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Abstract: The pull-push algorithm is a well-known and very efficient pyramid algorithm for the interpolation of scattered

data with many applications in computer graphics. However, the original algorithm is not very well suited for

an implementation on GPUs (graphics processing units). In this work, several improvements of the algorithm

are presented to overcome this limitation, and important details of the algorithm are clarified, in particular the

importance of the correct normalization of the employed filters. Moreover, we present an extension for a very

efficient estimate of the local density of sample points.

1 INTRODUCTION

Interpolation of scattered data points is a clas-

sical problem in computer graphics with many ap-

plications, e.g., inpainting, reconstruction of smooth

functions from meshless point data, image post-

processing effects, etc. (Gortler et al., 1996; Drori

et al., 2003). As recent GPU implementations of

pyramid algorithms for scattered data interpolation

achieve real-time performances, they are also suited

for real-time rendering and real-time video processing

(Lefebvre et al., 2005; Strengert et al., 2006; Guen-

nebaud et al., 2007; Kraus and Strengert, 2007a).

However, there are particularly challenging ren-

dering algorithms, which require the interpolation of

scattered pixels for multiple images per frame. For

example, the rendering of depth-of-field effects by

Kraus and Strengert (Kraus and Strengert, 2007a) re-

quires two full-screen interpolation passes for each

“subimage” with 1 to 20 “subimages” per frame (de-

pending on the strength of the effect). Thus, even

a high-performance GPU implementation of scat-

tered data interpolation can constitute a serious per-

formance bottleneck for some rendering algorithms.

Therefore, this work is concerned with improvements

of GPU implementations of the very efficient pull-

push algorithm by Gortler et al. (Gortler et al., 1996).

The next section briefly summarizes related work

while Section 3 presents our algorithmic improve-

ments of the pull-push algorithm and compares them

to the original algorithm. Section 4 presents a variant

of the algorithm to compute the local density of sam-

ple points, and in Section 5, the GPU implementations

of the algorithms and their performance is discussed.

2 RELATED WORK

The original pull-push algorithm by Gortler et al.

(Gortler et al., 1996) is based on work by Burt (Burt,

1981; Burt, 1988) and Mitchell (Mitchell, 1987)

and was used to interpolate between many sampling

points in a four-dimensional domain in the Lumigraph

system.

A variant of the pull-push algorithm was em-

ployed, for example, by Drori et al. (Drori et al.,

2003) for an initial reconstruction of missing parts

of images. Lefebvre et al. (Lefebvre et al., 2005)

used a GPU-based implementation for inpainting

gaps in texture maps. Strengert et al. (Strengert et al.,

2006) proposed a more efficient GPU implementa-

tion, which is of linear time complexity in the number

of pixels. The algorithm by Strengert et al. was em-

ployed by Kraus and Strengert (Kraus and Strengert,

2007a) to disocclude pixels in their depth-of-field al-
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Figure 1: Illustration of the pixels xr
i of an image pyramid

for a one-dimensional input image x0
i of size 2n.

gorithm. Guennebaud et al. (Guennebaud et al., 2007)

employed a GPU implementation of the pull-push al-

gorithm to reconstruct soft shadows from a reduced

number of sample points; however, they did not de-

scribe any details of their implementation.

3 REVISION OF THE PULL-PUSH

ALGORITHM

3.1 Pull

The original pull phase by Gortler et al. (Gortler et al.,

1996) computes an image pyramid of data values x

and positive weights w using a “pull filter” h̃. The

input image determines the size of the finest pyramid

level r = 0 while the size of pyramid level r+1 is half

of the size of pyramid level r in each dimension. For

clarity we describe the algorithm for one-dimensional

images and restrict their sizes to powers of two. Data

values of pyramid level r are denoted by xr
i and their

weights by wr
i where r equals 0 for the original (finest)

resolution and pixels are indexed by i. This structure

of a one-dimensional image pyramid is illustrated in

Figure 1.

