
GPU-AWARE HYBRID TERRAIN RENDERING

Christian Dick1, Jens Krüger2, Rüdiger Westermann1
1Computer Graphics and Visualization Group, Technische Universität München, Germany

2Interactive Visualization and Data Analysis Group, DFKI Saarbrücken, Germany

Figure 1. A 56km x 85km digital terrain field is rendered on a 1920 x 1080 view port using rasterization (green boxes)
and ray-casting (red boxes) simultaneously in every frame. The spatial resolution of the terrain and the texture is 1m and

12.5cm, respectively. Our hybrid rendering pipeline achieves speed-ups between a factor of 2 and 4 compared to pure
rasterization or ray-casting.

ABSTRACT

We present a hybrid GPU rendering pipeline for high-resolution textured terrain fields that reduces polygon throughput
limitations on the GPU. This pipeline uses rasterization and ray-casting in every frame simultaneously to determine eye
ray intersections. It allows shifting workloads flexibly between the triangle setup stage and the parallel execution units,
depending on the GPU capacities. We employ a hierarchical tiling of the domain and generate for each tile an error-
controlled adaptive tessellation of the terrain. In each rendering frame, for each tile the number of triangles representing
this tile as well as the number of pixels covered by the tile are determined, and this information is used to select the
fastest rendering method on the executing GPU. Compared to pure rasterization or ray-casting, performance gains of a
factor between 2 and 4 are demonstrated for high-resolution fields.

KEYWORDS

Terrain rendering, graphics hardware, hybrid rendering, ray-casting, rasterization.

1. INTRODUCTION AND CONTRIBUTION

Especially in terrain rendering one is confronted with models at a resolution that vastly exceeds the
maximum interactive triangle setup rate on current rasterization hardware. In recent work it has been shown
that available terrain fields can require more than 30 millions of triangles to be rendered per frame to achieve
a screen-space error below one pixel on high-resolution display systems [Dick 2009a]. Considering the
evolution of GPU performance over the last years, fill rate and operational throughput have been
substantially increasing, but the growth of polygon throughput has been rather moderate due to the serial
implementation of triangle setup in the rasterization stage. For high-resolution terrains, many triangles have
to be rendered that are only one pixel in size or less. Triangle setup thus cannot be amortized over many
fragments, leading to a severe performance bottleneck.

For such models it was demonstrated that GPU-based ray-casting can speed up the rendering process
significantly. The regular grid structure underlying terrain fields enables implementing efficient ray traversal
and intersection algorithms, and since ray-casting is realized in the fragment shader, it can effectively exploit
the massive parallelism available on recent GPUs. For lower resolution terrains, however, triangle setup is
amortized over many fragments, such that rasterization—which immediately yields eye ray/triangle
intersections—is faster.

Since typical terrain fields consist of regions exhibiting high-resolution geometric details and others
showing rather coarse geometric structures, in this work we introduce a hybrid GPU pipeline for terrain
rendering that selects the most efficient rendering method for each region. The pipeline uses rasterization and
ray-casting simultaneously in every frame to generate eye ray intersections. This is in contrast to previous
hybrid rendering approaches, where ray-tracing is solely employed for the simulation of secondary effects
like shadows and reflections [Szirmay-Kalos 2005, Bürger 2007, Owens 2007].

We have integrated the hybrid GPU rendering pipeline into a tile-based visually continuous terrain
rendering system [Dick 2009b], which hierarchically partitions the terrain field and renders each tile
separately at the required resolution. The decision what rendering algorithm to use is made on a per-tile basis,
by trading the triangle setup rate against the expected performance of the ray-caster. The respectively fastest
method is determined by using an oracle which estimates the rendering time of the tile for each method.
Since both rendering methods use the same input data and write to the same output buffers, they can work on
the same data structures in an interleaved way.

We show that the hybrid GPU rendering pipeline always performs at least as good as the fastest known
ray-casting or rasterization methods. Furthermore, we demonstrate that our approach outperforms these
methods for high-resolution terrains by up to a factor of 4. Our experiments are performed on recent GPUs,
such as the NVIDIA GT200 and GF100 (“Fermi”) architectures, and the ATI RV870 architecture. Notably
we show that the hybrid rendering pipeline scales effectively in both the triangle setup rate and the number of
processing cores.

