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Sample-based Surface Coloring
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Abstract—In this paper we present a sample-based approach for surface coloring, which is independent of the original surface

resolution and representation. To achieve this, we introduce the Orthogonal Fragment Buffer (OFB)—an extension of the Layered

Depth Cube—as a high-resolution view-independent surface representation. The OFB is a data structure that stores surface samples

at a nearly uniform distribution over the surface, and it is specifically designed to support efficient random read/write access to these

samples. The data access operations have a complexity that is logarithmic in the depth complexity of the surface. Thus, compared to

data access operations in tree data structures like octrees, data-dependent memory access patterns are greatly reduced. Due to the

particular sampling strategy that is employed to generate an OFB, it also maintains sample coherence and thus exhibits very good

spatial access locality. Therefore, OFB-based surface coloring performs significantly faster than sample-based approaches using tree

structures. In addition, since in an OFB the surface samples are internally stored in uniform 2D grids, OFB-based surface coloring can

efficiently be realized on the GPU to enable interactive coloring of high-resolution surfaces. On the OFB we introduce novel algorithms

for color painting using volumetric and surface-aligned brushes, and we present new approaches for particle-based color advection

along surfaces in real-time. Due to the intermediate surface representation we choose, our method can be used to color polygonal

surfaces as well as any other type of surface that can be sampled.

Index Terms—Sample-based graphics, graphics data structures, surface coloring, surface particles

F

1 INTRODUCTION

In computer graphics, 3D surface coloring is an impor-
tant technique for adding realism to computer-generated
imagery and for generating a specific artistic context.
Especially the possibility to interactively perform paint
art on computer generated models, instead of merely
scanning physical paintings and bringing them onto
such models, has always been very desirable.

The transfer of color to a 3D polygonal surface can
be performed by vertex coloring, i.e. by adding color to
the polygon vertices and shading the polygons during
rendering. Since the resolution of the surface in general
does not reflect the color subtleties to be added, vertex
coloring restricts the color variation to the surface res-
olution. To overcome this limitation the surface has to
be refined up to the maximum resolution of added color
details.

The transfer of color to a surface can also be realized
in the domain of a surface parametrization, by adding
color to the points in the 2D parameter space, i.e.
the texture domain. This method, however, requires a
satisfactory parametrization, i.e. a parametrization that
has low distortion and thus yields a more uniform
resolution of added color details on the 3D surface.
For arbitrary surfaces it becomes very difficult to find
such a parametrization, especially if adjacent 3D surface
primitives should be mapped to adjacent regions in the
texture map.
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A third strategy is to resample the surface into a spatial
grid and to add color to affected grid cells. While a
uniform grid allows for the efficient read/write access to
these cells, it is too memory intensive in general to be of
practical relevance. This problem can be cured by min-
imal perfect spatial hashing, which supports access to
object samples via an injective hash function in expected
time O(1). Unfortunately, computing such a function is
not always possible, and even computing nearly minimal
hash functions involves expensive preprocessing [1].

An adaptive grid, on the other hand, can greatly
reduce the memory requirement, but it provides a less
efficient interface to the data samples. Specifically, if
the grid is encoded into a tree data structure like an
octree, accessing the data that is stored in this struc-
ture generally exhibits the O(log2(N)) complexity (with
N being the grid size corresponding to the maximum
refinement level). This access requires a sequence of
pointer indirections, and each indirection depends on
the result of the previous one. On current computing
architectures this leads to memory dependent execution
stalls and noticeable performance cuts.

2 CONTRIBUTION

The primary focus of this paper is the development
of an efficient method for surface coloring, which is
independent of the surface resolution and does not need
a surface parametrization. To achieve this, we use a
spatial data structure that stores a resampled version
of the surface—the Orthogonal Fragment Buffer (OFB).
The OFB is conceptually similar to the Layered Depth
Cube (LDC) introduced by Lischinski and Rappoport
[2], which itself builds on Layered Depth Images (LDI)
[3]. While a LDI captures all depth layers of an object
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Fig. 1. Resolution-independent sample-based appearance modeling of polygonal surfaces: (a) fine color details are

painted on an adaptive triangle surface, (b) particle-based color advection, (c) normal modulation, (d) decal painting

using a surface-aligned brush. All effects were generated at update rates of 100 fps and higher on recent GPUs.

in the order they are seen from one particular direc-
tion, a LDC captures these layers from three mutually
orthogonal directions, thus representing a surface point
up to three times in the data structure. In our approach,
the sampling is also performed along sets of parallel
rays emanating from mutually orthogonal uniform 2D
grids. Along these rays, however, only surface points
with an angle less or equal to 45 degrees between the
surface normal at this point and the ray direction are
considered. In this way, redundant sampling of the same
point is avoided, and a quasi-uniform sampling with a
maximum distance foreshortening of 1/

√
3 is generated.

Thus, our data structure can be seen as a redundance-
free LDC.

Since the sampling can be performed by coordinate
projections into uniform 2D grids, the OFB can be seen as
a hashing of surface points using the projections as hash
functions. Due to the underlying regular grid structure,
this hashing maintains sample coherence so that the
OFB exhibits very good spatial access locality. However,
since the hashing maps multiple samples onto the same
grid cell, it is not perfect. Specifically, it produces up
to d collisions per sample, with d being the surface’s
depth complexity. Since the samples falling into the
same cell can be sorted with respect to their distance
to the sampling grid, the computational complexity of
finding an entry in the hash table is O(log2(d)). On the
other hand, if the samples falling into the same cell are
not sorted, data-dependent memory access patterns—
and memory latencies thereof—can be avoided entirely.
Therefore, depending on the efficiency of data dependent
memory access operations on the underlying hardware
architecture, either a sorted or an unsorted OFB can be
chosen flexibly.

Due to its properties the OFB is also well suited for the
GPU, especially in scenarios where the massive paral-
lelism available on the GPU can be exploited, i.e., where
many data access operations have to be performed in
parallel. Throughout this paper we will introduce a num-
ber of coloring effects where parallel read/write access
is required, some of which are shown in Figure 1. We
present algorithms for color and normal painting using
spatially extended brushes, and we introduce particle-
based approaches for simulating color advection along

surfaces and surface-aligned paint brushes. This includes
a novel and highly efficient technique to trace massive
amounts of particles on an OFB. Figure 2 demonstrates
the use of this technique to uncover a transparent surface
via color transport along streamlines in a vector field
given on this surface.

