
Efficient High-Quality Volume Rendering of SPH Data

Roland Fraedrich, Stefan Auer, and Rüdiger Westermann

Fig. 1. A novel technique for order-dependent volume rendering of SPH data is presented. It provides rendering options like direct
volume rendering (left), iso-surface rendering (middle), and mixed modes (right), and it renders data sets consisting of millions of
particles at high quality and speed (42M @ 0.1 fps, 2.2M @ 4.5 fps, 2M @ 1.7 fps, from left to right) on a 1024×1024 viewport.

Abstract—High quality volume rendering of SPH data requires a complex order-dependent resampling of particle quantities along
the view rays. In this paper we present an efficient approach to perform this task using a novel view-space discretization of the
simulation domain. Our method draws upon recent work on GPU-based particle voxelization for the efficient resampling of particles
into uniform grids. We propose a new technique that leverages a perspective grid to adaptively discretize the view-volume, giving
rise to a continuous level-of-detail sampling structure and reducing memory requirements compared to a uniform grid. In combination
with a level-of-detail representation of the particle set, the perspective grid allows effectively reducing the amount of primitives to be
processed at run-time. We demonstrate the quality and performance of our method for the rendering of fluid and gas dynamics SPH
simulations consisting of many millions of particles.

Index Terms—Particle visualization, volume rendering, ray-casting, GPU resampling.

1 INTRODUCTION

Particle-based simulation techniques like Smoothed Particle Hydrody-
namics (SPH) have gained much attention due to their ability to avoid
a fixed discretization of the simulation domain. By using an adap-
tive spatial data structure for particles, the memory requirements of
particle-based methods depend only on the size of the fluid domain,
but not on the size of the simulation domain. This makes the simula-
tion less demanding on memory but substantially increases the com-
putational load due to a more complex procedure to resolve particle
adjacencies.

This limitation also becomes crucial in the rendering of a discrete
SPH particle set, which, in general, means reconstructing a volume-
covering and continuous density field from this set. To reconstruct
a continuous least squares approximation, at every domain point a
weighted average of the particle densities contributing to this point has
to be computed. This can either be done by resampling and blending
the densities onto a grid and using cell-wise interpolation, or instead
by directly integrating along the rays of sight through the SPH kernels.

The first approach does not require particles to be processed in any
specific order and results in a view-independent volume representa-

• Roland Fraedrich (E-mail: fraedrich@tum.de) is with the with the

Computer Graphics and Visualization Group, Technische Universität at

München.

• Stefan Auer (E-mail: auer@in.tum.de) is with the Computer Graphics and

Visualization Group, Technische Universität at München.

• Rüdiger Westermann (E-mail: westermann@tum.de) is with the Computer

Graphics and Visualization Group, Technische Universität at München.

Manuscript received 31 March 2010; accepted 1 August 2010; posted online

24 October 2010; mailed on 16 October 2010.

For information on obtaining reprints of this article, please send

email to: tvcg@computer.org.

tion. This representation can be rendered efficiently using standard
volume rendering techniques. For example, 3D texture-based volume
rendering can be used if the reconstruction is onto a uniform grid.
On the other hand, the approach requires a fixed discretization of the
simulation domain, with a resolution that is high enough to capture
all simulated details. Thus, it takes away much of the advantage of
particle-based simulation techniques.

The second approach can leverage the same adaptive data structure
as the simulation itself, but it is view-dependent and comes at high
computational and memory access load to integrate particle quantities
in the correct visibility order along the view rays. Due to these limita-
tions, to the best of our knowledge the use of this approach is currently
restricted to off-line visualizations [3, 28].

Our contribution. In this work we introduce a new volume
rendering pipeline for SPH data on desktop PCs. This pipeline
can efficiently render a continuous density field—or any other scalar
quantity—that is given by a discrete SPH particle set. It employs
3D texture-based volume rendering on the GPU and therefore pro-
vides different rendering options like direct volume rendering and iso-
surface rendering. Some examples are shown in Figure 1.

Similar to previous approaches for the rendering of SPH data the
particle quantities are resampled onto a regular 3D grid. In contrast,
however, the grid is not fixed to the simulation domain but to the view
volume. Thus, it moves with the viewer and discretizes only the visible
space, i.e., the view frustum, in front of it.

A further difference is that the grid is not uniform but adaptively
discretizes the visible domain. The grid resembles a classical ray-
tracing grid which fans out with increasing distance from the view
plane [4], but it has a spacing between the grid vertices along the view
rays that increases logarithmically. Thus, the grid results in an adaptive
sampling of the view frustum with decreasing sampling rate along the
viewing direction. We will subsequently call this grid the perspective
grid.

Fig. 2. Order-dependent particle splatting (left) results in vastly different visualizations than volume ray-casting (middle) or hybrid rendering with
iso-surfaces (right). Splatting approaches cannot accurately represent high-frequency color and opacity transfer functions and have difficulties in
revealing surface-like structures in the data.