2. RELATED WORK

Terrain rendering approaches using rasterization have been studied extensively over the last years. They
employ the GPU to render large sets of polygonal primitives, and they differ mainly in the hierarchical height
field representation used. There is a vast body of literature related to this field and a comprehensive review is
beyond the scope of this paper. However, Pajarola and Gobbetti [2007] discuss the basic principles
underlying such techniques and provide many useful algorithmic and implementation specific details.

GPU-based ray-casting of height fields given on uniform grids has been reported by Qu et al. [2003],
Oliveira and Policarpo [2005], and Policarpo and Oliveira [2006]. Recently, Oh et al. [2006], Tevs et al.
[2008], and Dick et al. [2009a] performed ray-casting in the regular grid underlying terrain fields using a
maximum quadtree on the GPU to speed up the traversal. Ammann et al. [2010] proposed the first hybrid
height field rendering scheme which uses ray-casting and rasterization simultaneously to enable height field
editing.

3. THE HYBRID GPU RENDERING PIPELINE

The hybrid rendering pipeline is built upon the tile-based terrain rendering approach proposed by Dick et al.
[2009b]. This approach employs a tile-based multiresolution representation of the terrain model to achieve
visually continuous LOD rendering. Each tile consists of a restricted quadtree triangle mesh and an
accompanying photo texture.

In each frame, the tiles inside the view frustum that match a given screen-space error are determined. In
the hybrid approach, for each tile it is decided which rendering method—rasterization or ray-casting—to use.
The tiles are then rendered in front-to-back order.

For rasterization, the tile’s mesh is stored on the GPU as triangle list, with each triangle being encoded
into 3 x 32 bits. Ray-casting a tile is performed as described by Dick et al. [2009a]. The method operates on a
height field representation of the terrain, which is built by rasterizing the tile’s mesh into a one component
16-bit floating point texture. To efficiently find the ray/height field intersection points, a maximum mipmap
acceleration structure is used. Note that the triangle list representation and the height field representation are
created directly on the GPU from the same compressed geometry representation proposed by Dick et al.
[2009b] once a tile gets visible.

3.1 The Render Method Oracle

The hybrid renderer needs to decide whether to use rasterization or ray-casting, depending on which method
can render a tile fastest at the current view. Therefore, for each rendering method an estimator function that
predicts the rendering time for a particular tile in milliseconds (ms) is used. These estimator functions are
parameterized by tile and view dependent properties, and are adjusted to the used GPU by hardware-specific
constants. These constants can either be determined directly based on throughput specifications of the
architecture and knowledge of the underlying rendering method, or they can be learned in a training phase.

In the training phase, the hybrid renderer picks a set of representative terrain tiles and views of the scene,
and it renders these tiles using both rasterization and ray-casting. The measured rendering times are then used
to determine the GPU-specific constants of the estimator functions.

The estimator functions are designed to be evaluated entirely on the CPU, i.e., they do not use any GPU
counters (like the number of fragments passing the depth test) to avoid reading back values from the GPU
and, thus, decreasing the performance due to CPU-GPU synchronization issues.

To predict the time required to render a tile using rasterization we use the following estimator function:

() () () 1 2 3,Rasterizet T F T F c T c F c≈ + ≈ ⋅ + ⋅ +O O .

Here, T denotes the tile’s number of triangles and F the number of generated fragments. c1, c2 and c3 are
GPU-specific constants (in ms). Since c2 depends on the complexity of the fragment program—which is
negligible in terrain rendering—we set this parameter to zero, reducing the estimator function to

() 1 3≈ ⋅ +Rasterizet T c T c .
The performance of terrain ray-casting is estimated by

() () 4 5,RayCastt P S P S c P S c≈ ⋅ ≈ ⋅ ⋅ +O .

P denotes the number of rays that are spawned to ray-cast the tile. S is the tile’s average number of
traversal steps of the maximum mipmap pyramid per ray. Again, c4 and c5 are GPU-specific constants. To
estimate P the back faces of the tile’s bounding box are clipped at the view frustum and the screen-space
coverage of the resulting polygons under the current projection is computed. To consider occlusions between
tiles which reduce the number of rays to be spawned, we multiply P by a visibility factor which is obtained
from a horizon occlusion algorithm [Downs 2001]. This algorithm uses a binary tree to maintain a
conservative approximation of the horizon based on the tiles’ bounding boxes during front-to-back rendering.
The visibility factor of a tile is the fraction of the tile’s bounding box lying above the current horizon.