Due to the use of an OFB, our surface coloring method
reduces performance limitations and vastly exceeds ex-
isting approaches with respect to speed and resolution.
Even though at first glance the method seems to be
exhaustive in terms of memory consumption, we will
show that an adaptive tree data structure at comparable
resolution requires only slightly less memory. This is in
particular due to additional information that has to be
stored in a tree structure to enable the efficient access to
adjacent surface samples.

We should point out that our method is subject to
typical limitations of resampling-based approaches, such
as the loss of detail caused by an under-sampling of
the surface or the blurring of sharp features like edges
due to the regular sampling pattern. It is also clear
that filtering in the OFB becomes significantly more
expensive than in the 2D texture domain, since adjacent
samples may reside in different sampling grids and at
different positions in the sequence of samples that are
captured in the respective grid cells.

The remainder of this paper is organized as follows:
In Section 3 we discuss previous work that is related to
ours. Next, we introduce the OFB and describe its in-
ternal structure. Section 5 describes the color transfer to
an OFB. In Section 6 we introduce surface particles, which
use the OFB to move on a surface along a given direction
field. Section 7 demonstrates the use of surface particles
to simulate a surface-aligned 2D brush. In Section 8 we
present a highly efficient algorithm for OFB construction
using rasterization hardware. Section 9 presents results,
and Section 10 concludes the paper with a discussion of
limitations of our work and future extensions.

3 RELATED WORK

The computer graphics technique most closely related
to ours is interactive surface painting. Surface painting
techniques have been at the core of computer graphics
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Fig. 2. A transparent surface is more and more revealed by particles moving on the surface and leaving color on it.

research for many years, and today there exists an
extensive amount of literature on this subject which can
be categorized into three different classes: User interface,
brush model, and paint transfer.

Into the first category falls research on the user in-
terfaces used to directly paint on 2D canvas or 3D
shapes, ranging from simple 2D mouse-based devices
to intuitive 3D haptic devices. In the second category,
research is pursued on the computer simulation of re-
alistic paintbrush models and their interaction with the
surface. There is a vast body of literature related to these
two categories and a comprehensive review is beyond
the scope of this paper. However, Baxter et al. [4] and
Adams et al. [5] discuss some of the devices and brush
models used and provide many useful references on
these subjects.

Directly related is the question of how to determine
the surface area affected by an area brush. In the case
of a spherical volume brush this amounts to finding the
surface points inside a sphere centered at a particular
surface point. In the pioneering paper on direct surface
painting by Hanrahan and Haeberli [6] alternative ap-
proaches were discussed, of which the most intuitive is
the 2D tangent-space brush. In this model the brush is
represented by a planar polygon, which is projected onto
the surface in the direction parallel to the surface normal
at the brush center point. All surface points covered by
this projection are affected by the brush color. A similar
strategy has been pursued by Adams et al. [5], where an
average normal across the surface area affected by the
brush was used.

In the third category, methods have been developed to
add the paint carried by the brush to the surface points.
The transfer of color to a polygonal surface can be done
by adding color to polygon vertices and shading the
polygons during rendering [6], [7], or by using a surface
parametrization and adding color to the points in the 2D
parameter space, i.e., the texture domain. Vertex coloring
restricts the color variation to the surface resolution, and
it thus requires the surface to be tessellated high enough
to be able to capture all painted details. For painting
on point-sampled surfaces, Adams et al. [5] proposed
a dynamic resampling scheme that can locally adapt
the surface resolution to the brush resolution. Rischel
et al. [8] employed uniform GPU-based subdivision to
efficiently upsample a polygonal base surface, which,
however, reflects any non-uniformity in the resolution
of the initial surface.

If a surface parametrization is given, the user can paint
directly on the 3D surface and the result of the painting
is mapped onto the corresponding texture map [9]–[11].
This solution requires a low-distortion parametrization
or a texture atlas [12] to yield a more uniform resolution
of the texture map on the 3D surface, or an adaptive
parametrization has to be computed locally to reproduce
painted color details [13], [14].

To avoid the problems posed by vertex coloring and
surface parametrization, octree textures were introduced
by Benson and Davis [15] and DeBry et al. [16], and
they were later realized on the GPU by Lefebvre et al.
[17] and Lefohn et al. [18]. Octree textures make use of
an adaptive yet regular sampling grid to store painted
color details, hence avoiding parametrization issues at
the expense of building and accessing an adaptive spatial
data structure. In particular, the performance of sur-
face coloring based on adaptive spatial data structures
is limited by dependent memory access operations to
determine affected surface samples. In Section 9 we
will give quantitative evidence of these statements by
comparing our approach to octrees on the CPU and the
GPU.

An alternative spatial data structure for surface col-
oring was presented by Lefebvre and Hoppe [1], who
employed perfect spatial hashing for building a unique
mapping from surface points into the hash table into
which the painting is directed. Perfect spatial hashing
effectively minimizes the complexity of the data access
operations, but it requires an exhaustive preprocess to
build the mapping and can not guarantee in general that
data access locality is kept.

4 SURFACE REPRESENTATION

The surface coloring algorithms we present utilize a
sample-based data structure for representing a surface
and its attributes—the OFB—and an interface providing
a set of operations on this structure. In an OFB, a surface
is stored as a set of sampled surface points. Sampling is
performed along three mutually orthogonal sampling di-
rections, by projecting the surface orthographically along
these directions into correspondingly aligned sampling
planes. Every plane is discretized by a sampling grid,
and each grid cell stores the distance to the sampling
plane of the closest surface point projecting onto the cell
center. In addition to this distance, the sampled surface
color at this point is stored.
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Since along one sampling direction up to d surface
points can fall into the same cell (where d is the surface’s
depth complexity), up to d distances might have to be
stored for each direction. Distances are sorted such that
the i-th distance is the distance of the i-th closest point
to the sampling plane. Every surface point is projected
only once into the sampling plane with the smallest
angle between the surface normal at that point and the
grid’s sampling direction. In this way, redundant sam-
pling of the same point into multiple grids is avoided,
and a nearly uniform sampling with a minimum and
maximum sampling frequency of 1/(

√
3 ⋅ s) and 1/s,

respectively, across the surface is generated (where s is
the size of an OFB cell). Figure 3 illustrates the sampling
strategy used to generate an OFB.