If the pull filter is specified by a discrete sequence

h̃ of positive numbers, Gortler et al. suggest to com-

pute the pixels of the next coarser image level by:

wr+1
i = ∑

k

h̃k−2i min(wr
k,1) (1)

xr+1
i =

1

wr+1
i

∑
k

h̃k−2i min(wr
k,1)xr

k (2)

To reduce the number of clamp operations, i.e., min

functions, we propose to introduce clamped weights

ŵr
i and weighted data values x̃r

i , in particular for the

input data on level r = 0:

ŵ0
i

def
= min

(

w0
i ,1

)

, x̃0
i

def
= ŵ0

i x0
i (3)

The computation of coarser image levels can now be

performed with just one clamp operation and basic

filter operations:

wr+1
i = ∑

k

h̃k−2iŵ
r
k (4)

ŵr+1
i = min

(

wr+1
i ,1

)

(5)

x̃r+1
i =

ŵr+1
i

wr+1
i

∑
k

h̃k−2ix̃
r
k (6)

This formulation is more suited for an efficient GPU

implementation as discussed in Section 5.

It should be noted that the normalization of h̃ is

crucial for the quality of the resulting interpolation.

As shown in Section 3.3, a normalization of the max-

imum to 1 provides good results in most cases while

a normalization of the integral of the filter h̃ to 1 leads

to significantly worse results.

Our new formulation encapsulates the nonlinear

part of the pull phase in a single clamp operation in

Equation 5, which can be replaced easily by a contin-

uous operation. For example, one could use a filter

h̃ with a normalization such that its integral is 1 and

achieve an effect similar to the nonlinear clamp oper-

ation by employing the following equation instead of

Equation 5:

ŵr+1
i = 1−

(

1−wr+1
i

)γ
(7)

Here, γ is a parameter that controls the range of influ-

ence of data points: larger values of γ tend to result in

larger regions around isolated data points where the

interpolated values are close to the values specified

for the data points; examples are given in Section 3.3.

3.2 Push

After the image pyramid has been computed, a se-

quence of push operations recomputes all levels from

coarse to fine with a “push filter” h. First, two tempo-

rary values are computed:

ωr
i = ∑

k

hi−2k min
(

wr+1
k ,1

)

(8)

χr
i =

1

ωr
i
∑
k

hi−2k min
(

wr+1
k ,1

)

xr+1
k (9)

Note that Gortler et al. use the symbol tw instead of ω
and tx instead of χ.
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Figure 2: (a) Interpolation of a set of scattered data (gray bars) by the “original” algorithm by Gortler et al. (Gortler et al.,

1996) with h̃ =
{

1
3 ,1,1,

1
3

}

(solid line) and h̃ =
{

1
8 ,

3
8 ,

3
8 ,

1
8

}

(dashed line). (b) Interpolation by the “w/o clamp” algorithm
for γ = 4 (solid line) and γ = 16 (dashed line). For comparison, the result of the original algorithm is also included (dotted

line). (c) Same as (b) for input data of weight 1
32 instead of 1.

These temporary values are blended with the pre-

viously computed pyramid image. However, the

equations provided by Gortler et al. lack clamping op-

erations; the corrected equations are:

xr
i = χr

i (1−min(wr
k,1))+min(wr

k,1)xr
i (10)

wr
i = min(ωr

i ,1)(1−min(wr
k,1))

+min(wr
k,1) (11)

These equations can also be simplified by employing

clamped weights ŵr
i and weighted data values x̃r

i as in-

troduced in the previous section. For the push phase

we can additionally assume a normalization of the

push filter h such that no further clamp operations are

necessary. Therefore, Equations 8–11 can be rewrit-

ten as:

ω̂r
i = ∑

k

hi−2kŵr+1
k (12)

χr
i =

1

ω̂r
i
∑
k

hi−2kx̃r+1
k (13)

xr
i = χr

i (1− ŵr
k)+ x̃r

i (14)

ŵr
i = ω̂r

i (1− ŵr
k)+ ŵr

k (15)

x̃r
i = ŵr

i x
r
i (16)

These filter operations can be implemented very ef-

ficiently (see Section 5); however, the linear inter-

polation with weights ŵr
k and 1− ŵr

k cannot be im-

plemented by standard blending on GPUs due to the

multiplication in Equation 16.

