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Abstract

In this paper we present an interactive method for simulating deformable objects using skeletal constraints. We

introduce a two-way coupling of a finite element model and a skeleton that is attached to this model. The skeleton

pose is determined via inverse kinematics. The target positions of joints are either given by user interactions or

forces imposed by the surrounding deformable body. The movement of the deformable body either follows the

movement of the skeleton thereby respecting physical constraints imposed by the underlying deformation model,

or the movement is determined from user-defined external forces. Due to the proposed two-way coupling, the

skeleton and the deformable body constrain each other’s movement, thus allowing for an intuitive and realistic

animation of soft bodies. To realize the two-way coupling we propose the efficient embedding of the constraints

into a geometric multigrid scheme to solve the governing equations of deformable body motion. We present a

greedy approach that propagates the constraints to coarser hierarchy levels, and we show that this approach can

significantly improve the convergence rate of the multigrid solver.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geome-
try and Object Modeling—Physics-based modeling I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation

1. Introduction

In computer graphics, physics-based simulation of de-
formable objects has been studied for several decades, start-
ing with the seminal work of Terzopoulos et al. [TPBF87,
TF88]. A good overview of the state-of-the-art in this field
can be found in [NMK∗05]. Besides the development of ever
improving techniques for the efficient, yet accurate simula-
tion of deformable bodies, a separate field has evolved deal-
ing with the intuitive control of such bodies. Especially for
animating virtual characters composed of deformable parts,
control mechanisms that respect both the physical properties
of these parts and the pose of the character are required.

Early work in this field was done by Isaacs and Cohen,
who proposed a set of controls for dynamic simulations in-
cluding kinematic constraints and inverse dynamics [IC87].
Gourret et al. proposed an approach for the simulation of
human skin in a grasping task [GTT89], which is based on
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a one-way coupling of the skeletal movement to the soft tis-
sue. This idea was later extended by Cappell et al. to allow
for pose-based simulation of deformable bodies [CGC∗02a].
They transfer the movements of an animated skeleton—
obtained via motion capturing—to a volumetric finite ele-
ment model. Analogously to skinning, the piece-wise linear
deformations induced by the skeleton are blended to achieve
smooth deformations of the character’s surface. However
due to this, especially locally the method can result in non-
realistic deformations.

To simulate specific surface deformations caused by ac-
tions such as breathing, force templates were introduced
in [CBC∗05]. The authors propose a non-linear optimiza-
tion technique that computes skeletal states and force fields
from a given deformed surface to achieve an accurate match-
ing. Song et al. [SZHB06] simulated the skeleton as a non-
linear finite element model, and they propagated the re-
sulting element rotations to the surrounding body to en-
able (corotated) linear elastic simulation. More realistic sim-
ulations of human anatomy were achieved by incorporat-
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Figure 1: Left: The skeleton and the forces acting on it (red

arrows). Right: An elastic body discretized into 67K tetrahe-

dral finite elements is deformed at a rate of 5 time steps per

second using a two-way coupling between the skeleton and

the body.

ing anatomical structures like muscles into the simulation
[SPCM97, WVG97].

As soon as such virtual characters interact with their envi-
ronment, e.g. colliding with other objects, a fully two-way
coupling of the deformable body and its control skeleton
is required. This enables that the character’s control skele-
ton reacts on collisions that are detected by the surrounding
soft body, and the movement of the soft body is fully con-
strained by the skeleton. Shinar et al. addressed these issues
by simulating the skeleton as articulated rigid bodies, and
they coupled this skeleton simulation to the soft body us-
ing an uniform time integration approach [SSF08], thereby
allowing the creation of life-like creatures. However, using
a rigid body approach to simulate the skeleton requires a
carefully adapted time integration approach to achieve sta-
ble simulations [SSF08]. For that reason, we decided to use
an inverse kinematic approach to simulate the poses of the
control skeleton, which can run with the same simulation
rate as the soft body simulation at low computational costs.
Moreover, this allows us to easily define constraints in the
movements of the skeleton, i.e. by specifying joint limits.

1.1. Our Contributions

We extend previous work in that we propose a physics-based
two-way coupling of a skeleton and a deformable body to
provide an intuitive control mechanism for deformable body
animation (see Figure 1). Due to this coupling, any defor-
mation that is transferred from the skeleton to the body or
vice versa results in an immediate response of the respective
other part, which, in turn, affects the movement of the driv-
ing part. Thus, the user can control either the skeleton or the
deformable parts surrounding this skeleton. Since the pose
of the skeleton is updated automatically due to the forces
induced on the skeleton by the deformable body, our ap-

proach can be used to determine the skeletal pose automati-
cally from issued volume deformations (see Figure 2 for an
example).