Fig. 3. Illustration of the OFB construction. Left: Surface

points are projected along one of three mutually orthogo-

nal sampling directions. Right: Surface points falling into
the same grid cell are stored in multiple sampling grids.

Sampling the surface along a particular direction can
be performed in many different ways, e.g., by using ray-
casting or rasterization. In this work, the sampling is
performed by rasterization on the GPU. In particular,
we employ stencil routing [19], [20] in combination with
a novel geometry shader algorithm to direct sampled
surface points into the respective sampling grids (see
Section 8). By using this approach the construction of an
OFB can be performed at very high speed for surfaces
at reasonable resolution.

4.1 OFB Interface

The OFB interface provides a method for locating a
surface point in the OFB. The method takes as input a
3D position (x, y, z) in normalized object coordinates and
tests whether a corresponding sample is stored in the
OFB. To find this sample the point coordinate is projected
into the OFB sampling plane most perpendicular to the
point’s normal. This generates for the respective sam-
pling grid a 2D integer coordinate (u, v) and a distance,

d, of the point to the sampling plane. If the sampling
directions are aligned with the three coordinate axes the
projection reduces to a component selection, i.e., in the
z-direction (u, v) = (⌊x ⋅ S⌋, ⌊y ⋅ S⌋) and d = z, where S
is the OFB grid size.

The distance d is now compared to all distances stored
at index (u, v), and of all these values the index of the
one closest to d within the interval [d − s, d + s] is kept
(with s being the cell size in the sampling grid). The grid
identifier and the index are finally returned, and they can
then be used to read a color value from the OFB or to
write a color to it.

4.2 OFB Rendering

Rendering a surface using the colors that are stored in an
OFB means to interpret the OFB as a texture consisting
of several layers and fetching for every rendered surface
point the color from this texture. This is realized by
executing for every rendered point an OFB query as
described to lookup the OFB sample closest to this
point. The color at this sample is then read and used
to modulate the point’s appearance.

To support smooth color variations, the OFB interface
provides distance-weighted color interpolation. If a sur-
face is rendered at a resolution that is higher than the
resolution of the OFB, for every surface point an OFB
query is issued. In contrast to finding the closest sample,
however, all samples within a radius of

√
3 times the

size of a cell in the OFB grid are determined under all
three projections. In each projection we also inspect the
distance values in all grid cells adjacent to the cell (u, v).
The color of a surface point is then computed from these
samples by means of inverse distance weighting.

By using this interpolation scheme we can also gen-
erate an OFB mipmap hierarchy to resolve minification
issues. Therefore, multiple OFBs at ever decreasing res-
olution are constructed, i.e., by subsequently reducing
the resolution of the sampling grids about a factor of
2 in every dimension. Starting with the initial OFB at
the finest resolution, the color of a sample at subsequent
levels is computed by distance-based interpolation, with
the color samples being fetched from the next finer level.
In this way a stack of OFBs is generated, from which the
appropriate resolution can be chosen during rendering
(see Figure 4 for a comparison).

5 SURFACE PAINTING

Once the OFB structure has been constructed for the
surface to be colored, the user starts painting with color
or seeds particles leaving their color on the surface. In
either case the surface point under the mouse cursor is
used as center position.

In the most simple case, a spherical volume brush is
used for painting. In this case, OFB samples closer to
the brush center point than the selected sphere radius
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Fig. 4. Comparison of different OFB sampling filters to resolve minification and magnification issues.

are painted with the current paint color. The color of a
sample at position P is updated according to

CP = lerp(CP ,CB , G), (1)

where the brush shape G evaluates to

G =

{

0, if ∣PC − P ∣ > m

F (∣PC − P ∣) , else.
(2)

Here, PC is the position of the center point, CB is
the brush color, and m is the support of a user-defined
falloff function F , which is used to simulate smooth color
fading with increasing distance to the center point.

It is clear that when a volume brush is used not every
OFB sample should be tested for inclusion in the brush
volume. Thus, a method for reducing the number of
potential candidates to be tested is required. In vertex
coloring, vertex topology can be considered to achieve
this. Painting techniques working on point sampled ge-
ometry typically make use of a hierarchical spatial data
structure such as a kD-tree to find all samples within a
given distance to a center point. Approaches based on
surface parametrization, on the other hand, can directly
determine these candidates in the parameter domain
if the parametrization is free of discontinuities. In our
approach we exploit the fact that the OFB structure
was built by sampling the surface along three mutually
orthogonal directions. As a consequence, of all samples
only those have to be tested whose projections along
these directions fall into the regions covered by the
projected bounding box of the brush volume.

On the CPU, the realization of this approach is straight
forward by sequentially testing all OFB samples covered
by the bounding box projections. To perform these tests
for multiple brushes and samples within the brush vol-
umes in parallel, and thus to achieve interactive painting
even for many thousands of simultaneously used vol-
ume brushes, we now introduce a novel GPU method.
This method exploits geometry shaders to efficiently
determine all potential candidates and then performs the
candidate tests in parallel in a pixel shader program.

A single vertex—positioned at the brush center
point—is sent to the GPU and passed to the geometry
shader. The geometry shader spawns three quadrilater-
als from this vertex, each of which is aligned to one
of the three sampling directions and rendered into all

corresponding OFB sampling grids. The size of these
quadrilateral is chosen according to the current extent
of the brush volume. For every generated fragment, a
pixel shader queries the sample in the OFB sampling
grid, and it computes the distance of this sample to the
brush center. Whenever a sample is closer to the center
than the brush extent, the shader evaluates Equation 1
and writes the color into the OFB.

Interactive painting with a volume brush already pro-
vides an intuitive painting metaphor. In combination
with a high-resolution OFB and by enabling the user
to arbitrarily change the color and extend of the volume
brush, finely detailed as well as large-scale paintings on
surfaces can be created (see Figures 1a and 5). Especially
in the first of the two figures it can be seen that our
method is independent of the surface resolution. In this
example, coloring was made at update times of less
than 10ms on an upsampled version of the surface (53K
triangles) consisting of 8.1 million samples.

