. Scopigno, “A
multiresolution model for soft objects supporting interactive
cuts and lacerations,” Computer Graphics Forum, vol. 19, no. 3,
pp. 271–281, 2000.

[43] N. Molino, Z. Bao, and R. Fedkiw, “A virtual node algorithm
for changing mesh topology during simulation,” ACM TOG,
vol. 23, no. 3, pp. 385–392, 2004.

[44] S. Martin, P. Kaufmann, M. Botsch, M. Wicke, and M. Gross,
“Polyhedral finite elements using harmonic basis functions,”
Computer Graphics Forum, vol. 27, no. 5, pp. 1521–1529, 2008.

[45] E. Sifakis, K. G. Der, and R. Fedkiw, “Arbitrary cutting
of deformable tetrahedralized objects,” in Proc. ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, 2007,
pp. 73–80.

[46] S. Popinet, “Gerris: a tree-based adaptive solver for the in-
compressible Euler equations in complex geometries,” Journal
of Computational Physics, vol. 190, no. 2, pp. 572–600, 2003.

[47] L. Shi and Y. Yu, “Visual smoke simulation with adaptive
octree refinement,” in Proc. Computer Graphics and Imaging,
2004, pp. 13–19.

[48] F. Losasso, F. Gibou, and R. Fedkiw, “Simulating water and
smoke with an octree data structure,” ACM TOG, vol. 23, no. 3,
pp. 457–462, 2004.

[49] E. Haber and S. Heldmann, “An octree multigrid method for
quasi-static Maxwell’s equations with highly discontinuous
coefficients,” Journal of Computational Physics, vol. 223, no. 2,
pp. 783–796, 2007.

[50] R. S. Sampath and G. Biros, “A parallel geometric multigrid
method for finite elements on octree meshes,” SIAM Journal
on Scientific Computing, vol. 32, no. 3, pp. 1361–1392, 2010.

[51] J. Bolz, I. Farmer, E. Grinspun, and P. Schröder, “Sparse matrix
solvers on the GPU: Conjugate gradients and multigrid,” ACM
TOG, vol. 22, no. 3, pp. 917–924, 2003.

[52] X. Wu and F. Tendick, “Multigrid integration for interactive
deformable body simulation,” in Proc. International Symposium
on Medical Simulation, ser. Lecture Notes in Computer Science,
vol. 3078, 2004, pp. 92–104.

[53] J. Georgii and R. Westermann, “A multigrid framework for
real-time simulation of deformable bodies,” Computer & Graph-
ics, vol. 30, no. 3, pp. 408–415, 2006.

[54] L. Shi, Y. Yu, N. Bell, and W.-W. Feng, “A fast multigrid
algorithm for mesh deformation,” ACM TOG, vol. 25, no. 3,
pp. 1108–1117, 2006.

[55] M. Kazhdan and H. Hoppe, “Streaming multigrid for
gradient-domain operations on large images,” ACM TOG,
vol. 27, no. 3, pp. 21:1–21:10, 2008.

[56] X. Jin, S. Chen, and X. Mao, “Computer-generated marbling
textures: A GPU-based design system,” IEEE Computer Graph-
ics and Applications, vol. 27, no. 2, pp. 78–84, 2007.

[57] C. Dick, J. Georgii, R. Burgkart, and R. Westermann, “Com-
putational steering for patient-specific implant planning in or-
thopedics,” in Proc. Eurographics Workshop on Visual Computing
for Biomedicine, 2008, pp. 83–92.

[58] Y. Zhu, E. Sifakis, J. Teran, and A. Brandt, “An efficient
multigrid method for the simulation of high-resolution elastic
solids,” ACM TOG, vol. 29, no. 2, pp. 16:1–16:18, 2010.

[59] S. A. Sauter and R. Warnke, “Composite finite elements for
elliptic boundary value problems with discontinuous coeffi-
cients,” Computing, vol. 77, no. 1, pp. 29–55, 2006.

[60] T. Preusser, M. Rumpf, and L. O. Schwen, “Finite element
simulation of bone microstructures,” in Proc. 14th Workshop on
the Finite Element Method in Biomedical Engineering, Biomechanics
and Related Fields, 2007, pp. 52–66.

[61] F. Liehr, T. Preusser, M. Rumpf, S. Sauter, and L. O. Schwen,
“Composite finite elements for 3D image based computing,”
Computing and Visualization in Science, vol. 12, no. 4, pp. 171–
188, 2009.

[62] S. F. Frisken-Gibson, “Using linked volumes to model object
collisions, deformation, cutting, carving, and joining,” IEEE
TVCG, vol. 5, no. 4, pp. 333–348, 1999.