We describe the efficient embedding of the aforemen-
tioned two-way coupling into a geometric multigrid ap-
proach. One direction of this coupling is to transfer the
movement from the skeleton to the soft body. We realize
this by incorporating displacement boundary conditions into
the soft body simulation. The other direction of the cou-
pling is realized by determining the forces acting on the
boundary vertices, and by using these forces to update the
skeletal pose (thereby respecting the mass of the underlying
soft body). Our paper describes a novel approach to han-
dle such displacement boundary conditions in a geometric
multigrid scheme by propagating the boundary conditions
to coarser levels if necessary. Specifically we introduce a
greedy approach that ensures the resulting interpolation and
restriction operators to have full rank. This method can be
used for nested as well as non-nested geometric grid hier-
archies [GW06]. As a result, our multigrid solver achieves
good convergence rates and enables interactive update rates
even for high-resolution models.

2. Related Work

In computer graphics, deformable models were first in-
troduced by Terzopolous et al. [TPBF87, TF88]. A good
overview of the multitude of methods for realistically simu-
lating deformable bodies can be found in [NMK∗05]. For ex-
ample, boundary element models [JP99], adaptive and mul-
tiresolution approaches [DDCB01,CGC∗02b,GKS02], grid-
less techniques [MKN∗04, MHTG05, Mül08], and finite el-
ement methods [BNC96, WDGT01] have been proposed.
Nesme et al. [NKJF09] proposed a composite element for-
mulation that considers varying material properties within a
coarse element.

Multigrid approaches [Bra77, TOS01] for the solution
of large linear systems have recently gained much atten-
tion in the computer graphics community due to their lin-
ear time complexity. Applications range from fluid simu-
lation [BFGS03] over deformable body simulation [WT04,
GW06,SYBF06,ZSTB10] to image processing [KH08]. The
efficiency of multigrid methods on hexahedral grids has been
shown in [DGBW08].

A general framework for handling constraints in linear
time is given in [Bar96]. Bender showed the advantages of
impulse-based dynamics to solve the constraints in linear
time [Ben07]. Bridson et al. developed an approach to ro-
bustly process collisions, contact and friction in cloth sim-
ulation [BFA02]. Animation techniques for human athlet-
ics are described in [HWBO95]. Weinstein et al. proposed a
post-stabilization approach for the simulation of articulated
rigid bodies [WTF06], and they later extended it to control
joints and muscles [WGF08]. Virtual actors with life-like
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Figure 2: Deformation of the model of a horse when moving the hoof. Without skeletal constraints an unrealistic deformation

is achieved (left). Skeletal constraints provide the desired behavior (right).

motor skills are described in [FvdPT01]. The interplay be-
tween the simulation of a deformable surface and a skeleton
is described in [GOT∗07].

There is also a vast body of literature addressing the prob-
lem to bind a surface to a movable skeleton, which is com-
monly referred to as skinning, and a comprehensive review is
beyond the scope of this paper. However, Singh et al. [SF98],
Allen et al. [ACP02], and Ju et al. [JZvdP∗08] discuss some
of the common techniques used and provide many useful ref-
erences on this topic.

3. Finite Element Simulation

For the numerical simulation of the dynamic behavior of an
elastic solid under the influence of external forces we em-
ploy a finite element discretization of the solid using tetra-
hedral or hexahedral elements. We use an implicit multigrid
solver as proposed in [GW06,GW08], which provides built-
in support for corotated elements [MDM∗02, HS04, MG04]
to enable large deformations. In particular, a data structure
that is specifically designed to support efficient sparse ma-
trix products is employed for updating the multigrid hier-
archy [GW10]. In every time step a system of equations
Ku = f needs to be solved, which results from the time inte-
gration of the Lagrangian equation of motion. Here, u is the
linearized displacement vector and f contains the forces ap-
plied to the finite element vertices. An implicit second-order
Newmark scheme is used for time integration.

3.1. Displacement Boundary Conditions

The deformation of an elastic body is typically performed
by specifying an appropriate force vector—or a force field—
that acts on the finite elements and results in a displacement
of element vertices. However, if the deformation is issued by
a skeleton attached to the body, one expects that the element

vertices on the skeleton are constrained to the skeleton (dis-
placement boundary conditions) and only for the remaining
vertices the displacements are simulated. Since it becomes
very difficult to accurately model the displacement boundary
conditions by corresponding forces, for the set of vertices on
the skeleton displacements should be directly specified in-
stead of external forces.