On the other hand, as the volume brush model con-
siders the Euclidean distance to the center point, surface
points having a geodesic distance to the center that is
larger than m may also be colored. This effect, which
is often referred to as color leakage, is demonstrated in
the closeup view in Figure 5. To overcome this limitation
we are going to introduce an alternative brush model in
Section 7.

Fig. 5. Fine color details are manually painted on the
Stanford dragon using a spherical volume brush. The

close-up shows color leakage introduced by a volume

brush.
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6 SURFACE PARTICLES

In the following we introduce a new technique for
surface coloring using so-called surface particles. Surface
particles always stay on the surface and can be moved
by external forces. They are seeded by the user at a
particular position on the surface, and they can then be
used to create a variety of different coloring effects such
as color advection and convolution.

For a surface particle to move on the surface an
external force field is required. Without loss of gen-
erality, we assume that this force field is given by a
normalized vector field at the surface vertices. In the
OFB construction this vector field is interpreted as an
additional surface attribute, and it is sampled into the
OFB in the same way as the surface’s color. Before
writing a vector field sample into the OFB, however,
it is first projected into the local surface tangent plane.
The tangent plane is computed from the interpolated
surface normal, resulting in a smooth variation of the
plane across the surface.

A surface particle—once released—steps along the
surface and produces a sequence of surface points. At
each of these points a volume brush is centered and
used to spread color into the OFB. In addition to posi-
tion, velocity, and lifetime, surface particles carry paint-
specific information such as the color as well as the
extent and transparency of the footprint they leave on
the surface. Figure 6 demonstrates surface coloring via a
surface particle that changes its color periodically from
red over blue to green.

Fig. 6. A surface particle is released on the surface (white

circle). The particle moves along a streamline in a vector

field given on the surface and leaves color footprints along
its path.

6.1 Particle Tracing on Surfaces

To trace a particle on the surface we compute its tra-
jectory P (u) parameterized over u, given the vector
field v⃗ in 3D object coordinates and the particle’s initial
position (x, y, z) on the surface. This requires to solve

the ordinary differential equation:

∂P

∂u
= v⃗(P (u)) with initial condition P (0) = (x, y, z)

To numerically solve this equation we employ classical
Euler or Runge-Kutta integration using a fixed step size
Δu. For a thorough overview of particle integration in
vector fields let us refer to the report by Post et al. [21].

In principle, it is clear how to perform particle tracing
on polygonal surfaces consisting of triangles [22]–[25].
Particles are traced from edge to edge by projecting the
vector field onto the triangle plane and performing the
particle integration in this plane. Although this approach
can be realized in a straight forward way on the CPU,
it imposes severe limitations on the number of particles
that can be moved at interactive rates. Specifically, our
tests have shown that not more than 10K particles per
second can be integrated in one step on a triangle
surface of reasonable resolution. As we will show in the
remainder of this paper, however, some of the interactive
coloring techniques we propose require up to a million
particles to be moved per second, making a CPU solution
impractical.

The GPU implementation of particle tracing on a
triangle mesh, on the other hand, yields a highly non-
uniform load in the parallel shader units performing the
particle integration. While for a given Δu some units
have to integrate over many triangles in one integration
step, only one triangle might be considered by other
units. On recent GPUs this results in execution stalls and
thus in a significant loss of performance. This limitation
can be avoided by tracing particles on the sample-based
surface representation stored in an OFB. Since the OFB
represents the surface at a nearly uniform resolution on
a regular sampling grid, every unit performs the same
number of memory access and numerical operations. In
addition, by using the OFB as a structure for particle
tracing, it can simultaneously be used to realize the color
transfer to the surface.

Particle tracing on an OFB is performed by first lo-
cating the OFB sample closest to the current particle
position as described in Section 4. To prevent a particle
from leaving the sampled surface representation, its
position is set to the position of this sample. The index
of this sample is used to read the respective vector field
sample, along which the particle is then moved to its
new position.

A step along the surface is performed by first project-
ing the current vector sample into the three sampling
planes. This gives for each plane a 2D vector tu, tv in
this plane. By using these vectors and the projections
of the particle position into the respective grids, we can
now determine the grid cells in each grid into which the
particle might be entering when making a step Δu that
is equal to the cell size. In all of these cells we determine
the sample closest to the new particle position, and
we set the new particle position to the position of this
sample.
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Overall, given the index I of the start sample P (I)
in the OFB, in every iteration the following steps are
performed (for the sake of simplicity we sketch the
implementation of an Euler scheme here):

∙ Vector lookup: The vector sample v⃗ is read from the
index I in the OFB.

∙ Projection: v⃗ is projected into the three sampling
grids.

∙ Integration: Discrete cell traversal in the sampling
grids along the projected vector sample and closest
point location in the traversed cells yields the index
I ′ of the OFB sample closest to P .

∙ Update: I is set to I ′ and the new particle position
is set to P (I).

It is clear that the accuracy of the proposed parti-
cle tracing method is limited due to the sample-based
surface representation that is used. Since the particle
positions are restricted to the OFB samples they will
in general not accurately follow the characteristic lines
in a given vector field. Due to this reason, we do not
consider the method to be suitable for scientific vector
field visualization. However, as we will show in the
remainder of this paper, streamlines at high fidelity can
be reconstructed by means of our method due to the
extreme OFB resolution that can be used.

6.2 Particle-based Coloring

Surface particles released by the user carry paint, and
they apply this paint to the OFB samples they run
across. This is realized by automatically placing in every
integration step and for every particle a paint brush at
the particle position, and by transferring the brush paint
to the OFB as described in Section 5.

Fig. 7. Ten thousand particles move along streamlines in
a vector field given on the surface and leave color foot-

prints on it. On our target architecture, particle advection

and coloring takes less than 15 millisecond.

Particle-based coloring along the characteristic lines in
a vector field designed on a polygonal surface is shown
in Figure 7. In this example, 10K particles were simulta-
neously traced on the surface, each of them spreading a
spherical color footprint to the surface. A more detailed
analysis of this example is given in Section 9. Despite the
huge amount of particles used, particle advection and
coloring was performed at 80 fps on our target GPU.

6.2.1 Particle Chaining

By using chains of particles we can realize advanced
brush shapes which would be difficult to realize other-
wise. As an example we show how to simulate a brush
shape that aligns with a given vector field and reduces
its extend such as to simulate a tail (see Figure 8).

