
High-Quality Cartographic Roads on High-Resolution DEMs

Mikael Vaaraniemi
BMW Forschung und Technik GmbH

München, Germany
mikael.va.vaaraniemi@bmw.de

Marc Treib Rüdiger Westermann
Technische Universität München

München, Germany
{treib,westermann}@tum.de

Figure 1: Cartographic rendering of roads in the Vorarlberg region, Austria, and in central Munich, Germany.

ABSTRACT
The efficient and high quality rendering of complex road networks—given as vector data—and high-resolution digital elevation
models (DEMs) poses a significant problem in 3D geographic information systems. As in paper maps, a cartographic repre-
sentation of roads with rounded caps and accentuated clearly distinguishable colors is desirable. On the other hand, advances
in the technology of remote sensing have led to an explosion of the size and resolution of DEMs, making the integration of
cartographic roads very challenging. In this work we investigate techniques for integrating such roads into a terrain renderer
capable of handling high-resolution data sets. We evaluate the suitability of existing methods for draping vector data onto
DEMs, and we adapt two methods for the rendering of cartographic roads by adding analytically computed rounded caps at the
ends of road segments. We compare both approaches with respect to performance and quality, and we outline application areas
in which either approach is preferable.

Keywords
cartography, vector draping, shadow volume, GIS, roads, terrain.

1. INTRODUCTION

Geographic Information Systems (GIS) store, analyze
and visualize geo-referenced data. Road networks, land
usage regions and selected points of interest are usu-
ally stored as vector data. In urban planning, carto-
graphy, and for navigation purposes, the visualization
of roads on digital terrain models plays an important

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

role [Döl05]. GIS engines should be able to handle and
display such vector data efficiently and at high qual-
ity. A bare and uncluttered visualization as in paper
maps is desirable. This cartographic representation of
roads requires vivid colors, dark edges, rounded caps
and runtime scaling of road width [Kra01, RMM95].
Dynamic scaling allows the perception of roads at every
distance. In a cartographic rendering, roads are tinted
using vivid colors to distinguish them from the underly-
ing terrain. Associating different colors to each type of
road induces an automatic cognitive grouping of simi-
lar roads [Kra01]. In addition, dark edges around roads
add visual contrast [RMM95]. Examples of such carto-
graphic representations are shown in Fig. 1 and 2. An
additional aspect of a cartographic representation are
rounded caps at each road segment. This avoids the ap-

Figure 2: Cartographic rendering of road maps using vivid colors and dark edges to achieve a high visual contrast
to the underlying terrain.

pearance of cracks between segments and makes the vi-
sualization more appealing by introducing smooth end-
ings and avoiding undesirable angular corners.
Another important information layer in GIS is the digi-
tal elevation model (DEM). It is usually given as raster
data defining a 2.5D height map. Since the resolution
and size of these DEMs are increasing rapidly, render-
ing approaches must be capable of dealing with TBs of
data and gigantic sets of primitives that have to be dis-
played at high frame rates. To cope with these require-
ments, visualization techniques employ adaptive Level-
Of-Detail (LOD) surface triangulations [LKR+96] and
data compression, combined with sophisticated stream-
ing and pre-fetching strategies [DSW09]. In such sce-
narios, the combined visualization of roads and a high-
resolution DEM in a single visualization engine be-
comes a challenging task.
The main contribution of this paper is a method for ren-
dering cartographic roads with rounded caps on high-
resolution DEMs. We extend existing vector draping
methods by introducing the possibility to compute caps
analytically, thus avoiding an explicit triangulation. In
this way we achieve a high-quality appearance with-
out increasing the number of geometric primitives to be
rendered. Furthermore, we introduce screen-space road
outlines, runtime width scaling, and correct treatment
of road intersections.
We have integrated our method into a tile-based terrain
rendering engine. During preprocessing, this engine
builds an multiresolution pyramid for both the DEM
and the photo texture. It then partitions each level into
square tiles, creating a quad tree. Each tile stores a
Triangulated Irregular Network (TIN) representation of
the DEM along with the photo texture. During runtime,
tiles are chosen based on a maximum allowed screen-
space error. In combination, this enables interactive 3D
browsing of high-resolution terrain data with superim-
posed cartographic roads.