The advantage of the perspective grid is twofold: Firstly, by ad-
justing the sampling distance along the viewing direction a nearly
isotropic sampling rate in view space can be enforced. In contrast
to a uniform sampling this significantly reduces the number of sam-
ple points. Secondly, the perspective grid can be combined effectively
with a hierarchical particle representation, in which sets of particles at
one level are represented by one enlarged particle at the next coarser
level. By always selecting the level of detail with respect to the current
sampling rate, the number of particles to be resampled can be reduced
substantially. It is clear, on the other hand, that the view-dependent
volume representation has to be recomputed in every frame.

To render the SPH data efficiently, we store the perspective grid in a
3D texture on the GPU and use texture-based volume ray-casting. To
correctly resample the particle quantities into this texture, we derive
the transformation that maps a Cartesian grid onto the corresponding
perspective grid and consider this transformation in the resampling
step. Resampling is entirely performed on the GPU to exploit mem-
ory bandwidth and computation parallelism. In the Cartesian grid,
perspectively correct gradients are computed to simulate shading and
lighting effects.

Since our approach reconstructs the continuous scalar field from the
discrete particle samples and renders this field via ray-casting, high
quality visualizations using arbitrary transfer functions can be gener-
ated. Especially compared to particle splatting, which projects each
particle’s reconstruction function separately to form a 2D pre-shaded
footprint, vastly different image quality can be achieved. Figure 2
demonstrates this effect for a SPH data set in which the reconstruc-
tion functions from different particles overlap. The particle extents in
this data set differ about a factor of 1400. While splatting (left) can
only render a coarse approximation to this data, volume ray-casting
(middle) generates a smooth continuous image of the discrete parti-
cle set and can reveal fine details of surface structures via additional
iso-surfaces (right).

2 RELATED WORK

Particle-based simulation techniques like SPH have been studied ex-
tensively over the last years. There is a vast body of literature related
to this field and a comprehensive review is beyond the scope of this pa-
per. However, Monaghan [23], Müller et al. [24], and Adams et al. [2]
discuss the basic principles underlying such techniques and provide
many useful algorithmic and implementation specific details.

Only very little work has been reported on the efficient rendering
of SPH data. Most commonly this task is reduced to rendering iso-
surfaces in the continuous 3D density field derived from the discrete
set of particles. This can be accomplished by resampling particle
quantities into a proxy grid [7, 26], and by using iso-surface extrac-
tion [22] or direct volume ray-casting [9]. Zhu and Bridson use a
correction term for the density before the reconstruction, leading to
smoother surfaces [38]. An efficient GPU technique for resampling
particle quantities into 3D uniform grids has been presented recently
in [37]. For iso-surface rendering, resampling can be restricted to the
surface boundaries [36]. If a uniform proxy grid is used, high resolu-

tion is required to capture all details, but GPU-based volume rendering
approaches can be employed to achieve high speed [10, 21].

In order to avoid the exhaustive memory consumption of a proxy
grid, iso-surfaces can be rendered directly, for example, by evaluat-
ing ray-particle intersections on the GPU [20, 37]. Gribble et al. per-
formed direct ray-sphere intersections on the CPU using a grid-based
acceleration structure [14]. An iso-surface extraction technique that
works directly on the particle set was introduced by [29]. Rosenthal et
al. generate a surfel representation of the iso-surface from the discrete
particle set [31]. A high-quality yet time-consuming surface-fitting
approach using level-sets was presented in [30].

Order-independent splatting of transparent particle sprites was pre-
sented by [12, 18, 19] for volumetric astrophysical SPH data. Visual-
ization systems for SPH data, including rendering options like splat-
ting or slicing and providing application specific mechanisms to inter-
act with and analyze particle data were discussed in [5, 6, 11, 27, 34].

Recently, screen-space approaches for rendering iso-surfaces in
SPH data have gained much attention due to their efficiency. Adams
et al. render particles as spheres and blend the contributions in the
overlap regions [1]. Müller et al. reconstruct a triangle mesh in screen
space from visible surface fragments that are generated via rasteriza-
tion [25]. The method was improved by [16, 33] to generate smooth
surfaces and to avoid an explicit triangulation.

3 PERSPECTIVE GRID

The perspective grid is used to resample the particle data inside the
view volume. It is a structured grid that partitions the view frustum
into k× l ×m oblique subfrusta. Figure 3(right) illustrates this grid,
which has the specific property that the sampling rate along z is the
same as along x and y.

The perspective grid is stored on the GPU in a 3D texture map (see
Figure 3(left)). In the resampling process, the 3D texture map is used
as a render target and resampled quantities are scattered to this target
using accumulative blend.

To perform the resampling efficiently on the GPU, a mapping of a
point r

′ = (x′,y′,z′) from 3D texture space to a point r = (x,y,z) in
view space and vice versa is required. In the following, we will derive
this mapping and describe how to exploit it in the resampling process.