Fortunately, these equations can be further simpli-

fied by a new approximation, which works very well

for most input data and filters h̃ and h. As noted

above, the pull filter h̃ should be scaled such that

the weights ŵr
k quickly approach 1 in coarser pyra-

mid levels. During the push phase these weights are

further increased, thus, they are usually equal to 1 or

close to 1 in all pyramid levels. This motivates a vari-

ation of the blending such that all new weights ŵr
k are

(implicitly) set to 1. Thus, Equations 12–16 are sig-

nificantly simplified to only two equations:

χr
i = ∑

k

hi−2kxr+1
k (17)

xr
i = χr

i (1− ŵr
k)+ x̃r

i (18)

Note that we start with xr+1
k instead of x̃r+1

k on the

coarsest level, which can be easily computed in the

last step of the pull phase by avoiding the multiplica-

tion with ŵr+1
i in Equation 6. For all but the first iter-

ation, xr+1
k in Equation 17 refers to the pyramid level

that was most recently computed according to Equa-

tion 18 in the push phase, while ŵr
k and x̃r

i in Equa-

tion 18 refer to values computed in the pull phase.

Our new formulation allows for both an efficient

GPU implementation of the filtering operations by

texture filtering as well as an efficient GPU imple-

mentation of the linear interpolation by frame buffer

blending as discussed in Section 5.

3.3 Comparison of Variants

In this section, we compare the original algorithm by

Gortler et al. (Gortler et al., 1996) with the two vari-

ants proposed in Sections 3.1 and 3.2.

3.3.1 “Original” Algorithm

For the purpose of this comparison, the “original” al-

gorithm is described by Equations 3–6 for the pull

phase and Equations 8–11 for the push phase. A

one-dimensional pull filter h̃ is used, which is de-

fined by the sequence
{

1
3
,1,1,

1
3

}

, i.e., the maximum

is normalized to 1. The push filter h is defined by
{

1
4
,

3
4
,

3
4
,

1
4

}

. These filters correspond to quadratic B-

spline filters (Catmull and Clark, 1978) and are par-

ticularly well suited for GPU implementations (Kraus

and Strengert, 2007b).
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Figure 3: (a) A two-dimensional image of size 256×256. (b) Masked variant of the image in (a): the weight of black pixels
is 0, the weight of all others is 1. (c) Density of the pixels with weight 1 computed by the algorithm presented in Section 4.
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Figure 4: Images reconstructed from Figure 3b using (a) the “original” algorithm, (b) the “w/o clamp” variant, (c) the “w/o
weight” variant.

Figure 2a depicts a set of scattered input pixels

of weight 1 in a one-dimensional image of dimen-

sion 256 and the data interpolation computed with

the original algorithm by Gortler et al. as described

above. For comparison, the results with a differently

normalized pull filter h̃ specified by
{

1
8
,

3
8
,

3
8
,

1
8

}

, is

also included. With input weights less than or equal to

1, this normalization guarantees that all weights stay

less than or are equal to 1 in the pull phase, therefore,

the clamp operations are unnecessary.

However, the latter pull filter does not provide a

smooth interpolation of the input points. In fact, it ap-

pears to be extremely difficult—if not impossible—to

design appropriate pull filters for the original algo-

rithm that do not require clamping operations but still

result in smooth interpolations. Thus, in contrast to

the discussion by Gortler et al., the clamping is not

only necessary to limit the influence of clusters of

many input points but it is also crucial for a smooth

interpolation in general.