2. RELATED WORK
Terrain Rendering. Terrain rendering approaches us-
ing rasterization have been studied extensively over the
last years. They employ the GPU to render large sets of

polygonal primitives, and they differ mainly in the hier-
archical height field representation used. There is a vast
body of literature related to this field and a comprehen-
sive review is beyond the scope of this paper. However,
Pajarola and Gobbetti [PG07] discuss the basic prin-
ciples underlying such techniques and provide many
useful algorithmic and implementation-specific details.
A thorough discussion of terrain rendering issues that
are specifically related to high resolution fields is given
in [DSW09].

Vector Data. The mapping of vector data on DEMs is
an active research subject. The existing methods can be
broadly classified into geometry-based, texture-based
and shadow volume-based approaches.

Geometry-based methods generate and render sepa-
rate primitives for the vector data. As the sampling fre-
quency of the vector data generally does not match the
triangulation of the underlying terrain, an adaption to
the terrain triangulation and its LOD scheme is neces-
sary. Because of this preprocess, geometry-based al-
gorithms are strongly tied to the terrain rendering sys-
tem and usually only allow static vector data [ARJ06,
SGK05, WKW+03].

Texture-based techniques map the vector data onto a
DEM in two steps: first, the data is rendered into off-
screen textures either at runtime or in a preprocess. Af-
terwards, these textures are overlaid onto the terrain
using texture mapping [DBH00]. This approach does
not produce any aliasing artifacts thanks to hardware-
supported texture filtering. Additionally, these methods
are independent of the underlying terrain triangulation
algorithms.
Static texturing methods provide high performance, but
do not allow runtime changes of rendering parameters.
Further problems occur at large zoom factors, as only
limited resolution textures can be precomputed—there
is an inherent tradeoff between the memory require-
ments and the obtainable quality [DBH00]. There-
fore, Kersting and Döllner [KD02] combine this ap-
proach with on-demand texture pyramids: associating
each quadtree region with an equally sized texture al-
lows on-the-fly generation of appropriate textures. Dy-
namic vector data can be visualized if these textures

are created in each frame. However, this severely im-
pacts performance, as many render target switches are
needed. To overcome this, Schneider et al. [SGK05]
introduce an approach using a single reparameterized
texture for the vector data, analogously to perspective
shadow mapping (PSM) [SD02]. As in PSM, some
aliasing artifacts occur.
Bruneton and Neyret [BN08] present an approach that
adapts the terrain heightfield to constraints imposed by
the vector data (e.g. to enforce locally planar roads).
Their method works only on regular meshes and would
be difficult to generalize to our TIN-based terrain sys-
tem. It is also not feasible for high-resolution terrain
data. Additionally, an adaption of the heightfield is only
necessary if the terrain resolution is insufficient to re-
solve such constraints, or if real-time editing is desired.
A shadow volume-based approach, recently introduced
by Schneider and Klein [SK07], uses the stencil shadow
volume algorithm to create pixel-exact draping of vec-
tor data onto terrain models. A stencil mask is created
by extruding polygons along the nadir and computing
the screen-space intersection between the created poly-
hedra and the terrain geometry. Using this mask, a sin-
gle colored fullscreen quad is drawn. For each color, a
separate stencil mask has to be generated. However, as
the number of different vector data colors is typically
small, this is not a major problem. The approach does
not require any precomputations and is thus completely
independent of the terrain rendering algorithm.
Our goal is to render cartographic roads on a high-
resolution DEM. Continuous road scaling is a prerequi-
site, which makes texture-based approaches unsuitable.
Likewise, a runtime triangulation of roads to match the
DEM is not feasible, so most existing geometry-based
approaches are not usable in our case.
We chose to use the shadow volume approach, as it does
not require a preprocess and thus allows for runtime
scaling of roads. It also provides pixel-exact projec-
tions. As a simpler and faster alternative, we also in-
vestigate a geometry-based approach where we adapt
only the road centerlines to the DEM, so road scaling
remains possible.