By assuming that a displacement ui or a force fi is given
for every vertex vi, the entire set of vertices can be grouped
into two subsets S1 and S2: The first subset contains all ver-
tices for which a displacement boundary condition has to
be enforced and the respective force needs to be computed,
and the second subset contains all vertices for which a force
is given (for instance, due to user interaction or gravity) and
the respective displacement has to be computed. We can thus
split the linearized displacement and force vectors into u1, f1
and u2, f2, where u1 and f2 are known and f1 and u2 have to
be computed. The system of equations to be solved in every
simulation step can then be partitioned as

(

K11 K12
K21 K22

)(

u1
u2

)

=

(

f1
f2

)

.

This system can be solved by first solving the (typically)
smaller system K22u2 = f2 −K21u1 for the unknown dis-
placements u2 of all vertices v ∈ S2 and then using these
displacements to determine the unknown forces exerting at
vertices v ∈ S1. However, to enable the use of efficient ge-
ometric multigrid methods to solve the system, one cannot
easily stick with the smaller system since it removes degrees
of freedom of the system, which corresponds to “holes” in
the grid that need to be handled accordingly. Therefore, we
keep the system at its full size (and its full grid), and we
discuss the specific multigrid convergence issues in the next
section.

Moreover, an efficient implementation of the multigrid
methods requires that the sparse matrix data structure does
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not change at run time, since otherwise the acceleration data
structures that are used by the multigrid solver [GW10] have
to be recomputed, too. This, for instance, is an issue when
constructing an appropriate skeleton for the animation, since
then the sets S1 and S2 change frequently due to the interac-
tive repositioning and refinement of the skeleton (see Section
4.1).

Therefore, we propose to modify the system matrix K by
zeroing the rows and columns that belong to vertices where
displacements are enforced, i.e., the blocks K11 and K12.
This can be implemented efficiently using a row-compressed
sparse matrix format. In order to keep the system of equa-
tions at full rank, the diagonal entries are set to a non-zero
value α. The part of the right hand side f1 is set to f1 = α u1
to enforce the displacements u1 in the solution process, re-
sulting in the following system to be solved:

(

α I 0
0 K22

)(

u1
u2

)

=

(

αu1
f2 −K21u1

)

.

Note that the system matrix still is symmetric, and thus we
can use a Galerkin multigrid approach [TOS01]. Addition-
ally, it allows for faster assembling of the system matrix,
since only the upper diagonal part has to be recomputed in
every time step to account for the element rotations.

In a second step we have to compute the internal forces
that act on the constrained vertices, since these forces are
used to update the skeleton as described later. The internal
force vector f1 is computed by utilizing a copy of the ze-
roed blocks K̂11 and K̂12 (the blocks in the system matrix K

without the modifications of the time integration scheme):

f1 = K̂11u1 + K̂12u2. (1)

3.2. Boundary Conditions in the Multigrid Solver

We use a geometric multigrid solver on hexahedral or tetra-
hedral grids to efficiently solve the resulting system of linear
equations. This requires a hierarchy of grids at different res-
olution levels, which is constructed as proposed by Georgii
and Westermann [GW06], and which defines the restriction
and interpolation operators. A simple approach to handle the
displacement boundary conditions in the multigrid scheme
is to replace the original equations of the boundary vertices
with a dummy equation α Iu = αu0, where u0 is the given
displacement at the respective vertex, i.e. the boundary ver-
tices are not removed from the equation system. This ensures
that the interpolation and restriction matrices with respect to
the unmodified coarse grids have full rank, and therefore a
standard Galerkin coarsening leads to a convergent multigrid
scheme [TOS01]. However, by using this strategy we ob-
served decreased convergence compared to an unconstrained
system.