3.3.2 Variant “w/o clamp”

In order avoid the nondifferentiable clamping and

to simplify the design of pull filters, we propose

a first variant of Gortler et al.’s algorithm, named

“w/o clamp,” which replaces the clamping specified

in Equation 5 by the differentiable Equation 7. For

this variant of the algorithm, the integral of the pull

filter h̃ has to be normalized to 1 in order to guarantee

that weights do not exceed 1. We choose
{

1
8
,

3
8
,

3
8
,

1
8

}

for the examples depicted in Figure 2b and 2c. The

parameter γ in Equation 7 was set to 4 and 16 in order

to show its influence.

While the input pixels in Figure 2b are the same

as in Figure 2a, the input weights in Figure 2c are

only 1
32

instead of 1 in Figure 2b. The dotted curve

depicted in Figure 2c suggests that it is difficult to ob-

tain a smooth curve approximating sample points with

weights less than 1 using the original algorithm. The

situation is quite similar to an unsuitable normaliza-



tion of h̃ as the clamping operation is ineffective for

several levels in both cases. On the other hand, al-

ternative nonlinear filters such as implemented in our

variant “w/o clamp,” can provide smoother curves for

input points with weights less than 1 as illustrated by

the dashed curve in Figure 2c.

3.3.3 Variant “w/o weight”

The second variant is named “w/o weight” and imple-

ments Equations 3–6 for the pull phase; however, the

multiplication with ŵr+1
i in Equation 6 is skipped for

the coarsest level in order to compute xr+1
i instead of

x̃r+1
i . For the push phase, Equations 17 and 18 are

employed. In our experiments, this variant and the

original algorithm computed very similar results al-

though the “w/o weight” variant employs a consider-

ably simplified push phase, which is better suited for

an efficient implementation on GPUs.

3.3.4 Two-Dimensional Examples

Figure 4 presents the two-dimensional results for the

input depicted in Figure 3b. Visually there are no dif-

ferences between the result of the original algorithm

employed for Figure 4a and the results for the two

new variants of the algorithm shown in Figure 4b and

Figure 4c.

4 COMPUTATION OF POINT

DENSITIES

It is often useful to compute a local density of scat-

tered points, for example in order to decide where to

place additional sampling points. Here we present a

computation of the local density of input points by a

variant of the presented pull-push algorithm.

We assume that all weights of input pixels w0
i are

equal to 1 and all weights of unspecified pixels are

0. In this case, the pyramid images wr
i computed in

the pull phase are in fact approximations of the den-

sity of input points if the integral of the pull filter h̃

is normalized to 1. However, it is crucial to choose

an appropriate pyramid level r. In particular, r should

be chosen locally. To this end, we base the computa-

tion of the point density on those values wr
i where r

is appropriate for the specific position i. This can be

achieved by introducing new weights pr
i for the inter-

polation of densities wr
i : the weight pr

i determines the

influence of wr
i analogously to the role wr

i played for

xr
i in the original pull-push algorithm.

We determine actual values for pr
i in dependency

of the average number n̄r
i of input points at pixel i in

2 4 6 8
n

0.2

0.4

0.6

0.8

1

pHnL

Figure 5: Two examples for the function p(n) to deter-
mine weights depending on the average number n of in-
put points per pixel. The solid curve is suitable for one-
dimensional images while the dotted curve is suitable for
two-dimensional images.

the pyramid image at level r:

n̄r
i

def
= 2rwr

i (19)

If the average number of input points per pixel n̄r
i is

less than 1, pr
i should be 0 because the correspond-

ing wr
i is very likely to overestimate the local density

in the neighborhood of a single, isolated input point.