3. CARTOGRAPHIC ROADS

In GIS, roads are usually stored as vector data, i.e. as
a collection of 2D polylines. One possibility to visu-
alize such data is to convert the vector data into geo-
metric primitives that are rendered on top of the ter-
rain. However, a naive extrusion of each line segment
to a quad results in the appearance of cracks between
segments. The higher the curvature of a polyline, the
more these cracks become visible. Two pragmatic so-
lutions exist: filling the holes with additional triangles
(see Fig. 3(a)) or connecting the corners of adjacent
quads (see Fig. 3(b)). Both solutions are only possi-

(a) Extra triangle (b) Moving corners (c) Rounded caps

Figure 3: Methods for removing cracks between quads.

ble if adjacency information is available. In real data
sets, however, this information is commonly incom-
plete. Fig. 4 shows an example from a real data set
where one continuous road is represented by several in-
dividual polylines, resulting in cracks between adjacent
road segments where the polylines meet. We therefore
choose a robust and elegant solution, which draws caps
to avoid the appearance of cracks (see Fig. 3(c)) and
does not require adjacency information. In addition to

(a) Cracks (b) Fixed with caps

Figure 4: Cracks occur because of missing adjacency
information.

filling cracks, this approach generates visually pleasant
smooth road endings (see Fig. 5, top). It also naturally
handles sharp turns in a road (Fig. 5, bottom). Many
major navigation systems visualize roads using rounded
caps, for example Nokia with Ovi Maps, Google with
Google Maps, Navigon and TomTom. It has become
a de-facto standard technique when rendering carto-
graphic roads [Phy09]. A naive method for render-

(a) No rounded caps (b) With rounded caps

Figure 5: Quality improvement with rounded caps.

ing caps is the triangulation of a half-circle, leading
to a large number of additional triangles per segment.
Furthermore, the discrete triangulation becomes visible
at large zoom factors. In the following sections, we
present two methods that allow using perfectly round
caps while avoiding an increase of the triangle count.

4. GEOMETRIC APPROACH
Our first method renders cartographic roads using a
geometry-based approach. From the initial polyline

representation of a road, we individually process each
line segment defined by successive vertices. In a pre-
process, these lines are clipped against the terrain mesh
in 2D, inserting additional vertices at each intersection
(see Fig. 6). For more details on this preprocess, see
section 6.1.

(a) Incorrect mapping of a road
(grey vertices); problematic
areas are marked by spirals

(b) Correct mapping of the road
using additional vertices
(red)

(c) Top-down view with additional
vertices

Figure 6: Geometry-based mapping of roads onto a ter-
rain mesh.

To render rounded caps, we do not explicitly triangu-
late half-circles at the beginning and the end of each
road segment. Instead, we render a single quad encom-
passing an entire road segment and evaluate the caps
analytically in a shader program [Gum03] (see Fig. 7).

(a) Line segment i (b) Generated quad (c) Analytical caps

Figure 7: Analytical evaluation of rounded caps on a
base quadrilateral.

We use the endpoints Pi and Pi+1 of each line segment
and the tangent~ti to generate a quad encompassing both
capped ends (see Fig. 7(a) and (b)).
The caps are cut out of the generated quad in a pixel
shader. We create a normalized local coordinate system
inside both caps [RBE+06], which allows determining
those fragments of a quad that are outside the cap and
have to be discarded (see Fig. 7(c)).
Given points P0, P1, the ratio h between their distance
d = P0P1 and the cap radius w

2 is given by

h =
w

(d +2 · w
2)

=
w

d +w
.

Equipped with h, we generate the local coordinates in-
side the caps with

xcap =
|x|−1

h
+1 , ycap = |y|.

If xcap > 0, the fragment lies inside the cap area (the red
area in Fig. 7(c)). If x2

cap + y2
cap > 1.0, it is outside of

the half circle that builds the cap, and is discarded.

5. SHADOW VOLUME APPROACH
Our second algorithm is an extension of the shadow
volume-based approach introduced by Schneider and
Klein [SK07]. We extrude the road geometry along
the nadir and apply a stencil shadow volume algo-
rithm [Cro77, Hei91]. Thus, we compute the intersec-
tions between the extruded roads with the terrain geom-
etry, resulting in per-pixel accurate projections onto the
terrain. Similar to the approach described in section 4,
we extend this algorithm by adding analytic rounded
caps. We enlarge the geometry of each line segment
to encompass the caps, and construct a local coordinate
system that allows us to determine the fragments lying
inside or outside the cap area. In the inside area, we an-
alytically evaluate the caps via an intersection test be-
tween a ray and a cylinder and compute the depth value
of the intersection point to be used during the depth test.

5.1. Intersection
From the camera position O, the fragment position F ,
and the view direction ~v = (F −O)/ |F−O| we con-
struct the view ray R = O+ t~v. Given such a ray, the
intersection of the ray with the cylinder spanned by the
cap can be computed. Because the cylinder is always
aligned with the z axis (the nadir), we can replace the
3D ray-cylinder test by a 2D ray-circle test in the xy
plane (see Fig. 8).
A circle with center C and radius r is defined by the
equation

(X−C)2 = r2.