Fig. 3. The Cartesian grid in texture space (left) transforms onto the
perspective grid in view space (right) under the mapping s. The grid has
the same sampling rate along x and y (pxy(z)) as along z (pz(z)). We
assume that the viewer is looking along the positive z-axis.

Perspective Grid Mapping Let us denote by s(r′) =
(

sx (x
′,z′) ,sy (y

′,z′) ,sz (z
′)
)

the mapping we are looking for, and let
us note that the sampling rate pxy(z) along x and y is given by
(2 · tan(f ovy/2)/resy) · z, where f ovy is the vertical field of view and
resy the vertical resolution of the viewport. The mapping of x′ and y′

in texture coordinates to x and y in view space is simply the inverse
view-space to screen-space transformation:

sx

(

x′,z′
)

=

(

2 · x′

k
−1

)

· sz

(

z′
)

· tan(f ovy/2)

and for sy (y
′,z′), respectively. The mapping sz of z′ ∈ [0,m] in texture

space to z ∈ [n, f] in view space (n and f are the near and far plane)
needs some further explanations.

We observe that the sampling rate along z, pz(z), is equal to dz
dz′

=
dsz(z

′)
dz′

, since z′ is sampled uniformly with distance 1. Since pz(z) is

supposed to be equal to pxy(z), we obtain:

pz(z) = σ · sz

(

z′
)

=
dsz (z

′)

dz′
, (1)

where σ =
2·tan(f ovy/2)

resy
and z has been replaced by sz (z

′) in the second

term. This differential equation is solved by any sz (z
′) of the form

sz

(

z′
)

= a ·bc·z′/m.

Since z′ ∈ [0,m] is mapped to z ∈ [n, f], and by setting c = 1, sz (z
′)

equates to

sz

(

z′
)

= n ·

(

f

n

)z′/m

. (2)

It’s inverse is

s−1
z (z) = m ·

ln(z/n)

ln(f /n)
.

Note that this corresponds to the transformation derived in [32, 35]
to equally distribute the aliasing error in perspective shadow map pa-
rameterizations. This mapping is only correct, however, on the z axis.
On every other view ray the sampling rate is larger, since all of them
perform the same z sampling in world space. In the extreme case,
which is along the edges of the frustum, the sampling rate scales by
the factor

λ =

√

(

k ·σ

2

)2

+

(

l ·σ

2

)2

+1.

We must further determine the number of sample points m along
the z-axis for a given range [n... f]. By inserting equation 2 into 1 and
solving for m, we obtain

m =
ln

f
n

σ
.

Finally, to account for the increasing sampling distance towards the
frustum boundaries, and thus to provide the appropriate sampling in
the whole frustum, m must be scaled by λ .

4 DATA RESAMPLING

To resample the particle data to the perspective grid, for every particle
the grid vertices within the support of the particle’s smoothing kernel
have to be determined and the data is interpolated according to the
kernel function:

A(r) = m j ·
A j

ρ j
·W (|r−r j|,h j).

Here, A(r) is the resampled data at position r, and m j, ρ j , r j , and A j

are the particle’s mass, density, position, and data value, respectively.
W is the kernel function with a support h j that can vary from particle
to particle. In Section 6 we describe the particular kernel functions

underlying the SPH simulations used in this work. The interpolated
value A(r) is added to the corresponding texel in the 3D texture map.

Key to an efficient and high quality resampling of large particle sets
is the use of a multi-resolution particle representation [12, 18, 19]. In
such a representation the particle set is encoded at different levels of
detail by merging subsets consisting of smaller particles into one larger
particle. The hierarchical particle representation allows pruning parti-
cles that are too small to be reconstructed at the required sampling rate.
Thus, aliasing artefacts can be avoided and the number of particles to
be processed can be reduced.

4.1 Hierarchical Particle Representation

Our pre-computed multi-resolution particle representation is orga-
nized in an adaptive octree data structure similar to the one proposed in
[12]. In particular, for large particle sets and high spatial resolution of
the simulation we employ the same regular domain partition to allow
for the construction of the particle hierarchy in parts. In addition, for
the Millenium gas dynamics simulation we scale each particle compo-
nent logarithmically and compress the data using vector quantization.
Spherical pre-fetching regions are realized on the GPU and the CPU
to exploit frame-to-frame coherence and thus reduce memory access
latencies.

In contrast, however, we use different rules for merging particles.
These rules build upon the resampling operators presented in [8, 17]
for adaptive SPH simulations.

Fig. 4. Bottom-up construction of the particle LOD-hierarchy. Particles
are copied to the next coarser level until their diameter falls below the
grid sampling (left). Particles falling below the grid sampling are merged
and eventually enlarged to the grid spacing (right).