Due to the maximum mipmap acceleration structure used for ray traversal, the number of traversal steps
of a ray is virtually independent of the distance between the ray’s entry point into the tile’s bounding box and
the ray’s intersection point with the terrain surface. Based on a number of experiments we have made on real
data sets, we set S to be constant for all tiles, reducing the estimator function to () 4 5RayCastt P c P c′≈ ⋅ + . This
approximation is confirmed by Figure 2 (left), which shows the number of ray-casting steps per pixel for the
view shown in Figure 2 (right). As can be seen, the average intensity per tile is roughly constant.

Figure 2. Ray-casting step counts until ray/surface intersection (left) and the corresponding view (right). The step counts
are color-coded from black (0 steps) to white (50 steps).

The constants used in the rendering time estimator functions are determined experimentally at the startup
of the application by measuring the tiles’ rasterization and ray-casting times for a number of randomly
selected view positions and directions. The measurements for an ATI Radeon HD 5870 graphics card are
presented in Figure 3, which shows the rasterization time vs. the number of triangles (left), and the ray-
casting time vs. the (estimated) number of covered pixels (right). To obtain the constants, a line is fitted
through the measurements, and the constants are derived from the line parameters. Figure 4 shows the
resulting rendering time estimator functions for three different graphics cards.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 50000 100000 150000 200000 250000 300000 350000 400000
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

R
as

te
ri

za
tio

n
T

im
e

(m
s)

Number of Triangles

Tile Rasterization Time - ATI Radeon HD 5870

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 20000 40000 60000 80000 100000
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

R
ay

-C
as

tin
g

T
im

e
(m

s)

Number of Covered Pixels

Tile Ray-Casting Time - ATI Radeon HD 5870

Figure 3. Left: Measurement of the rasterization time vs. the number of triangles for 75000 tiles. Right: Measurement of
the ray-casting time vs. the (estimated) number of covered pixels for 75000 tiles.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50000 100000 150000 200000 250000 300000 350000 400000
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

R
as

te
ri

za
tio

n
T

im
e

(m
s)

Number of Triangles

Rasterization Time Estimator Functions
NVIDIA GeForce GTX 280

ATI Radeon HD 5870
NVIDIA GeForce GTX 480

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 20000 40000 60000 80000 100000
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

R
ay

-C
as

tin
g

T
im

e
(m

s)

Number of Covered Pixels

Ray-Casting Time Estimator Functions
NVIDIA GeForce GTX 280

ATI Radeon HD 5870
NVIDIA GeForce GTX 480

Figure 4. Rendering time estimator functions for three different graphics cards.

Since the rendering method used to render a specific tile can vary during movement over the terrain, both
the triangle list representation as well as the height field representation of the tile’s terrain surface may
alternately be required. One approach to cope with this issue is to always keep both the tile’s triangle list and
the corresponding height field in GPU memory. While this reduces CPU-GPU traffic, it drastically increases
GPU memory consumption. In our implementation, we therefore pursue a different strategy, in that we keep
only the currently used representation in GPU memory and re-create the respectively other representation
whenever the render method is switched. In this way, CPU-GPU bus transfer is slightly increased (see Figure
5), but GPU memory consumption is considerably reduced.

 0
 4
 8

 12
 16
 20
 24
 28
 32

 0 100 200 300 400 500 600
 0
 4
 8
 12
 16
 20
 24
 28
 32

C
P

U
-G

P
U

 B
us

 T
ra

ns
fe

r
R

at
e

Time (s)

Vorarlberg 1920x1080 - ATI Radeon HD 5870
Tex+Geo Transfer Rate (MB/s)

Geo Transfer Rate (MB/s)
Geo Re-Transfer Rate (MB/s)

Figure 5. CPU-GPU bus transfer over the course of a flight over the Vorarlberg data set. Switching between rendering
methods requires to re-upload a tile’s (compressed) geometry data, which causes additional bus traffic (red). Considering

the total bus traffic (blue), this overhead is negligible.