Inserting the ray R into this equation with ~c := O−C
yields

((O+ t~v)−C)2 = (~c+ t~v)2 = r2.

Expanding this results in the quadratic equation

(~v ·~v) t2 +2 (~v ·~c) t +(~c ·~c− r2) = 0.

Solving for t gives the discriminant

d = 4 (~v ·~c)2−4 (~v ·~v) (~c ·~c− r2).

If d ≤ 0, there is none or only a single solution to the
quadratic equation. This means that the ray does not hit
the cap at all, or just grazes it. In this case, we discard
the fragment. Otherwise, we get

t1/2 =
−2 (~v ·~c) ±

√
d

2 (~v ·~v)
.

For front faces, min(t1, t2) is the correct solution, for
back faces it is max(t1, t2).
So far, we have assumed that the road geometry is ex-
truded toward infinity to generate the shadow volumes.
Since this is wasteful in terms of rasterization fill rate,
we consider the height field for limiting the extent of

the shadow volumes. Assuming the terrain being par-
titioned into tiles, it is sufficient to extrude each line
segment only within the extent of the bounding box of
the tile it belongs to.
To accommodate this, the intersection algorithm has to
be extended to handle the top and bottom sides of the
extruded polyhedron: If the 2D distance between F and
C is smaller than the cap radius (which can only hap-
pen for fragments belonging to the top or bottom side),
F already gives the final intersection.

5.2. Numerical Precision

The algorithm as presented so far suffers from prob-
lems caused by limited numerical precision. One such
problematic situation is depicted in Fig. 8: The inter-
section between each ray and the cylinder is computed
twice, once for the front face of the bounding box (cor-
responding to F0 in the figure) and once for the back
face (corresponding to F1). The ray direction is com-
puted as F0−O and F1−O, respectively. Because of
small perturbations in F0 and F1, which are caused by
the limited precision of the interpolation hardware, one
of the intersection tests may report an intersection while
the other one does not. This results in inconsistent out-
put causing visible artifacts.

Figure 8: Numerically problematic ray-circle intersec-
tion.

In order to achieve consistent results, we compute both
intersections in the same shader invocation: We render
the geometry with front face culling enabled, and ana-
lytically compute the entry point into the bounding box
of the extruded road. We then compute both intersec-
tions between the ray and the road as described above.
This results in two depth values z0, z1 that need to be
compared to the terrain depth zt . We therefore replace
the regular depth test with a custom two-sided test: zt is
read from a texture created as a secondary render target
during the terrain rendering pass. If z0 < zt < z1, then
the road volume intersects the terrain geometry; other-
wise, we discard the fragment.

Two beneficial side effects of this approach are that only
half the amount of geometry needs to be rasterized com-
pared to the naive approach, and that in contrast to the
original shadow volume algorithm it does not require
the rendering of full-screen quads to color the intersec-
tions.

6. IMPLEMENTATION DETAILS
In our proposed GIS engine, we visualize vector data
e.g. from the OpenStreetMap project [Ope10]. Road
networks are stored as a collection of polylines. Each
polyline has a functional road class (FRC) [Tal96],
defining a distinct width and color. For efficient data
management at runtime, we partition the vector data
into quadtree tiles, similar to the terrain data. Inside
each tile, roads are stored sorted by their FRC.

6.1. Geometry Clipping
To avoid an incorrect mapping of roads onto the DEM
in the geometric approach as in Fig. 6(a), we apply a
preprocess where the centerline of each road segment
is clipped against the terrain mesh in 2D. Additional
vertices are inserted at each intersection (see Fig. 6(c)).
However, finding the exit point of a line in a triangle by
line-line intersection tests with the triangle edges pro-
vides poor numerical stability. We therefore perform
these calculations in barycentric coordinates as illus-
trated in Fig. 9.

Figure 9: Computing line – triangle edge intersections.

We trace a line starting at point P along the normalized
direction vector~v in the triangle defined by the vertices
T0, T1 and T2. The change in the barycentric coordinate
λ2 of P with respect to T2 is given by the signed distance
moved along ~a0 divided by the distance d0 of T2 from
~e0, where ~a0 is a normalized vector perpendicular to ~e0
and pointing inside the triangle. When moving along~v,
this becomes (~a0 ·~v)/d0. If this value is larger than zero,
~v is pointing away from ~e0 and we skip this edge. Oth-
erwise, the maximum distance x0 we can move along~v
before we hit ~e0 is given by

x0 =
λ2d0

~a0 ·~v
.