Therefore, we propose a different approach, which is
based on the elimination of boundary conditions, i.e., the
boundary vertices (or constrained vertices) are removed as

Figure 3: Demonstration of the boundary condition han-

dling for a two grid hierarchy. (For simplicity, a synthetic

example in 2D is used.) The greedy approach searches for

each coarse grid vertex a corresponding unconstrained fine

grid vertex (green dotted line). If no such vertex is found, the

coarse grid vertex is constrained (red). Note that in the ex-

ample the fine grid vertex marked with the gray arrow cannot

be considered since its interpolation weight (with respect to

the constrained coarse grid vertex) is zero.

degrees of freedom from the equation system. Note that it
is then necessary to also remove vertices as degrees of free-
dom on the coarse grid levels of the multigrid hierarchy to
obtain full rank interpolation operators. For the coarse grid
levels, we determine the constrained vertices successively
for each level up to the coarsest level by following a greedy
strategy: At the beginning, all unconstrained vertices of the
previous finer level are marked as “available”, and the con-
strained vertices of the previous finer level are marked as
“consumed”. We then iterate over the vertices of the cur-
rent level. For each vertex, we consider the set of vertices on
the previous finer level, which interpolate from the currently
considered vertex. If this set does not contain an “available”
vertex, then the considered coarse grid vertex is marked as
constrained, otherwise as unconstrained. In the latter case,
the “available” vertex with the largest interpolation weight is
marked as “consumed”. This algorithm is illustrated in Fig-
ure 3. By eliminating the constrained vertices as proposed,
we achieve an improved convergence rate of the multigrid
solver compared to the first approach that adapts the equa-
tions of the constrained vertices.

3.2.1. Implementation

The goal of the following section is to describe how our
novel approach for the elimination of boundary conditions
can be efficiently integrated into existing multigrid simu-
lation code. For performance reasons, we do not want to
modify the sparse matrix data structures, which means that
eliminated equation are still represented by a dummy equa-
tion. However, our novel approach ignores these equations
in the multigrid scheme, i.e. they are not propagated to the
coarser grids. For each constrained vertex we perform two
steps. First, we modify the right-hand side of the vertices
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in the 1-ring neighborhood to account for the displacement
boundary condition (see Section 3.1). Second, we eliminate
the equation at the constrained vertex by zeroing the respec-
tive row and column of the matrix (and keeping a diagonal
entry).

In principle, we then want to ignore this eliminated equa-
tions on the coarser grids, too, which means that we have
to adapt the restriction and interpolation operators in such
a way that eliminated equations do not modify other coarse
grid equations. That is, for the constrained vertices we zero
the respective column in the restriction matrix and the re-
spective row in the interpolation matrix.

However, then it might happen that as a result the restric-
tion/interpolation matrices do not have full rank. Intuitively,
one can see this fact as having more degrees of freedom on
the coarser level than on the finer level, since degrees of free-
doms on the finer level are restricted by the boundary con-
ditions. In this situation, it is necessary to mark a reasonable
number of coarse grid vertices as constrained, too, since oth-
erwise the coarse grid operator becomes singular. We ensure
this in a further step using our greedy approach as described
above.

If we have marked a coarse grid vertex as constrained as
result of the greedy approach, we have to ensure that this
coarse grid vertex gets a dummy equation, too (since other-
wise the coarse grid operator will be rank deficient). There-
fore, we choose an arbitrary constrained fine grid vertex and
manipulate the restriction/interpolation matrix such that the
fine grid (dummy) equation is propagated to the constrained
coarse grid vertex. In principle, this is the same as eliminat-
ing the coarse grid vertex.

The benefit of this procedure is that we neither have to
modify the matrix data structure nor the multigrid code to
manually ignore the constrained vertices in the solution pro-
cess. However, the approach has to manipulate the stream ac-
celeration data structures [GW10] that is used by the multi-
grid solver to efficiently determine the system equations on
the coarser grids. These coarse grid matrices are built by
means of sparse matrix products involving the interpolation
and restriction operators, which are derived from the geo-
metric grid hierarchy. To efficiently compute the sparse ma-
trix products we use a stream-like layout of a data structure
that allows one to perform these operations in a very cache-
efficient way. To incorporate the novel boundary condition
handling into the optimized multigrid method, we have to
update the stream data structure, since it embeds respective
entries of the interpolation and restriction operators for per-
formance reasons. Fortunately, this is easily possible since
the stream layout does not change (the matrix data structures
do not change), and thus we can easily update the respective
entries of the interpolation and restriction operators.

4. Skeleton-based Deformation

To enable the described two-way coupling between a skele-
ton and a finite element mesh, we now describe the skele-
ton construction and the binding of the constructed skele-
ton to the mesh. Ideally, one would assume the finite ele-
ment mesh vertices to lie on the skeleton’s bone segments
to properly couple the skeleton simulation with the finite el-
ement method as suggested by Capell et al. [CGC∗02a]. In
this case, however, the finite element mesh has to be adapted
whenever the skeleton changes, thus prohibiting an interac-
tive modification of the skeleton. To overcome this limita-
tion, we provide a method to bind a skeleton to a finite el-
ement model that does not need to have any vertices on the
skeleton.