4. RESULTS AND DISCUSSION

In this section, we give a detailed analysis of the performance of the proposed hybrid rendering pipeline in
comparison to pure rasterization or ray-casting. All benchmarks were run on a standard desktop PC, equipped
with an Intel Xeon E5506 2.13GHz processor and 8GB of RAM. For our tests we used three different
graphics cards, an NVIDIA GeForce GTX 280, an ATI Radeon HD 5870, and a recent NVIDIA GeForce
GTX 480 graphics card. For all tests, the far plane was set to 600km, and the screen-space error tolerance
was set to 0.7 pixels.

4.1 Data Sets

Figure 6. Screenshots of the Utah (left) and the Vorarlberg (right) data set. The tile bounding boxes indicate the render
method used (green: rasterization, red: ray-casting).

For our tests, we used two different data sets. The first data set is a digital elevation model of the State of
Utah at a resolution of 5m, accompanied by an orthographic photo texture of 1m resolution (see Figure 6
(left)). With a spatial extent of 460km x 600km, this data set has a size of 790GB. Contrary to the second
data set, its height field does not contain vegetation and buildings, which have been removed by the provider
during data processing.

The second data set is a digital model of Vorarlberg, Austria, consisting of a digital surface model at a
resolution of 1m and an orthographic photo texture at a resolution of 12.5cm for a region of 56km x 85km,
resulting in a total of 860GB of data (see Figure 1, Figure 2 (right) and Figure 6 (right)). Compared to the
Utah data set, the height field of this data set is extremely detailed and clearly exhibits vegetation and
buildings.

4.2 Performance Analysis and Discussion

In the following, we first demonstrate the performance of the hybrid rendering pipeline before we present a
detailed analysis.

 0

 64

 128

 192

 256

 320

 384

 448

 0 100 200 300 400 500 600
 0

 64

 128

 192

 256

 320

 384

 448

G
eo

m
et

ry
 G

PU
 M

em
or

y

Time (s)

Rasterizer (MB) Ray-Caster (MB) Hybrid (MB)

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

Fr
am

e
R

at
e

Vorarlberg 1920x1080 - NVIDIA GTX 280
Rasterizer (fps) Ray-Caster (fps) Hybrid (fps)

 0

 64

 128

 192

 256

 320

 384

 448

 0 100 200 300 400 500 600
 0

 64

 128

 192

 256

 320

 384

 448

G
eo

m
et

ry
 G

PU
 M

em
or

y

Time (s)

Rasterizer (MB) Ray-Caster (MB) Hybrid (MB)

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

Fr
am

e
R

at
e

Vorarlberg 1920x1080 - ATI Radeon HD 5870

Rasterizer (fps) Ray-Caster (fps) Hybrid (fps)

 0

 64

 128

 192

 256

 320

 384

 448

 0 100 200 300 400 500 600
 0

 64

 128

 192

 256

 320

 384

 448

G
eo

m
et

ry
 G

PU
 M

em
or

y

Time (s)

Rasterizer (MB) Ray-Caster (MB) Hybrid (MB)

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150
 160

 10
 20
 30
 40
 50
 60
 70
 80
 90
 100
 110
 120
 130
 140
 150
 160

Fr
am

e
R

at
e

Vorarlberg 1920x1080 - NVIDIA GTX 480
Rasterizer (fps) Ray-Caster (fps) Hybrid (fps)

 0

 64

 128

 192

 256

 320

 0 50 100 150 200 250 300 350
 0

 64

 128

 192

 256

 320

G
eo

m
et

ry
 G

PU
 M

em
or

y

Time (s)

Rasterizer (MB) Ray-Caster (MB) Hybrid (MB)

 25
 50
 75

 100
 125
 150
 175
 200
 225
 250
 275
 300
 325
 350

 25
 50
 75
 100
 125
 150
 175
 200
 225
 250
 275
 300
 325
 350

Fr
am

e
R

at
e

Utah 1920x1080 - NVIDIA GTX 480

Rasterizer (fps) Ray-Caster (fps) Hybrid (fps)

Figure 7. Comparison of the speed (in frames per second) and GPU memory requirements for geometry (in megabytes) of
the hybrid pipeline (red) in comparison to the ray-caster (green) and the rasterizer (blue) over the course of a flight over

the Vorarlberg and the Utah data sets using different graphics cards. The view port size was 1920 x 1080 pixels.