Starting with a uniform grid at the resolution at which the simu-
lation has been performed, particles in contiguous blocks of 23 cells
are merged into a single particle. The volume of this particle is the
sum of the volumes of the merged ones, and the scalar quantities of
the merged particles are averaged into this particle according to their
mass contribution. The merging process is illustrated in Figure 4. This
process is recursively repeated until a user-given resolution level is
reached.

In the merging process, at a particular level only particles with a
radius less than the cell size on the next coarser level are merged. If
the radius of a new particle falls below this size, it is increased to this
size and its density is decreased proportionally to reflect the volume
increase. All other particles are copied to the coarser level to guarantee
a consistent representation of the particle field at all levels of detail.

4.2 Hierarchy Traversal

In every frame, of all particles those to be resampled at the current
view have to be determined. This is done by traversing the particle
hierarchy top-down on the CPU and pruning those nodes which do not
overlap the view-frustum. For the remaining nodes, depending on the
shortest distance of the node to the viewer the highest sampling rate of
the particles in this node is computed. The traversal is stopped once
the minimum size of the particles falls below this sampling rate, i.e.,
when sampling the particles into the grid would result in aliasing. The
particles are then packed into vertex and associated attribute arrays,
and they are sent to the GPU for resampling.

4.3 GPU Particle Slicing

GPU voxelization of particles into a 3D texture map work similar to
the approach presented in [37]. For each particle a single vertex—
positioned at the particle center and attributed by the particle quan-
tity to be resampled—is sent to the GPU and passed to the geometry
shader. The geometry shader computes the first (smin) and the last
(smax) 2D texture slice that is covered by the particle as

smin = ⌈s−1
z (zcenter −h)−0.5⌉,

smax = ⌊s−1
z (zcenter +h)−0.5⌋.

Here, h is the particle’s smoothing length, which can vary from particle
to particle.

The shader spawns smax − smin + 1 equilateral triangles from this
vertex, one for each slice i, i ∈ {smin, ...,smax}. The triangles are cen-
tered at the particle position and oriented orthogonal to the viewing
direction. For the i-th triangle, it’s depth i+ 0.5 in texture space is
transformed to view space as zi = sz(i+0.5).

Before rendering a triangle, the shader computes the radius of the
circular cross-section between the sphere of radius h centered at the
particle position and the slice zi in view space, and it uses this value
to resize the triangle so that it just covers the cross-section. Figure 5
illustrates this process. For every triangle vertex the distance vector
to the particle center is determined and assigned as vertex attribute.
Finally, the triangle is rendered into slice i of the 3D texture map using
the standard perspective projection.

Fig. 5. Particle resampling on the GPU. As many proxy triangles as
there are slices overlapped by a particle are rendered. Triangles are
scaled to cover the particle-slice cross-sections.

During triangle rasterization the distance vectors are interpolated
and its length is used in a pixel shader to test whether the correspond-
ing texel is inside or outside the particle’s kernel support. For frag-
ments that are inside, the kernel function is evaluated using the inter-
polated distance vector and the smoothing length h, and the computed
quantity is blended into the render target. Otherwise, the fragment is
discarded.

5 RENDERING

Once the particle quantities have been resampled to the perspective
grid, the data can be rendered in turn on the GPU using texture-based
volume ray-casting. This enables using different rendering options
like iso-surface rendering or direct volume rendering simultaneously
at very high speed. The major difference to classical texture-based
ray-casting is in the kind of grid that is rendered. Usually, the data
is given on a Cartesian grid in world space and has to be interpolated
tri-linearly at the sample points along the rays. The data in the per-
spective grid, on the other hand, is already at the positions in view
space where a sample is placed during ray-casting. Consequently, the
data values in the 3D texture map that stores the perspective grid can
be accumulated directly in front-to-back order along the z′ coordinate
axis in texture space. To account for the varying sampling distances,
opacity correction of the samples has to be performed.

For simulating local illumination effects we compute the gradient
of the resampled particle quantity. A gradient’s x and y components
can be approximated directly via central differences along x′ and y′,

respectively. However, due to the perspective distortion of the re-
sampling grid, an offset along the z′-coordinate axis in texture space
does not correspond to an offset along the z-coordinate axis in view
space. Thus, the texel center, (x′t ,y

′
t ,z

′
t), is first transformed to view

space, (xt ,yt ,zt), and the positions of the two points (xt ,yt ,zt +△)
and (xt ,yt ,zt −△) are transformed back to texture space. Here, △ de-
notes the distance between the current and the previous slice in view
space.