This can be done analogously for the other edges to
compute x1 and x2; the smallest of these provides the
actual exit point. At this point, an additional vertex is
inserted into the polyline.

6.2. Cartographic Rendering
Scaling. In cartographic rendering, roads should be
visible at all zoom levels. Therefore, while zooming
out our system scales the roads’ widths continuously.

The scaling factor is determined by the distance to the
viewer. To avoid that roads close to the viewer become
too wide, we only scale roads that are further away from
the user than a given distance threshold (see Fig. 10).

(a) No scaling (b) Constant scaling (c) Distance-based
scaling

Figure 10: Scaling of road width. Without scaling, dis-
tant roads become too narrow (left). A constant scale
makes close roads too wide (middle). Distance-based
width scaling gives satisfactory results (right).

Intersections. At crossroads or junctions, multiple
roads of potentially different FRCs overlap, resulting in
visible artifacts caused by additive blending. To resolve
this problem, we draw roads into an offscreen render
target without blending, in increasing order of impor-
tance.
The same approach allows for an easy integration of
multi-colored roads by drawing a road multiple times
with different widths and colors. This increases the ge-
ometry count proportionally to the number of colors,
but since typically only a few important roads use mul-
tiple colors, this is acceptable. Fig. 11 demonstrates the
correct handling of intersections of roads with different
FRCs, including a two-color motorway.

Figure 11: Correct handling of road intersections.

Outlines. To distinguish cartographic roads from the
underlying terrain, we add dark edges around roads to
increase contrast [RMM95]. To detect edges in screen
space, we use a 3× 3 or 5× 5 kernel to find the local
maximum road intensity αmax around each fragment.
The road intensity is the road opacity for pixels which
are covered by a road, and 0 otherwise. The differ-
ence αmax−αcurrent defines the resulting edge intensity.
Fig. 12 demonstrates the increase in visibility achieved
by using outlines around roads.

(a) Without outlines (b) With outlines

Figure 12: Improving visibility by using dark outlines.

7. RESULTS
We have tested the proposed algorithms using three
high-resolution data sets:
• A DEM of the US State of Utah, covering an area of

about 276,000 km2 at a geometric resolution of 5 m.
The road data set contains about 6,839,000 vertices
(216 MB).

• A DEM of Bavaria in Germany, covering an area of
about 70,500 km2 at a geometric resolution of up to
80 cm. The road data set contains about 5,697,000
vertices (151 MB).

• A DEM of the Vorarlberg region in Austria, covering
an area of about 4,760 km2 at a geometric resolution
of 1 m. The road data set contains about 213,000
vertices (7 MB).

The size of the terrain data including photo textures is
around 1 TB per data set. We therefore use an out-of-
core visualization system capable of handling arbitrar-
ily large data sets.
The preprocessing step for the geometric approach (see
section 6.1) increased the size of the road data by about
a factor of ten in all tested cases. Note that for the
shadow volume approach, this step is not required.
Performance. All performance measurements were
taken at a display resolution of 1600× 1200 on a PC
with Windows Vista, a 2.66 GHz Intel Core 2 Quad
CPU, 8 GB of RAM and an ATI Radeon HD 5870 GPU
(driver version 10.6).
The graph in Fig. 13 shows the frame rate during a
recorded flight over the medium-resolution DEM of
Utah at an average speed of about 1750 m/s. When
rendering geometric roads (GEO), the maximum (aver-
age) performance drop is about 30% (26%) compared
to rendering the terrain without roads. The highest per-
formance impact occurs over Salt Lake City (far right
in the graph). This area contains a dense road network
and only a small amount of terrain geometry, as build-
ings are not included in the height field. The additional
rendering of rounded caps does not significantly influ-
ence the performance.
For shadow volume-based roads (SV), the maximum
(average) performance drop is around 40% (35%) with-
out and 55% (42%) with rounded caps. Breaking the
numbers down to the sole rendering of roads, SV with
caps is about 1.4 times as expensive as without caps.