As can be seen from Figure 7, which compares the performance of hybrid terrain rendering to the
performance of pure rasterization or ray-casting for different data sets and graphics cards, the hybrid
approach is never slower than either alternative and usually outperforms both alternatives significantly.
While in some situations the speed-up is only marginal, i.e., for low resolution terrain like the Utah data set
which is almost solely rendered via rasterization (see Figure 7 (bottom, right)), our method works extremely
well for typical terrain fields exhibiting both low and high resolution regions like the Vorarlberg data set. In
these situations the hybrid renderer can speed up the performance about a factor of up to 4. As Figure 7
shows, our approach delivers the highest speed-ups on current generation NVIDIA GTX 280 and next
generation ATI Radeon HD 5870 graphics cards. NVIDIA’s new GTX 480 card performs ray-casting
significantly better than rasterization of large amounts of geometry; hence our hybrid pipeline cannot gain as
much on this card since it chooses ray-casting for most of the tiles.

Figure 7 also shows the GPU memory requirements for geometry (triangle lists and/or height fields) of
the three rendering approaches. The hybrid renderer almost always requires the least amount of memory of
all alternatives. While this looks surprising at first, as we never optimized the hybrid pipeline for memory
efficiency, from the way the decider is designed it becomes clear that the memory requirement is minimized
automatically. Since those tiles that are represented by many triangles are ray-cast, these tiles are stored in
GPU memory as regular 2D scalar fields and the corresponding triangle data is deleted. Thus, at run-time the
most space-efficient representation is automatically selected.

With respect to scalability, Figure 8 shows that with increasing display resolution the hybrid pipeline
scales significantly better than pure rasterization or ray-casting. Note that even though the highest display
resolution is most likely beyond most of today’s typical display resolutions, it plays an important role for
supersampling implementations to avoid aliasing on lower resolution screens.

In general it can be said that the performance gain to any method is maximized if the terrain resolution
compared to the screen resolution is inhomogeneous, i.e., if some tiles are rather flat—thus containing
relatively few triangles—while other tiles exhibit geometric details in the size of a pixel or below.

 0

 64

 128

 192

 256

 320

 384

 0 100 200 300 400 500 600
 0

 64

 128

 192

 256

 320

 384

G
eo

m
et

ry
 G

PU
 M

em
or

y

Time (s)

Rasterizer (MB) Ray-Caster (MB) Hybrid (MB)

 20
 40
 60
 80

 100
 120
 140
 160

 20
 40
 60
 80
 100
 120
 140
 160

Fr
am

e
R

at
e

Vorarlberg 1280x1024 - ATI Radeon HD 5870

Rasterizer (fps) Ray-Caster (fps) Hybrid (fps)

 0

 64

 128

 192

 256

 320

 384

 448

 0 100 200 300 400 500 600
 0

 64

 128

 192

 256

 320

 384

 448

G
eo

m
et

ry
 G

PU
 M

em
or

y

Time (s)

Rasterizer (MB) Ray-Caster (MB) Hybrid (MB)

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

Fr
am

e
R

at
e

Vorarlberg 1920x1080 - ATI Radeon HD 5870

Rasterizer (fps) Ray-Caster (fps) Hybrid (fps)

 0
 64

 128
 192
 256
 320
 384
 448
 512
 576
 640

 0 100 200 300 400 500 600
 0
 64
 128
 192
 256
 320
 384
 448
 512
 576
 640

G
eo

m
et

ry
 G

PU
 M

em
or

y

Time (s)

Rasterizer (MB) Ray-Caster (MB) Hybrid (MB)

 10
 20
 30
 40
 50
 60
 70
 80

 10
 20
 30
 40
 50
 60
 70
 80

Fr
am

e
R

at
e

Vorarlberg 2560x1600 - ATI Radeon HD 5870

Rasterizer (fps) Ray-Caster (fps) Hybrid (fps)

Figure 8. Rendering performance and memory consumption of the hybrid pipeline (red) in comparison to the ray-caster
(green) and the rasterizer (blue) over the course of a flight over the Vorarlberg data set at different screen resolutions. As
can be seen the hybrid pipeline not only always performs best, but its advantage grows with higher resolutions. Note that

the graphs are scaled differently.

To verify prediction accuracy of the render method oracle, we experimentally determined the fastest
rendering method for 1 million tiles using randomly selected views, and compared the results to the oracle’s
predictions. For more than 93% of the tiles the oracle correctly predicted the fastest method. Moreover, we
observed that by using a perfect oracle, frame rates are increased by only further 2%-5%, showing that the
few wrong predictions are insignificant to the overall performance of our hybrid rendering method. The
reason is that a wrong prediction typically only occurs when the rasterization and ray-casting times of a tile
are almost equal, which means that for those tiles rendering performance is virtually independent of the
rendering method.