Hence the gradient of the sampled field f at a texel position
(x′t ,y

′
t ,z

′
t) in texture space is computed as

∇ f =

f (x′t +1,y′t ,z
′
t)− f (x′t −1,y′t ,z

′
t)

f (x′t ,y
′
t +1,z′t)− f (x′t ,y

′
t −1,z′t)

f
(

sz

(

s−1
z (x′t ,y

′
t ,z

′
t)+△

))

− f
(

sz

(

s−1
z (x′t ,y

′
t ,z

′
t)−△

))

As can be seen, computing a gradient’s z component requires inter-
polating in texture space. 3D texture mapping hardware on the GPU
supports tri-linear interpolation, which is not exact in our scenario due
to the frustum-shaped cells underlying the texture grid. In order to im-
prove the interpolation accuracy we have implemented distance-based
interpolation in texture space. Figure 6, however, indicates the dif-
ferences in the resulting illumination to be rather low. We thus use
hardware-supported tri-linear interpolation throughout this work.

Fig. 6. Gradient computation in the perspective grid. Left: Trilinear
interpolation; Right: Distance-based interpolation.

5.1 Grid Partitioning

Due to the limited amount of graphics memory on the GPU, it is not
possible in general to store the entire perspective grid on the GPU. For
this reason we partition the perspective grid into a number of view-
aligned slabs of size k× l ×ms, each of which is small enough to fit
into the graphics memory (see Figure 7). In front-to-back order these
slabs are processed as described.

Fig. 7. If the perspective grid does not fit into GPU memory, it is parti-
tioned into view-aligned slabs (illustrated by different colors) which are
resampled and rendered in front-to-back order.

In order to reduce the overall workload on the GPU, for every slab
only the particles contributing to this slab are resampled into the re-
spective sub-grid. This is accomplished during the traversal of the

spatial hierarchy by computing for every visible node the slabs it over-
laps and rendering for every slab only the overlapping nodes. In the
computation we consider an overlap between slabs as well as at the
slab boundaries to allow for a consistent gradient computation.

5.2 Occlusion culling

To minimize the number of rendered particles on the GPU, we employ
a hierarchical opacity-buffer similar to the hierarchical depth-buffer
proposed in [13]. After each n-th node we store the accumulated
opacity in a separate texture. This texture is converted into a boolean
mipmap to encode ever larger areas that are completely opaque. At
ever coarser mipmap levels a texel is set to 1 (opaque) only if all cov-
ered texels in the previous finer level are 1. By employing bilinear tex-
ture interpolation, 4 child texels can be tested with one texture lookup.
The algorithm takes care of Non-Power-of-Two textures as described
in [15].

The mipmap is used to discard all nodes, and further on all parti-
cles, which are covered completely by opaque structures in front of
them. This is done by constructing a screen space bounding circle for
each node and particle. We choose to sample the first mipmap level in
which the circle radius is below half the texel width. By sampling at
the circle center using bilinear interpolation, all 4 texels that are pos-
sibly covered by the circle can be analyzed at once. If the bounding
circle covers only mipmap texels marked by 1, the object can be safely
discarded. Occlusion culling is applied first to the visible octree nodes,
and it is then tested on a per-particle basis to avoid resampling of oc-
cluded particles. During rendering it is used to avoid ray traversal in
occluded areas.

6 RESULTS AND DISCUSSION

To demonstrate the efficiency and quality of our approach we render
SPH simulation data from fluid dynamics and astrophysics (see Fig-
ure 11). Table 1 gives specific information on these data sets. Particle
positions and quantities are encoded in 32 bit and 16 bit floating point
values, respectively.

Table 1. The data sets used in our experiments.

Data set Time steps # Particles Quantities

Flume 2209 110−83,275 Density

LWMO 604 2,575,500 Density

LWSB 1232 3,232,000 Density

WDMerger 84 2,000,000 Density + Temp.

SNIaEjecta 99 8,745,571 Density + Temp.

Millennium Run 1 42,081,574 Density + Vel. Disp.

The first three data sets simulate fluid dynamics. WDMerger sim-
ulates merging of two white dwarf stars. SNIaEjecta simulates the
impact of a supernova ejecta on a companion star. The Millenium data
set contains one time step of a simulation of the evolution of the uni-
verse. The poly6-kernel was used in all fluid dynamics simulations
with constant h for each dataset:

Wpoly6(r,h) =
315

64πh9

{

(h2 − r2)3, 0 ≤ r ≤ h
0, otherwise

In the astrophysical simulations the cubic spline-kernel was used
for particles with varying smoothing length:

W (r,h) =
8

πh3

1−6
(

r
h

)2
+6

(

r
h

)2
, 0 ≤ r

h
≤ 1

2

2
(

1− r
h

)3
, 1

2 ≤ r
h
≤ 1

0, r
h > 1

Table 2 shows the times required for resampling and rendering the
data sets. Timings were performed on a 2.4 GHz Core 2 Duo processor
and an NVIDIA GTX 280 graphics card with 1024 MB local video
memory. The viewing parameters were selected so that the entire set
of particles is within the view volume. Successive time steps of time-
varying particle sets are streamed consecutively to the GPU. Upload
times are not included in the given timings. For the Millennium Run

with a total number of 10 billion particles, the given timings and the
number of rendered particles in Tables 1 and 2 are averages over a
continuous flight through the data.