The visual quality produced by both techniques is iden-
tical at most locations in Utah. Therefore, GEO is
preferable because of its higher performance. Fig. 14

0

100

200

300

400

FPS

0 100 200 300 400 500
Time (s)

SV, no caps
SV, capsNo roads GEO, caps

GEO, no caps

Figure 13: Performance - Utah

shows the frame rates during a flight over the high-
resolution data set of Bavaria at an average speed of
about 950 m/s. In this scenario, the performance of all
approaches is very close; the average cost is between
33% and 43%. Even though GEO often requires many
more triangles (up to about 3 million) than SV (≤ 1M)
because of the adaption to the terrain mesh (which itself
uses up to about 35M triangles), GEO is still slightly
faster. Thus, the GPU is more limited by shading com-
putations than by the geometry throughput. However,
GEO can often not provide an adequate mapping on
such high-resolution terrain data (see Fig. 15). There-
fore, SV is preferable for such fine-grained DEMs.

0

50

100

150

200

250

300

FPS

0 50 100 150 200 250 300
Time (s)

SV, no caps
SV, capsNo roads GEO, caps

GEO, no caps

Figure 14: Performance - Bavaria

(a) Geometric (b) Shadow volume (c) Wire frame

Figure 15: Comparison of our draping algorithms on
high-resolution terrain.

The Vorarlberg data set has a similar geometric res-
olution as the Bavaria data set, but the road network
is much more sparse. Regardless of which algorithm
is chosen for rendering roads, the highest performance
impact amounts to only 15%. However, as in Bavaria,
GEO can not provide adequate quality.
Matching. We should note that in many situations the
vector data set did not exactly match the terrain data,
i.e. there was a certain offset between the vector data
roads and roads in the phototextures. These problems
frequently occur in cities or forests, where even a slight
offset causes a road to be projected onto a building or a
tree. GEO fails to produce any reasonable results in this
case (see Fig. 16(a)); SV produces a technically correct
but not very useful projection (see Fig. 16(b)). This is
a problem of the data rather than the draping algorithm.
An additional preprocessing step could match the vec-
tor data to the terrain and its phototextures.

(a) Geometric (b) Shadow volume

Figure 16: Artifacts caused by a mismatch between ter-
rain and vector data.

Comparison. Our method presents a marked improve-
ment over several commercial GIS systems. For ex-
ample, Google Earth 6.0 uses a simple geometric ap-
proach without adaption to the terrain and therefore
does not achieve a correct projection of roads onto the
DEM. It also does not provide correct road intersec-
tions and does not support multi-color roads or outlines.
ArcGIS 10.0 rasterizes vector data into textures which
are overlaid onto the terrain, similar to the orthophotos.
This results in a correct projection and correct behav-
ior at road intersections. However, a dynamic scaling
of road widths is not possible, and multi-color roads or
outlines are not supported.

8. CONCLUSION

In this paper, we have proposed and evaluated two ap-
proaches for rendering high-quality cartographic roads
with rounded caps on high-resolution 3D terrain mod-
els. Both can be used on hardware platforms support-
ing Direct3D 10 or OpenGL 3.0. We have shown that
a geometry-based approach provides high performance
and good quality for low- to medium-resolution ter-
rain data sets. However, it requires a moderately com-
plex preprocessing step, and it can not provide an ade-
quate visual quality with high-resolution terrain data.
It is therefore a reasonable choice for low-end hard-
ware, e.g. on mobile devices, where rendering of high-
resolution terrain data is not feasible.

The shadow volume algorithm enables pixel-exact ren-
dering of cartographic roads on 3D terrain. It is more
expensive at runtime than the geometry-based approach;
however, the rendering of high-resolution terrain re-
mains the larger part. In low-resolution terrain data
sets, on the other hand, its relative performance impact
is large. The algorithm is easy to integrate into exist-
ing terrain rendering engines, as no adaption of roads
to the terrain is required. It also extends naturally to
polygonal vector data.
In further research, we plan to evaluate the use of tes-
selation shaders for the creation of geometric caps on
Direct3D 11 or OpenGL 4.0 capable hardware.

9. ACKNOWLEDGEMENTS
The authors wish to thank the Landesvermessungsamt
Feldkirch, Austria, the Landesamt für Vermessung und
Geoinformation Bayern and the State of Utah for pro-
viding high-resolution geo data.
This publication is based on work supported by Award
No. UK-C0020, made by King Abdullah University of
Science and Technology (KAUST).

10. REFERENCES
[ARJ06] Agrawal, A., Radhakrishna, M., and Joshi, R.

Geometry-based mapping and rendering of vec-
tor data over LOD phototextured 3D terrain
models. In Proceedings of WSCG, pages 787–
804, 2006.