5. CONCLUSION AND FUTURE WORK

In this paper, we have presented a hybrid GPU acceleration pipeline for the interactive rendering of high-
resolution terrain fields. We have demonstrated the effectiveness of our approach by comparing it to previous
terrain rendering approaches that were based solely on rasterization or ray-casting, respectively. Our
comparison showed that for all terrains our hybrid approach not only always performs at least as good as the
previously published systems, but often also outperforms them by up to a factor of 4.

To further improve the scalability of the proposed terrain rendering pipeline we will investigate the
possibility to use differently sized tiles in this approach. In this way we can adapt more flexibly to the
rendering load that is imposed by regions with different height characteristics. In particular, such a tiling has
to be based on a precise analysis of the shape of the terrain, resulting in clusters with almost homogeneous
resolution.

In the future we will also investigate the applicability of our method to the rendering of arbitrary
polygonal models. As our render method oracle does not depend on terrain data, we are convinced that it
should be applicable to any scene that can be subdivided into separate entities; the only change in the pipeline
would be an object-specific ray-casting strategy.

ACKNOWLEDGEMENT

The authors wish to thank the Landesvermessungsamt Feldkirch, Austria and the State of Utah for providing
high-resolution geo data. The work presented in this paper has been co-financed by the Intel Visual
Computing Institute. The content is under sole responsibility of the authors.

REFERENCES

Ammann, L. et al., 2010. Hybrid Rendering of Dynamic Heightfields using Ray-Casting and Mesh Rasterization.
Proceedings of Graphics Interface. Ottawa, Canada, pp. 161-168.

Bürger, K. et al., 2007. GPU Rendering of Secondary Effects. Proceedings of Vision, Modeling, and Visualization
Conference. Saarbrücken, Germany, pp. 51-60.

Dick, C. et al., 2009. GPU Ray-Casting for Scalable Terrain Rendering. Proceedings of Eurographics – Areas Papers.
Munich, Germany, pp. 43-50.

Dick, C. et al., 2009. Efficient Geometry Compression for GPU-based Decoding in Realtime Terrain Rendering.
Computer Graphics Forum, Vol. 28, No. 1, pp. 67-83.

Downs, L. et al., 2001. Occlusion Horizons for Driving through Urban Scenery. Proceedings of ACM Symposium on
Interactive 3D Graphics. Research Triangle Park, NC, USA, pp. 121-124.

Oh, K. et al., 2006. Pyramidal Displacement Mapping: A GPU based Artifacts-Free Ray Tracing through an Image
Pyramid. Proceedings of ACM Symposium on Virtual Reality Software and Technology. Limassol, Cyprus, pp. 75-82.

Oliveira, M. M. and Policarpo, F., 2005. An Efficient Representation for Surface Details. Technical Report RP-351,
Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil.

Owens, J. D. et al., 2007. A Survey of General-Purpose Computation on Graphics Hardware. Computer Graphics Forum,
Vol. 26, No. 1, pp. 80-113.

Pajarola, R. and Gobbetti, E., 2007. Survey on Semi-Regular Multiresolution Models for Interactive Terrain Rendering.
The Visual Computer, Vol. 23, No. 8, pp. 583-605.

Policarpo, F. and Oliveira, M. M., 2006. Relief Mapping of Non-Height-Field Surface Details. Proceedings of ACM
Symposium on Interactive 3D Graphics and Games. Redwood City, CA, USA, pp. 55-62.

Qu, H. et al., 2003. Ray Tracing Height Fields. Proceedings of Computer Graphics International. Tokyo, Japan, pp. 202-
207.

Szirmay-Kalos, L. et al., 2005. Approximate Ray-Tracing on the GPU with Distance Impostors. Computer Graphics
Forum, Vol. 24, No. 3, pp. 685-704.

Tevs, A. et al., 2008. Maximum Mipmaps for Fast, Accurate, and Scalable Dynamic Height Field Rendering.
Proceedings of ACM Symposium on Interactive 3D Graphics and Games. Redwood City, CA, USA, pp. 183-190.