As can be seen, resampling induces a high workload on the GPU
and thus vastly dominates the overall performance. Especially for ren-
dering the astrophysics data, which is represented by many particles
with very large smoothing kernels, resampling causes a significant
performance bottleneck. 3D texture-based volume ray-casting, on the
other hand, only contributes marginally—below 10%—to the overall
time.

Table 2. Performance statistics for resampling and rendering in millisec-
onds. The viewport resolution is 5122, with a corresponding resolution
of the perspective grid. Timings for a 10242 viewport and corresponding
grid resolution are given in brackets.

Data set Grid Resolution Resampling Rendering Total

Flume 5122×364 6 (38) 43 (76) 49 (114)

LWMO 5122×544 87 (549) 65 (127) 152 (676)

LWSB 5122×664 135 (804) 79 (178) 214 (982)

Merger 5122×292 642 (1492) 40 (81) 682 (1573)

Ejecta 5122×396 1560 (4574) 49 (100) 1609 (4674)

Millen. 5122×480 2267 (7771) 83 (162) 2350 (7933)

The quality of our multi-resolution hierarchy is illustrated in Fig-
ure 8. It shows the LWSB and the Ejecta data set resampled to grids
of different resolutions with a corresponding node selection from the
LOD hierarchy. The particle hierarchy preserves the basic structures in
the data, at the same time providing an effective anti-aliasing structure.
Compared to the first image the number of rendered particles decreases
from 3.2M over 2.1M and 0.7M down to 0.3M particles for the LWSB
data set, and from 8.7M over 4.6M and 3.3M down to 1.4M parti-
cles for the Ejecta data set. On a 10242 viewport the total rendering
time decreases by a factor of 4.2/10/27 and 2.9/8.2/19, respectively.
This also demonstrates that interpolation between grid samples can be
used to decouple the resolutions for resampling and raycasting, which
allows to find a good trade-off between image quality and rendering
speed. Apart from the achieved performance gain, a LOD representa-
tion is mandatory for the rendering of very large data sets. For exam-
ple, the image of the Millennium Run in Figure 11 would require 607
million particles instead of 48 million particles to be rendered without
such a hierarchy.

The performance gain due to occlusion culling depends on the depth
complexity and the opacity of the rendered data. The effect becomes
apparent if many particles are completely occluded. For example, in
the scene shown in Figure 6 occlusion culling leads to performance
gain of about 68%. In Figure 8 (upper row) an increase of only 5%
could be observed due to low depth complexity. In Figure 10 (first
row, second image) the gain was only 17% due of high transparency.
In extreme close-ups where most particles are occluded, however, we
measured an overall performance gain of up to factor 8.

Finally, we have carried out a performance comparison between
our approach and order-dependent splatting. Particle sorting was per-
formed on the GPU using an optimized sort routine, which required
less than 5% of the overall rendering time. Rendering the Merger data
set (Figure 2(left)) was performed at 7.85 fps. Using our techniques,
the frame rate dropped to 1.7 fps (Figure 2(right)).

In a second experiment we compared our approach to screen-space
methods for the visualization of iso-surfaces in SPH data. Such meth-
ods first render particles as spheres in an arbitrary order to obtain the
visible surface parts and then generate a smooth surface from the re-
sulting depth buffer imprint. Figure 9(left) shows the resulting image
after the first pass for the LWMO data set. This image was generated
at 12.5 fps. Figure 9(right) demonstrates an iso-surface reconstructed
by our approach. This image was rendered at 5.75 fps, and, thus, only
requires about twice the time of screen-space methods. Given that our
method provides high-quality iso-surface and volume rendering, this
seems to be a reasonable compromise.

10242 ×1324 5122 ×664 2562 ×364 1282 ×184

10242 ×788 5122 ×396 2562 ×200 1282 ×116

Fig. 8. Resampling to perspective grids of different resolutions with corresponding level of detail. Iso-Surface rendering of the LWSB data set (top
row) and volume rendering of the ejecta data set (bottom row) at different grid resolutions.

Fig. 9. Sphere rendering of the particle’s support radius versus perspec-
tive grid-based iso-surface extraction. Screen-space techniques smooth
the surface given by the depth buffer imprint of the left image, while our
approach on the right directly reconstructs any given iso-surface.

7 CONCLUSION AND FUTURE WORK

By eliminating the need for a uniform discretization of the fluid do-
main, we have overcome an essential limitation in the rendering of
SPH data. We have introduced the perspective grid as an adaptive
high-resolution discretization of the view volume, and we have shown
how to efficiently resample particle quantities to this grid by using
multi-resolution hierarchies for particle sets and by exploiting the
GPU. Since the perspective grid places sample points along the view
rays, resampled quantities can be rendered directly using 3D texture
mapping. This enables integrating volumetric effects into SPH render-
ing, like volumetric emission and absorption, and using direct volume
rendering and iso-surface rendering in combination.