Fig. 8. Moving color spots with a tail are simulated by
chains of surface particles. Two spots of different radius

and color are simulated on top of each other.

In this example, at each point of a randomly selected
set of points a sequence of particles is seeded consecu-
tively. Each particle is assigned a counter which indicates
its position in this sequence. All particles overwrite the
color already stored in the OFB using an equally sized
volume brush, but within the brush volume the brush
color is faded out at ever faster decrease with increasing
particle counter. In this way, the later a particle was
released the smaller is the extend of its color footprint. By
moving all particles along the vector field direction, the
impression of moving particles with a tail is simulated.

6.2.2 Color Smearing

A smearing effect can be realized by letting a particle
at position P (u) query the OFB color at the previous
particle position P (u−Δu) along the particle trajectory,
and by combining this color with its own color via a
blending function S. This function controls the amount
of smear, i.e., how much color from the previous position
is carried over to the current position. The color of a
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sample within the brush volume of a particle at position
P (u) is then computed as

CP (u) = lerp(CP (u), S
(

CB ,CP (u−Δu)

)

, G), (3)

with CP (u−Δu) and CB being the color at position
P (u−Δu) and the brush color, respectively. In case of a
spherical paint brush, G simulates a radial falloff from
the brush center such as to fade out the smeared color
with increasing distance to the brush center. In Figure 9
this effect is demonstrated using an initial stripe-like
color distribution in the OFB, and by setting CB to CP (u)

at every particle position. As can be seen, due to the
linear interpolation between the current and the smeared
color, the smear is fading out smoothly once a particle
enters a region of different color.

Fig. 9. Left: stripes of the “zebra” (a) are smeared by

moving surface particles (b). Right: the color distribution

on the triple donut (c) is smeared by a random vector field.
The amount of smear is increased from (d) to (e).

6.2.3 Color Convolution

In the previous section we have shown how to use
moving particles to create color traces that follow a
given vector field. In contrast to this, color convolution
alters a given color distribution in such a way as to
show the directional information in the vector field.
This method is commonly referred to as Line Integral
Convolution (LIC) [23], [26], and it has been used in a
number of approaches to interactively visualize vector
fields given on a surface [27]–[29]. These approaches,
however, distinguish significantly from ours in that they
operate in image space on the visible surface points and
do not transfer any color to the surface. For our intended
application of surface coloring they are thus not suited.

Typically, LIC works by smearing a random noise
intensity distribution along the characteristic lines in a
vector field, which results in high intensity correlation
along these lines as shown in Figure 10. Mathematically,
this can be posed as the convolution of a color function

C and a convolution kernel k along the characteristic
lines:

Color =

∫ L

t=−L
C(P (p, t)) ⋅ k(t) dt
∫ L

t=−L
k(t) dt

(4)

In our setting, a line integral convolution is computed
at every OFB sample and the output values are written
back into the OFB. The convolution is realized by spawn-
ing at every sample two surface particles, of which one
is moved for some distance along its trajectory and the
other one moves the same distance in the reversed vector
field. While moving along the surface, the particles read
the color from the OFB at the current position and weight
this color with the kernel function. The accumulated
color values from both particles are finally combined to
yield the output value.

Fig. 10. Sample-based LIC on polygonal meshes. Since

particles are traced on a 3D surface representation
across silhouettes and edges, frame-to-frame coherence

in animated scenes is guaranteed.

7 SURFACE-ALIGNED BRUSHES

As shown in Figure 5, a spherical brush can introduce
color leakage because it considers the Euclidean distance
of an OFB sample to the brush center point. Thus, surface
samples having a geodesic distance to the center that
is larger than the brush radius may also be colored. In
the following we present an alternative brush model to
overcome this limitation.

Ideally, the brush should be modeled as a deformable
sheet that wraps around the surface and adds color to the
points where it touches the surface. We call such a brush
a surface-aligned brush, and we model it by a polygonal
mesh consisting of surface particles connected via edges.
Mapping the mesh onto a surface is done by tracing out
the particles from the brush center point, which essen-
tially corresponds to finding a local parametrization of
the surface area surrounding this point.

Our method is thus similar in spirit to the patchinos
and the exponential maps, which were introduced for
decal painting by Pedersen [30] and Schmidt et al. [31],
respectively. The patchinos, however, require a global
parametrization of the base mesh. In contrast to expo-
nential maps, on the other hand, we trace geodesics on
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Fig. 11. From left to right: surface-aligned brush meshes rendered as wire-frame, shaded brush meshes with texture

coordinates as color, and textured surface-aligned brushes.

the surface—or more precisely on a sampled version of
the surface—instead of developing the surface to the
tangent plane around a center point. Thus, the local
parametrization we construct is completely independent
of the underlying mesh resolution.

To align an areal brush on the surface, we first
construct a local coordinate frame from a user-defined
brush direction. It is build from the given direction
vector (the tangent), the surface normal, and the vector
perpendicular to both (the bi-normal). Constructing a
local parametrization now starts by seeding two particles
at the brush center point and tracing them along the
surface. One of them is traced in the direction of the
tangent vector and the other one is traced in the opposite
direction. Since along these traces the tangent varies
according to the change in the surface normal, it is
corrected in every step as shown in Figure 12. In this
way the trace wraps around the surface even in regions
with high curvature.

Fig. 12. The direction vector v⃗ is rotated �-degrees about

the bi-normal, where � is the angle between the current
normal N ′ and the normal N at the previous particle

position in the plane perpendicular to the bi-normal.

After n steps, a polyline consisting of (2 ⋅ n) line
segments is generated. From every particle on this line
two new traces are started; one into the direction of the
bi-normal and another one into the opposite direction.
After m traces a 2D grid consisting of (2 ⋅n+1)⋅(2 ⋅m+1)
particles has been laid out on the surface around the
center point. Adjacent particles in the grid are finally
connected to form a triangle mesh, yielding the local
parametrization used to map the brush color to the
surface.

The triangle mesh can now be texture mapped by
specifying texture coordinates at the surface particles
used to construct the mesh. The texture color can be

transferred to the OFB by rendering the mesh and writ-
ing the color of every fragment into the OFB as described
in 4. In Figure 11, a number of surface-aligned brushes
have been used to bring color decals onto a surface. We
have used rather large brush extends in this example to
demonstrate the folding of the brush meshes along the
surface.