4.1. Skeleton Editor

Skeleton construction and modification is performed inter-
actively via a skeleton editor illustrated in Figure 4. The ed-
itor provides the possibility to define different joint types,
i.e. either a hinge joint or a ball joint. Furthermore, the user
can add joint limits such as minimal and maximal rotation
angle in case of hinge joints, or a cone that defines the pos-
sible movements in case of ball joints. These constraints are
ensured by an inverse kinematic module that is used to de-
termine the skeleton’s pose.

Figure 4: A screenshot of the skeleton editor.

4.2. Skeleton Binding

To bind the skeleton to the finite element simulation mesh,
we apply the following simple approach: Firstly, we deter-
mine for every skeleton bone B j the set of finite elements
it intersects with. From these element set, we consider all
element vertices vi within a predefined distance to the bone
B j and project them onto the bone B j to determine a linear
interpolation weight

wi j =
(vi −B0

j)
T (B1

j −B0
j)

‖B1
j −B0

j‖
2

,

where B0
j and B1

j denote the position of the start and end
joints of B j, respectively. If wi j /∈ [0,1], the vertex is not
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bound to B j . Otherwise, the weight wi j is stored at the ver-
tex together with the respective bone identifier. We will call
these vertices the skeleton vertices in the following. In case
a single vertex gets bound to several bones, we consider only
the closest bone.

The linear interpolation weight is used to transfer move-
ments from the skeleton to the finite element mesh. Skeleton
vertices are handled as displacement boundary conditions in
the simulation as described above, and the displacements for
these vertices are determined by linearly interpolating the
displacements of the respective joints using the weights wi j.
However, this simple approach has the drawback that it does
not account for rotations around the bone axis, which can
lead to artifacts in the simulation. To avoid this, one can ei-
ther generate a mesh which is aligned with the skeleton, i.e.
all skeleton vertices lie on the bone segments, or one can
additionally rotate the skeleton vertices around the bone (in
which case the rotation has to be included as degree of free-
dom in the skeleton simulation.)

Additionally, for each bone joint we accumulate the mass
of the soft body that is relevant for this joint. For each ver-
tex i of the finite element model, we first determine its mass
by gathering the masses of the incident elements, and we
then accumulate this mass to the best-fitting skeleton bone
by choosing the closest bone j that satisfies wi j ∈ [0,1]. Fi-
nally, the vertex mass is accumulated to the respective start
and end joint of the bone j using the respective weights.
These joint masses are used to move the skeleton based on
forces acting on the skeleton as described in the next sec-
tion. It is worth noting that the joint mass is only a rough
approximation, i.e. not all finite element vertices propagate
their mass since it might happen that there does not exist a
joint with corresponding weight wi j ∈ [0,1]. However, we
observe that this approach effectively increases the stability
of the proposed two-way coupling, which we describe in the
next section.

4.3. Skeletal Constraints

In the Section 3.1 we have shown how to apply displace-
ment boundary conditions to the skeleton vertices of the fi-
nite element mesh by fixating these vertices on the skeleton.
To let the skeleton being moved by the soft body, we pro-
ceed in two steps: Firstly, the forces exerted at the skeleton
vertices are determined using the finite element simulation
(see Equation 1). Secondly, these forces are accumulated at
the joints of the skeleton by considering the interpolation
weights stored at each skeleton vertex. Finally, from the ac-
cumulated mass of the soft body at the skeleton’s joints and
the forces acting on it we obtain an update of the position of
the skeleton’s joint using an Verlet time integration scheme.
Since we consider the mass of the deformable body to up-
date the skeletal pose, we add inertia to the movement of
the skeleton, which results in damping of our coupled sim-
ulations. To allow for an intuitive control of the amount of

damping, we use a globally defined damping factor by which
the forces are scaled.

In general, the new positions of the skeleton’s joints could
be used to define the new pose of the skeleton. However,
since the skeleton itself is subject to a number of constraints
(joint type, joint limits), we use inverse kinematics to recom-
pute the skeleton’s pose. Therefore, the goal position of ev-
ery joint is set to the new position computed by the force
integration. Then, we apply a Jacobian Transpose approach
[Bus09] to compute the new skeleton’s pose taking into ac-
count the joint limits. Since we only observe small move-
ments of the skeleton from one time step to the next, this
approach yields reasonable results. Upon convergence of the
inverse kinematics computation the displacement boundary
conditions of all skeleton vertices are updated with respect
to the new skeleton pose. Then, the simulation starts over
taking into account the new boundary conditions.