To the best of our knowledge, for the first time we have shown
that order-dependent resampling of high resolution SPH data can be
performed at almost interactive rates. Compared to screen-space ap-
proaches for the rendering of iso-surfaces in SPH data, our technique
is only slightly slower but achieves higher quality.

The proposed view-dependent discretization also has its limitation.
Since resampling the fluid domain is restricted to the view volume,
only parts of the fluid within this volume can be considered in the sim-
ulation of secondary effects like reflections or refractions. Especially
in animations this can result in shimmering due to frame-to-frame in-
coherence.

In the future we will pursue research on filtering techniques for data
given on a perspective grid. Since even with some improvements the
surfaces in SPH data tend to look bumpy and can not adequately re-
solve flat structures, curvature-based smoothing as proposed in [33]
will be considered on the grid.

ACKNOWLEDGMENTS

The authors wish to thank Rüdiger Pakmor, Fritz Röpke, Volker
Springel, and Gerard Lemson from the Max-Planck-Institute for As-
trophysics for providing the gas dynamics data sets. We also thank
Matthias Teschner for providing the fluid dynamic data sets and
Markus Rampp (RZG) for his support. This work was funded in part
by the Munich Centre of Advanced Computing at the Technische Uni-
versität München.

REFERENCES

[1] B. Adams, T. Lenaerts, and P. Dutre. Particle splatting: Interactive

rendering of particle-based simulation data. Technical report cw 453,

Katholieke Universiteit Leuven, 2006.

[2] B. Adams, M. Pauly, R. Keiser, and L. J. Guibas. Adaptively sampled

particle fluids. ACM Trans. Graph., 26(3):48, 2007.

[3] G. Altay, R. A. C. Croft, and I. Pelupessy. SPHRAY: a smoothed particle

hydrodynamics ray tracer for radiative transfer. Monthly Notices of the

Royal Astronomical Society, 386:1931–1946, 2008.

[4] B. Arnaldi, T. Priol, and K. Bouatouch. A new space subdivision method

for ray tracing CSG modelled scenes. The Visual Computer, 3(2):98–108,

1987.

[5] J. Biddiscombe, B. Geveci, K. Martin, K. Moreland, and D. Thomp-

son. Time dependent processing in a parallel pipeline architecture. IEEE

Transactions on Visualization and Computer Graphics, 13(6):1376–

1383, 2007.

[6] J. Biddiscombe, D. Graham, and P. Maruzewski. Visualization and anal-

ysis of SPH data. ERCOFTAC Bulletin, 76:9–12, 2008.

[7] D. Cha, S. Son, and I. Ihm. GPU-assisted high quality particle rendering.

Computer Graphics Forum, 28(4):1247 – 1255, 2009.

[8] M. Desbrun and M.-P. Cani. Space-time adaptive simulation of highly

deformable substances. Technical Report 3829, INRIA, BP 105 - 78153

Le Chesnay Cedex - France, December 1999.

[9] R. A. Drebin, L. Carpenter, and P. Hanrahan. Volume rendering. In SIG-

GRAPH ’88: Proceedings of the 15th annual Conference on Computer

Graphics and Interactive Techniques, pages 65–74, 1988.

[10] C. Dyken, G. Ziegler, C. Theobalt, and H.-P. Seidel. High-speed march-

ing cubes using histopyramids. Computer Graphics Forum, 27(8):2028–

2039, 2008.

Fig. 10. Different transfer functions and camera settings reveal various details of the Ejecta (top row) and the Millennium data set (bottom row).

[11] D. Ellsworth, B. Green, and P. Moran. Interactive terascale particle visu-

alization. In VIS ’04: Proceedings of the Conference on Visualization ’04,

pages 353–360, Washington, DC, USA, 2004. IEEE Computer Society.

[12] R. Fraedrich, J. Schneider, and R. Westermann. Exploring the Mille-

nium Run - scalable rendering of large-scale cosmological datasets. IEEE

Transactions on Visualization and Computer Graphics, 15(6):1251–

1258, 2009.

[13] N. Greene, M. Kass, and G. Miller. Hierarchical z-buffer visibility. In

Proceedings of the 20th annual Conference on Computer Graphics and

Interactive Techniques, pages 231–238, 1993.

[14] C. P. Gribble, T. Ize, A. Kensler, I. Wald, and S. G. Parker. A coherent grid

traversal approach to visualizing particle-based simulation data. IEEE

Transactions on Visualization and Computer Graphics, 13(4):758–768,

2007.

[15] S. Guthe and P. Heckbert. Non-power-of-two mipmap creation. Technical

Report TR-01838-001, NVIDIA Corporation, 2003.

[16] C. H. and S. O. Interactive screen-space surface rendering of dynamic

particle clouds. Journal of Graphics, GPU, and Game Tools, 14(3):1–19,

2009.