8 OFB CONSTRUCTION

In the following we describe the method we use to effi-
ciently construct an OFB on the GPU. Even though the
surface coloring methods we have presented so far do
not depend on the particular OFB construction method,
a method that allows building the data structure at high
speed is beneficial due to the following reason: In case
that parts of the surface are not represented at a sufficient
resolution in the OFB, such a method can be used to
instantaneously rebuild the respective part of the OFB
at the appropriate higher resolution. Although we have
not yet implemented the surface coloring methods to
work on multiple OFBs at different resolutions, this is a
challenging future research direction that strongly relies
on the availability of a fast method for OFB construction.

For single pass OFB construction on the GPU our
method utilizes the geometry shader and the k-buffer in-
troduced by Myers and Bavoil [20]. A k-buffer is a render
target, i.e., a texture map, that can keep the contributions
of up to k fragments per pixel instead of just one as in
single-sample rendering. When rendering to a so-called
multisampled texture target with multisample antialias-
ing being disabled, an incoming fragment is spread to
all k multisamples of the respective destination pixel
in the k-buffer. Since for each multisample a separate
stencil mask is tested, stencil routing as proposed by
Purcell et al. [19] can be used to direct an incoming
fragment to a specific multisample. Stencil routing works
by initializing the stencil mask of the i-th multisample
with i + 1 (values 0 and 1 are used to identify empty
samples and an overflow), and by letting a fragment pass
the stencil test if the stencil mask is equal to 2. The stencil
fail and pass operations are set to “decrementing”, such
that a stencil mask of 2 is consecutively obtained at all
multisamples.
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Via stencil routing up to k (=8 on our target graphics
hardware) surface points seen under a pixel can be ren-
dered simultaneously into one pixel of a supersampled
render target. Since multiple render targets can be used
and because an 8 bit stencil buffer is supported, surfaces
with a depth complexity of up to 254 can be sampled in
a single rendering pass. An OFB finally consists of three
stacks of multisampled 2D-Texture slices, each of which
stores distances of surface samples to the respective
sampling planes. By using this approach, an OFB can
be built at extreme resolution within a fraction of a
second for typical surfaces used in computer graphics
applications.

To efficiently sample the surface along three mutually
orthogonal directions, we use the geometry shader (GS)
available on DirectX 10 capable graphics hardware and
under OpenGL as vendor specific extension. The GS’s ca-
pability to direct its output to multiple render pipelines,
each having its own depth, stencil and multiple color
buffers, is employed to render a triangle into the ap-
propriate sampling grid depending on its normal. The
following setup is used on the GPU for that purpose,
assuming the surface being represented as a triangle
mesh with depth complexities dx, dy, dz along the x, y, z-
coordinate axes.

∙ Pipeline Setup: T = ⌈dx

k
⌉ + ⌈dy

k
⌉ + ⌈dz

k
⌉ render

pipelines are bound to the GS. To each of these
pipelines k-times supersampled render targets are

attached. Contiguous sets of ⌈dx

k
⌉, ⌈dy

k
⌉, and ⌈dz

k
⌉

pipelines are used to perform the sampling along
the x-, y-, and z-direction, respectively.

∙ Geometry Shader Setup: For every triangle, its
face normal is computed by the GS and the trian-
gle is directed into those pipelines who belong to
the sampling direction with the smallest angle to
the normal. Before triangles are sent to a pipeline,
they are transformed according to the respective
sampling direction, i.e. they are projected into a
2D sampling plane aligned perpendicular to this
direction.

∙ Pixel Shader Setup: The pixel shader outputs the
fragments depth as well as additional queried at-
tributes into the supersampled render targets, and
it decrements the stencil bits used to route fragments
to the supersamples.

To store surface point positions and corresponding
attributes, such as color or vector field samples, multiple
OFBs are used. In DirectX 10, up to 8 buffers—with 4
32bit channels at most—can be bound as output targets
to a pixelshader, enabling to capture up to 128 bytes of
surface attribute data at once. Each OFB is initialized
at startup or when the surface geometry is changed.
The position OFB stores for every sample its distance
to the corresponding sampling plane. Additional sample
attributes are stored at corresponding positions in the
respective other OFBs, i.e., a color OFB, a normal OFB,
and a vector field OFB.

It should be finally noted that the OFB samples can
be sorted with respect to their distance to the sampling
plane [20]. Especially for objects having large depth
complexity this can significantly improve the complexity
of the OFB read-operation, from linear to logarithmic in
the surface’s depth complexity.

9 RESULTS AND DISCUSSION

To validate the efficiency and quality of our approaches
for surface coloring, we have used these approaches to
interactively create finely detailed color structures on
different triangular surfaces. Timings were performed
on a 2.4 GHz Core 2 Duo processor and an NVIDIA
8800GTX graphics card with 768 MB local video memory.

In all of our examples, the three orthogonal OFB
sampling planes were aligned with the faces of the axis-
aligned bounding box of the object. To store the surface
samples and their colors, for the sampling direction
perpendicular to the largest face of the bounding box a
2K×2K sampling grid was used. The same cell size was
chosen for the remaining two sampling grids. All other
surface properties like vector samples and normals were
sampled at half this resolution. Rendering was done to
a 1280× 1024 viewport.

Full statistics for some of the colorings performed in
this work are given in Table 1. The measurements have
been carried out in the following ways:

∙ Figure 1(a): A spherical volume brush of varying
extent and color was used to manually paint color
and colored letterings on an adaptive triangle mesh.
The measurements are for a brush with a radius
equal to 25 OFB samples.

∙ Figure 7: 10K particles were simultaneously traced
on an OFB. In every integration step, each particle
spreads a spherical brush of an extend equal to 5
samples to the OFB. The timings include particle
integration in the OFB and coloring.

∙ Figure 1(d): Surface-aligned brushes with different
color footprints were manually painted. Each brush
mesh was laid out on the surface using 41 × 41
surface particles. The grids were mapped with a
texture storing the respective color pattern. The
timings include the layout of the surface brush and
the color transfer into the OFB.

∙ Figure 10 (left): The measurements show the com-
putation of LIC on the OFB representation of the
Gargoyle mesh. At every OFB sample two particles
were released, one of them traveling forward and
the other one backward in a synthetic vector field.
10 integration steps were carried out along either
direction. At every sample a sample-sized brush was
used for paint transfer.