[BN08] Bruneton, E. and Neyret, F. Real-time rendering
and editing of vector-based terrains. In Com-
put. Graph. Forum, volume 27, pages 311–320,
April 2008. Special Issue: Eurographics ’08.

[Cro77] Crow, F. C. Shadow algorithms for com-
puter graphics. SIGGRAPH Comput. Graph.,
11(2):242–248, 1977.

[DBH00] Döllner, J., Baumann, K., and Hinrichs, K.
Texturing techniques for terrain visualization.
In VISUALIZATION ’00: Proceedings of the
11th IEEE Visualization 2000 Conference (VIS
2000), Washington, DC, USA, 2000. IEEE
Computer Society.

[Döl05] Döllner, J. Geovisualization and real-time
3d computer graphics. In E., Dykes, J.,
MacEachren, A., and Kraak, M., editors, Ex-
ploring Geovisualization, chapter 16, pages
325–343. Pergamon, 2005.

[DSW09] Dick, C., Schneider, J., and Westermann, R.
Efficient geometry compression for GPU-based
decoding in realtime terrain rendering. Com-
puter Graphics Forum, 28(1):67–83, 2009.

[Gum03] Gumhold, S. Splatting illuminated ellipsoids
with depth correction. In Proceedings of 8th
International Fall Workshop on Vision, Mod-
elling and Visualization, volume 2003, pages
245–252, 2003.

[Hei91] Heidmann, T. Real shadows, real time. IRIS
Universe, 18:28–31, 1991.

[KD02] Kersting, O. and Döllner, J. Interactive 3d visu-
alization of vector data in GIS. In GIS ’02: Pro-
ceedings of the 10th ACM international sym-
posium on Advances in geographic information
systems, pages 107–112, New York, NY, USA,
2002. ACM.

[Kra01] Kraak, M. Cartographic principles. CRC,
2001.

[LKR+96] Lindstrom, P., Koller, D., Ribarsky, W., Hodges,
L. F., Faust, N., and Turner, G. A. Real-time,
continuous level of detail rendering of height
fields. In SIGGRAPH ’96: Proceedings of the
23rd annual conference on Computer graph-
ics and interactive techniques, pages 109–118,
New York, NY, USA, 1996. ACM.

[Ope10] OpenStreetMap. OpenStreetMap website,
2010.

[PG07] Pajarola, R. and Gobbetti, E. Survey of semi-
regular multiresolution models for interactive
terrain rendering. Vis. Comput., 23(8):583–605,
2007.

[Phy09] Physical Storage Format Initiative. Naviga-
tion Data Standard: Compiler Interoperability
Specification, 2009.

[RBE+06] Reina, G., Bidmon, K., Enders, F., Hastreiter,
P., and Ertl, T. GPU-Based Hyperstreamlines
for Diffusion Tensor Imaging. In Proceedings
of EUROGRAPHICS - IEEE VGTC Symposium
on Visualization 2006, pages 35–42, 2006.

[RMM95] Robinson, A., Morrison, J., and Muehrcke, P.
Elements of cartography. John Wiley & Sons
Inc, 1995.

[SD02] Stamminger, M. and Drettakis, G. Perspective
shadow maps. In SIGGRAPH ’02: Proceed-
ings of the 29th annual conference on Computer
graphics and interactive techniques, pages 557–
562, New York, NY, USA, 2002. ACM.

[SGK05] Schneider, M., Guthe, M., and Klein, R. Real-
time rendering of complex vector data on 3d
terrain models. In Thwaites, H., editor, The
11th International Conference on Virtual Sys-
tems and Multimedia (VSMM2005), pages 573–
582. ARCHAEOLINGUA, October 2005.

[SK07] Schneider, M. and Klein, R. Efficient and ac-
curate rendering of vector data on virtual land-
scapes. Journal of WSCG, 15(1-3), January
2007.

[Tal96] Talvitie, A. Functional Classification of Roads.
Transportation Research Board, Washington,
D.C., 1996.

[WKW+03] Wartell, Z., Kang, E., Wasilewski, T., Ribarsky,
W., and Faust, N. Rendering vector data over
global, multi-resolution 3d terrain. In VISSYM
’03: Proceedings of the symposium on Data vi-
sualisation 2003, pages 213–222, Aire-la-Ville,
Switzerland, 2003. Eurographics Association.