[63] K.-J. Bathe, Finite Element Procedures. Prentice Hall, 2002.
[64] C. C. Rankin and F. A. Brogan, “An element independent

corotational procedure for the treatment of large rotations,”
ASME Journal of Pressure Vessel Technology, vol. 108, no. 2, pp.
165–174, 1986.

[65] J. Georgii and R. Westermann, “Corotated finite elements
made fast and stable,” in Proc. Workshop in Virtual Reality
Interactions and Physical Simulation, 2008, pp. 11–19.

[66] A. Lorusso, D. W. Eggert, and R. B. Fisher, “A comparison of
four algorithms for estimating 3-D rigid transformations,” in
Proc. British Conference on Machine Vision, 1995, pp. 237–246.

[67] M. J. Aftosmis, M. J. Berger, and G. Adomavicius, “A parallel
multilevel method for adaptively refined Cartesian grids with
embedded boundaries, AIAA 2000-0808,” in Proc. 38th AIAA
Aerospace Sciences Meeting and Exhibit, 2000.

[68] L. Jeřábková, T. Kuhlen, T. P. Wolter, and N. Pallua, “A voxel
based multiresolution technique for soft tissue deformation,”
in Proc. ACM Symposium on Virtual Reality Software and Tech-
nology, 2004, pp. 158–161.

[69] W. Wang, “Special bilinear quadrilateral elements for locally
refined finite element grids,” SIAM Journal on Scientific Com-
puting, vol. 22, no. 6, pp. 2029–2050, 2001.

[70] S. Toledo, D. Chen, V. Rotkin, and O. Meshar,
“TAUCS: A library of sparse linear solvers,” 2003,
http://www.tau.ac.il/∼stoledo/taucs.

[71] L. Kharevych, P. Mullen, H. Owhadi, and M. Desbrun, “Nu-
merical coarsening of inhomogeneous elastic materials,” ACM
TOG, vol. 28, no. 3, pp. 51:1–51:8, 2009.

[72] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zach-
mann, L. Raghupathi, A. Fuhrmann, M.-P. Cani, F. Faure,
N. Magnenat-Thalmann, W. Strasser, and P. Volino, “Collision
detection for deformable objects,” Computer Graphics Forum,
vol. 24, no. 1, pp. 61–81, 2005.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JULY 2010 15

Christian Dick received the diploma degree
in computer science from the Technische
Universität München, Germany in July 2007.
Since August 2007 he is a member of the
Computer Graphics and Visualization Group
at the Technische Universität München and
working towards the PhD degree. His cur-
rent research interests include interactive,
physics-based simulation of deformable ob-
jects, multigrid methods, GPU computing,
medical simulation and visualization, compu-

tational steering, as well as the visualization of very large scientific
data sets such as terrain data.

Joachim Georgii is a PostDoc in the Simu-
lation/Modelling Group as well as the Regis-
tration Group at Fraunhofer MEVIS, Bremen.
From 2007 to 2010, he was a PostDoc at the
Computer Graphics and Visualization Group
headed by Professor Rüdiger Westermann
at the Technische Universität München. In
2007, Joachim Georgii received a PhD in
computer science at the Technische Univer-
sität München. His research interests are
physics-based simulation techniques as well

as their efficient implementations thereby focusing on medical appli-
cations such as image registration or surgical planning.

Rüdiger Westermann studied computer sci-
ence at the Technical University Darmstadt,
Germany. He pursued his doctoral thesis on
multiresolution techniques in volume render-
ing, and he received a PhD in computer sci-
ence from the University of Dortmund, Ger-
many. In 1999, he was a visiting professor
at the University of Utah in Salt Lake City,
and he became an assistant professor at
the University of Stuttgart, Germany. In 2000,
he was appointed an associate professor at

the Technical University Aachen, Germany, where he was head of
the Scientific Visualization and Imaging Group. In 2002, he was
appointed the chair of Computer Graphics and Visualization at
the Technische Universität München. His research interests include
real-time physical simulation, general purpose computing on GPUs,
interactive data visualization, and real-time rendering.

	Introduction
	Our Contribution
	Related Work
	Cutting Algorithm
	Cuts - Uniform Grid
	Cuts - Octree Grid

	Finite Element Discretization
	Discontinuous Multigrid Solver
	Geometric Multigrid
	Hierarchy Construction - Uniform Grid
	Hierarchy Construction - Octree Grid
	Construction of Coarse Grid Equations

	Surface Construction
	Results and Analysis
	Performance
	Multigrid Convergence Analysis
	Solver Comparison

	Conclusion and Future Work
	References
	Biographies
	Christian Dick
	Joachim Georgii
	Rüdiger Westermann