[17] W. Hong, D. H. House, and J. Keyser. Adaptive particles for incompress-

ible fluid simulation. Vis. Comput., 24(7):535–543, 2008.

[18] M. Hopf and T. Ertl. Hierarchical splatting of scattered data. In VIS

’03: Proceedings of the 14th IEEE Visualization 2003 (VIS’03), pages

443–440, 2003.

[19] M. Hopf, M. Luttenberger, and T. Ertl. Hierarchical splatting of scattered

4D data. IEEE Computer Graphics and Applications, 24(4):64–72, 2004.

[20] Y. Kanamori, Z. Szego, and T. Nishita. GPU-based fast ray casting for a

large number of metaballs. Computer Graphics Forum, 27(2):351–360,

2008.

[21] J. Krüger and R. Westermann. Acceleration techniques for GPU-based

volume rendering. In VIS ’03: Proceedings of the 14th IEEE Visualiza-

tion 2003 (VIS’03), pages 38–43, 2003.

[22] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D

surface construction algorithm. SIGGRAPH Comput. Graph., 21(4):163–

169, 1987.

[23] J. J. Monaghan. Smoothed particle hydrodynamics. Rep. Prog. Phys.,

68:1703–1758, 2005.

[24] M. Müller, D. Charypar, and M. Gross. Particle-based fluid simulation for

interactive applications. In SCA ’03: Proceedings of the 2003 ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation, pages 154–

159, 2003.

[25] M. Müller, S. Schirm, and S. Duthaler. Screen space meshes. In SCA ’07:

Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on

Computer Animation, pages 9–15, 2007.

[26] P. A. Navrátil, J. L. Johnson, and V. Bromm. Visualization of cosmolog-

ical particle-based datasets. In IEEE Transactions on Visualization and

Computer Graphics (Proc. IEEE Visualization 2007), Nov/Dec 2007.

[27] D. J. Price. Splash: An interactive visualisation tool for smoothed particle

hydrodynamics simulations. Publications of the Astronomical Society of

Australia, 24:159–173, 2007.

[28] M. Reinecke, D. Dolag, C. Gheller, and Z. Jin. Splotch. http://www.mpa-

garching.mpg.de/ kdolag/Splotch, 2009. Raycasting SPH data.

[29] I. D. Rosenberg and K. Birdwell. Real-time particle isosurface extrac-

tion. In I3D ’08: Proceedings of the 2008 Symposium on Interactive 3D

Graphics and Games, pages 35–43, 2008.

[30] P. Rosenthal and L. Linsen. Smooth surface extraction from unstructured

point-based volume data using PDEs. IEEE Transactions on Visualization

and Computer Graphics, 14(6):1531–1546, 2008.

[31] P. Rosenthal, S. Rosswog, and L. Linsen. Direct surface extraction from

smoothed particle hydrodynamics simulation data. In Proceedings of the

4th High-End Visualization Workshop, 2007.

[32] M. Stamminger and G. Drettakis. Perspective shadow maps. In SIG-

GRAPH ’02: Proceedings of the 29th annual Conference on Computer

Graphics and Interactive Techniques, pages 557–562, 2002.

[33] W. J. van der Laan, S. Green, and M. Sainz. Screen space fluid rendering

with curvature flow. In I3D ’09: Proceedings of the 2009 Symposium on

Interactive 3D Graphics and Games, pages 91–98, 2009.

[34] R. Walker, P. Kenny, and J. Miao. Visualization of smoothed particle

hydrodynamics for astrophysics. In L. Lever and M. McDerby, editors,

Theory and Practice of Computer Graphics 2005, pages 133–138, Uni-

versity of Kent, UK, June 2005. Eurographics Association.

[35] M. Wimmer, D. Scherzer, and W. Purgathofer. Light space perspective

shadow maps. In Rendering Techniques 2004 (Proceedings Eurographics

Symposium on Rendering), pages 143–151, 2004.

[36] R. Yasuda, T. Harada, and Y. Kawaguchi. Fast rendering of particle-based

fluid by utilizing simulation data. In P. Alliez and M. Magnor, editors,

Proceedings of Eurographics 2009 - Short Papers, pages 61–64, Munich,

Germany, 2009. Eurographics Association.

[37] Y. Zhang, B. Solenthaler, and R. Pajarola. Adaptive sampling and render-

ing of fluids on the GPU. In Symposium on Point-Based Graphics, pages

137–146, 2008.

[38] Y. Zhu and R. Bridson. Animating sand as a fluid. In SIGGRAPH ’05:

ACM SIGGRAPH 2005 Papers, pages 965–972, 2005.

Fig. 11. The data sets we have used in our experiments (see Table 1 for more information). SPH fluid simulations (1st column, from top to bottom):
Large Wave Moving Obstacles (LWMO), Large Wave Static Boundaries (LWSB), and Flume. Gas dynamics simulations (2nd column, from top to
bottom): Millennium Run, SNIaEjecta, and WDMerger.