On the other hand, if n̄r
i is very large, pr

i should also

be 0 as local variations of the density of input points

are not reflected by the corresponding wr
i if too many

input points are included in the average. In between

these extremes, pr
i is set according to a function p(n̄),

which is application-specific as even very fine local

variations are of interest in some cases—for exam-

ple when estimating the distance to the nearest in-

put point—while other applications—in particular for

high-dimensional images—require larger values of n̄r
i

to reliably estimate the density of input points. Fig-

ure 5 illustrates two examples for the function p(n̄).
Having computed densities wr

i and their weights

pr
i in the pull phase, we can then apply a push phase,

which reconstructs a smooth function for w0
i on the

finest pyramid level analogously to reconstructing a

smooth function x0
i from data values xr

i and weights

wr
i . Next we describe this algorithm for the GPU-

friendly variant of the pull-push algorithm presented

in Section 3.2 (called “w/o weight” in Section 3.3).

The algorithm starts with an input image w0
i ,

where the w0
i ’s are either 0 or 1. The pull phase im-

plements the following equations:

wr+1
i = ∑

k

h̃k−2iw
r
k (20)

n̄r+1
i = 2r+1wr+1

i (21)

pr+1
i = p

(

n̄r+1
i

)

(22)

As mentioned above, the integral of the pull filter h̃

has to be normalized to 1. The push filter h has to be



normalized analogously and is used in the push phase,

which recomputes the image pyramid from coarse to

fine levels using these equations:

χr
i = ∑

k

hi−2kwr+1
k (23)

wr
i = χr

i (1− pr
k)+ pr

kwr
i (24)

The finest pyramid image wr
i is the resulting estimate

of the local density of points.

Figure 3c depicts the resulting density for the in-

put shown in Figure 3b. The two-dimensional gener-

alizations of the same pull and push filters were em-

ployed and the dotted curve in Figure 5 was used for

p(n̄).

5 GPU IMPLEMENTATION

While there are very efficient GPU implementa-

tions of linear filtering (Kraus and Strengert, 2007b),

any additional functions in the summation (as in

Equation 1) or additional nonconstant factors (as in

Equation 2) defeat an efficient GPU implementation.

This problem is solved by our improvements pre-

sented in Section 3, in particular Equations 4, 6, and

17.

For multidimensional data (e.g., RGB images) the

filtering operations in Equations 6 and 17 can be per-

formed in parallel for up to 3 components on GPUs.

Moreover, the filtering of weights in Equation 4 can

be performed in parallel in the A component of an

RGBA texture image in order to implement Equa-

tion 18 by alpha-blending. Note that only ŵr
i and x̃r

i

have to be stored in the pull phase, while the push

phase only stores new values for xr
i in place of the

values x̃r
i , which were computed in the pull phase.

While Gortler et al. (Gortler et al., 1996) claim

that Equations 8–11 can be implemented by standard

blending, this is unfortunately no longer true if the

computation is based on weighted variables x̃r
i for

more efficient filtering. This problem is solved by the

approximation presented in Section 3.2, in particular

Equations 17 and 18.

The two-dimensional filters employed in Sec-

tion 3.3 require only four texture lookups per pixel

of the coarser level in the pull phase and one texture

lookup per pixel of the finer level in the push phase

if the filtering is implemented efficiently (Kraus and

Strengert, 2007b). As GPU implementations of the

proposed algorithms are bandwidth-limited, the arith-

metic operations do not significantly affect the per-

formance. Our implementation requires 0.60 ms for a

1024× 1024 16-bit floating-point RGBA image on a

NVIDIA Quadro FX 5800 graphics board.

6 CONCLUSIONS

As shown in this work, the proposed algorithms

for the interpolation of scattered data points and the

computation of local densities of scattered points are

well suited for very efficient GPU implementations,

which could be used for real-time rendering or real-

time image and video processing.

The quality of the results computed by the pro-

posed algorithms depends on the choice of the pull

and push filters, the nonlinear function in Equation 7,

and the function p(n̄) in Equation 22. Determining

suitable filters and functions for particular applica-

tions is part of future work.
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