5. Results

We have tested our simulation framework on a standard
desktop PC equipped with an Intel Core 2 Quad Q9450
2.66 GHz processor and 8 GB of RAM. In Table 1 we pro-
vide information on the models used and the respective per-
formance achieved. The second column shows the number
of tetrahedral elements that are used in the finite element
simulation. The next column shows the degrees of freedom
of the skeleton (computed by the inverse kinematic module).
Then, we show the time it takes to initialize a skeleton sim-
ulation, i.e. to bound the skeleton to the finite element mesh
as described in Section 4.2 and to update the system matrix
as shown in Section 3.1. The last column contains the overall
time to solve one time step of the dynamic corotated simula-
tion (using two multigrid V(2,1)-cycles) including the time
of the inverse kinematic module.

Skeleton Init
Model #Elements DoFs Skeleton Solve

Manikin 14,062 10 1ms 49ms
Bar 24,576 4 2ms 56ms

Dragon 67,309 12 4ms 203ms

Table 1: Performance Analysis. The bar example uses a

nested grid hierarchy with 4 levels, while the other examples

are based on non-nested grid hierarchies with 3 levels.

We compare our multigrid solver to a conjugate gradient
solver in Figure 5. We analyze the reduction of the relative
error over time for both solvers using the bar example. Our
multigrid solver (red) clearly outperforms a conjugate gra-
dient solver with Jacobi preconditioner (blue). In Figure 6,
we demonstrate the benefit of the novel approach to han-
dle the boundary conditions at the coarser grids as described
in Section 3.2. We analyze the reduction of the relative er-
ror of the solution achieved by an iteration of single multi-
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Figure 5: Computational efficiency of different numerical solvers. Our multigrid approach (red) clearly outperforms a conju-

gate gradient solver with Jacobi preconditioner (blue).

grid V(1,1)-cycles with one pre- and post-smoothing Gauss-
Seidel step. It can be seen that our approach (“Eliminated
Boundary Conditions”) significantly improves the conver-
gence rate of the multigrid solver compared to the simple
approach (“Adapted Equations”). It is worth noting, how-
ever, that the latter one shows the same convergence rate as
our approach if there are no constrained coarse grid vertices
(since the interpolation with eliminated boundary conditions
still has full rank). One of the main benefits of our approach
to eliminate the boundary conditions is that we can improve
the convergence rate without increasing the computational
costs of a V-cycle.

We allow two different kinds of interaction modes in our
implementation. Firstly, we can pick joints of the skele-
ton and move them to a specific position, which directly
defines the goal positions for the inverse kinematic mod-
ule. This mode can be used to directly control the skeletal
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Figure 6: Convergence analysis of the multigrid approach

with boundary conditions (bar example). The new approach

to eliminate the boundary conditions on the coarser grids

(red) effectively improves the convergence rate compared

to a standard Galerkin approach with adapted equations

(green).

pose. Secondly, we provide the proposed indirect deforma-
tion mode, where the user induces external forces on the ob-
ject by mouse movements. The skeleton pose is then auto-
matically recomputed as described in Section 4.3. Figure 7
shows some results achieved with our approach.

6. Conclusion

We have demonstrated a novel approach to handle skeletal
constraints in deformable object simulations. By using an
inverse kinematic approach, we can update the pose of the
skeleton, which then determines the boundary conditions in
the finite element simulation. We provide a feedback mode,
such that the internal forces acting on the skeleton can be
used to automatically update the skeleton.

Moreover, we have shown how to efficiently embed the
skeletal constraints into a geometric multigrid approach for
the deformable object simulation. We proposed a novel ap-
proach to eliminate the constrained vertices while at the
same time ensuring that the interpolation operator has full
rank. This approach is a general means to handle boundary
conditions in geometric multigrid techniques, for instance
to fixate single vertices. By means of our approach, we can
achieve interactive update rates for the simulation of large
deformable bodies with skeletal constraints.
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T., POPOVIĆ Z.: Interactive skeleton-driven dynamic deforma-
tions. In Proceedings of SIGGRAPH (2002), pp. 586–593.

[CGC∗02b] CAPELL S., GREEN S., CURLESS B., DUCHAMP
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