For each of these examples, Table 1 shows the surface’s
polygon count [in thousand] (column “△”), the depth
complexity along the three sampling directions (column
“DC”), the number of surface samples in the OFB [in
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million] (column “MSmpls”), the time required to con-
struct the OFB (column “OFB”), and the OFB update rate
in the course of painting/coloring (column “Paint”). All
measurements are for unsorted OFBs.

△ DC MSmpls OFB Paint
Face 52 5 4 5 8.1 27 0.5
Horse 10 7 3 5 6.3 12 12.4
Hand 11 8 4 4 7.7 13 4.7
Gargoyle 10 6 4 4 11.2 (3.2) 16 (6) 1214 (268)

TABLE 1

Timing statistics in milliseconds for different coloring
operations on surfaces with different triangle counts (△)

and depth complexities (DC). In all examples an

unsorted OFB was used. The numbers in brackets are
with respect to an OFB of half the resolution as

described. Rendering the surfaces with the colors stored

in the respective OFBs took less than 5 milliseconds.

The statistics highlight the extreme resolutions at
which surfaces can be represented in an OFB. Visually
this is indicated by the very fine color details on all of
the used models. Especially at the joint between the fine
and coarse tessellation in the face model, it can be seen
that the size of the painted details is independent of the
surface resolution. It can also be seen from the statistics
that even for models with reasonable depth complexity
the efficiency of building an OFB on the GPU allows for
ad-hoc construction.

With regard to the performance of the coloring meth-
ods our analysis demonstrates that all of them are fast
enough to be used in interactive applications. In the
second example we see, that even for a depth complexity
of 7 along one of the sampling directions an effective
throughput of more than 800 thousand particles per
second can be achieved. This throughput includes the
advection of particles via one-step Euler integration and
the color transfer to the OFB.

The last example shows that even for a number of
particles as large as 11.2 millions the computation of
20 integration steps in the OFB can be performed in
slightly more than 1 second. This measurement includes
the transfer of the accumulated color values to the
OFB. By reducing the OFB resolution according to a
1K x 1K sampling grid, update rates of 8 frames per
second can be achieved. This performance even allows
animating the surface LIC representation by computing
the convolution in every frame but letting particles start
at subsequent positions along the characteristic lines.

To compare the efficiency of the data access operations
in a sorted and an unsorted OFB, we have pursued
an experiment in which an ever increasing number of
nested cubes was colorized. By consecutively increasing
this number the depth complexity of the scene is grow-
ing equivalently. For each configuration we have carried
out a number of OFB access operations using randomly
selected point coordinates, and we have measured the
performance of returning the closest OFB sample for
a sorted and an unsorted OFB. In a sorted OFB, for a

point the closest sample in the three sampling grids is
determined by a binary search in the sorted sequence of
samples in the respective OFB cells. In an unsorted OFB,
a linear search in this sequence is performed. The results
are illustrated in Figure 13.
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Fig. 13. Timing statistics for point location in sorted
(green) and unsorted (red) OFBs with ever increasing

depth complexity of the scene. For a depth complexity
larger than 5 the logarithmic complexity of this operation

in a sorted OFB pays off compared to the linear complex-

ity of this operation in an unsorted OFB, even though the
data access operations are now data dependent.

As can be seen, only for very small depth complex-
ities the unsorted OFB yields comparable update rates,
but quickly after a depth complexity of 5 the reduced
number of data access operations pays off. Interestingly,
this happens even though the data access operations are
now data dependent, meaning that dependent texture
fetch operations have to be performed on the GPU. Such
operations typically stall the GPU processing pipeline
since the time until the requested data item is avail-
able cannot be used for other computations. Apparently,
however, the higher efficiency of non data-dependent
access operations is completely amortized by the vastly
reduced number of access operations in the sorted OFB.

9.1 Octree Comparison

In the following, we compare the performance of OFB-
based surface coloring to octree-based surface color-
ing on the CPU and the GPU. For this purpose, we
have implemented OFB- and octree-based coloring using
spherical volume brushes on the CPU, and we have used
the publicly available octree-textures implementation on
the GPU by Lefebvre et al. [17]. The OFB was constructed
as described in Section 9, and the resolution of the CPU
octree was chosen accordingly. On the GPU, performance
comparisons for 2562, 5122, and 10242 OFB sampling
grids and correspondingly refined octrees have been
carried out.

OFB-based painting on the CPU is performed in the
same way as on the GPU, with the following minor dif-
ferences: Firstly, the projection of the brush’s bounding
box along the three sampling directions is performed
in software. Secondly, the samples covered by these
projections are tested sequentially for inclusion in the
spherical brush volume. The OFB itself is generated
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Construct (ms) Paint (fps) Memory (MB)
Octree (8/9/10) OFB (2562/5122/10242) Octree OFB Octree OFB

Bunny 4934 / 15732 / 56445 3.0 / 4.5 / 7.0 25 / 12 / 3 360 / 343 / 309 4.25 / 16.1 / 52.4 6.75 / 27 / 108
Horse 4002 / 9818 / 31557 3.6 / 5.2 / 8.0 32 / 18 / 5 426 / 416 / 401 1.5 / 5.8 / 24.3 5.62 / 22.5 / 90

TABLE 2

Comparison between OFB- and octree-based surface painting on the GPU. The GPU octree implementation is

publicly available at http://lefebvre.sylvain.free.fr/octreetex/. The table shows the performance (including painting and
rendering) and memory requirements for octrees of depth 8,9, and 10, and respective OFBs with sampling grids of

size 2562, 5122, and 10242. The first row gives the times for OFB and octree construction. The memory requirements

of the octree implementation include only the color data stored at the leave nodes of the data structure. The
additional memory required by the index structures could not be measured with the given implementation.

entirely on the GPU as described in Section 8, and the
resulting sampling grids are downloaded to the CPU.

Our CPU octree implementation makes use of loca-
tional codes as proposed by Frisken and Perry [32] to
support efficient point and region location for tree-based
octree representations. For a given point, its coordinate
values are first converted to x, y and z locational codes,
and these codes are then used as branching patterns to it-
eratively locate the child nodes at every level of the tree.
Each bit in a locational code indicates the branching pat-
tern at the corresponding tree level, and the branching
is performed until a leaf cell is reached. For querying so-
called inradius-neighbors, i.e., the neighbors to a given
node within a given search radius, first the level of the
smallest enclosing cell in the tree is determined, and then
the locational codes are used as described for every point
contained in this region.

In Table 1 we have shown that it takes less than 13
milliseconds for 10K particles to simultaneously spread
a color footprint with an extend equal to 5 samples
to a high-resolution OFB. Note that this time includes
the particle integration in the OFB. This means that
more than 800 thousand of such paint operations can
be performed per second on the GPU. Via region lo-
cations in the CPU octree we have achieved about 14
thousand of such operations per second, which indicates
a performance gain of the OFB-based GPU approach of a
factor of 57. By using the OFB representation on the CPU,
we achieve a throughput of 92 thousand particles per
second, which results in a performance gain of almost
a factor of 6 over the CPU octree-based approach. In
addition to showing the significant acceleration of sur-
face coloring by using an OFB on the GPU, this analysis
also demonstrates the improved algorithmic complexity
of the data access operations in an OFB compared to an
octree.

In Table 2, a detailed comparison between OFB- and
octree-based surface painting on the GPU is given for
two different data sets at different resolutions. In this
comparison, manual painting using a brush radius equal
to 5 OFB/octree leave nodes was performed. As in-
dicated by Figure 14, visually the painting operations
yield very similar results on both representations. OFB-
based surface painting, however, performs up to two
orders of magnitudes faster than octree-based painting,
and it only needs about twice the memory of the octree

implementation. Furthermore, while the OFB can be
built at interactive rates, octree construction requires a
significant portion of time.

Fig. 14. Quality comparison between the GPU octree

painter (left) and our OFB painter (right); in both systems

linear texture filtering was used.

9.2 Applications

In the following we demonstrate two additional appli-
cations of the proposed coloring algorithms, which have
not been described in the paper so far.

9.2.1 Normal displacement

All of the painting techniques described in this paper
can also be used to paint into an OFB that stores ad-
ditional surface normals. These normals are then used
in the rendering of the surface to perturb initial surface
normals. Figure 15, for example, demonstrates the use of
a spherical volume brush to paint the illusion of bumps
on the surface.

Fig. 15. A normal painted golf-ball bunny.
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For every OFB sample within the support of the brush
the vector from that point to the brush center point is
computed. Both the normalized vector and its length,
which is used as bump depth for parallax mapping, are
stored. A user controlled scale factor allows controlling
the depth of the bumps as well as its orientation, i.e.,
whether it faces away from the surface or towards it.

9.2.2 Dynamic Brushes

Instead of using one single 2D image to texture a surface-
aligned brush, we can also loop through a stack of
images from frame to frame. Internally this stack is
realized as a 3D texture map. In this way we can realize
an animated brush and we can also simulate the stroke
that is produced by brushes of heterogeneously abrading
material, such as charcoal. Therefore, in addition to the
2D texture coordinates assigned to each vertex of the
brush surface, we simply use time or stroke length as
the third coordinate into the 3D texture. This coordinate
takes values from 1 to the number of 2D images used and
periodically repeats this sequence while painting with
the brush. To capture the behavior of the charcoal in
Figure 16, the real image of a charcoal stroke on a rough
material was scanned, cut into segments, and stacked
into a 3D texture.

Fig. 16. Four charcoal paintings with a dynamic brush on

the horse model. Underneath these images, the image of

the scanned charcoal stroke that was used to create the
dynamic brush is shown.

10 CONCLUSION AND FUTURE WORK

In this paper we have introduced the Orthogonal Frag-
ment Buffer—OFB—as a data structure for interactive
surface coloring, and we have presented a number of dif-
ferent coloring techniques based on this data structure.
Due to the efficiency and flexibility of these techniques,
they are particularly suitable for artistic 3D content

creation. The possibility to interactively add fine color
details to a given surface—independent of the surface
resolution and representation—distinguishes these tech-
niques from previous ones. As an extension, it would
be valuable to combine existing physics-based brush
models with our techniques, including particular brush
shapes and strokes as well as intuitive interfaces for
particle seeding.

The limitations of our approach are twofold: Firstly,
for models with high depth complexity it can require
significant memory to store the OFB structure. Especially
on the GPU the OFB resolution is limited due to the
available texture memory. To alleviate this problem, we
are currently looking into Direct3D 10.1 functionality
to move data directly into S3TC compressed textures.
More important is the observation that OFB structures
are typically very sparse. Therefore, we will investigate
alternative storage solutions based on adaptive texture
maps, e.g., as proposed by Kraus and Ertl [33]. Because
texture packing is very time consuming in general, we
will investigate specialized packing strategies that ex-
ploit specific properties of the OFB. One such property
is that the fill-rates of OFB layers along the sampling
directions are monotonically decreasing, i.e., if a sample
becomes empty in one layer it remains empty in all
subsequent layers.

Fig. 17. A situation where particles traced out on the

surface generate a folded brush mesh.

Secondly, we are aware that the proposed layout
of surface-aligned brushes can produce distortions and
even folds in highly curved regions (see Figure 17 for
a demonstration of this problem). Similar to comput-
ing a local parametrization by the relaxation of surface
samples as proposed by Adams et al. [5], in the future
we will investigate the use of constrained mass-spring
systems on the GPU for this purpose.

Finally, we will dedicate our research towards the
finding of a render method that directly operates on the
sample-based surface representation that is stored in an
OFB, rather than mapping the OFB as a texture onto the
polygonal surface representation. Similar to relief texture
mapping [34], the surface geometry will then be replaced
entirely by an image-based representation, i.e. the OFB,
which is used in the rendering process.

One possible solution is to perform ray-casting on the
regular 2D OFB sampling grids to determine primary-
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ray surface intersections. Since this requires to test at
every grid cell that is hit by a ray all samples within
this cell, an additional acceleration structure has to be
used. For instance, the OFB can be embedded into an
adaptive space partition, where every part contains an
OFB of only the surface part contained in this cell. In
this way, the depth complexity per OFB, and thus the
number of samples to be tested per OFB grid cell, can
be reduced significantly. Another tempting alternative to
reduce the number of ray/cell intersection tests during
OFB traversal is to use so-called safety radii, which where
introduced by Baboud et al. [35] for the efficient ray-
casting of regular height fields.
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