
Interactive Streak Surface Visualization on the GPU

Kai Bürger, Florian Ferstl, Holger Theisel, and Rüdiger Westermann

Fig. 1. Our method generates adaptively refined integral surfaces in 3D flows on the GPU. The shown surfaces consist of 800k, 300k
and 400k particles, respectively, and they were generated and rendered in less than 50ms. Figure a) and b) show streak surfaces in
unsteady flows. Figure c) shows a stream surface.

Abstract—In this paper we present techniques for the visualization of unsteady flows using streak surfaces, which allow for the
first time an adaptive integration and rendering of such surfaces in real-time. The techniques consist of two main components,
which are both realized on the GPU to exploit computational and bandwidth capacities for numerical particle integration and to
minimize bandwidth requirements in the rendering of the surface. In the construction stage, an adaptive surface representation is
generated. Surface refinement and coarsening strategies are based on local surface properties like distortion and curvature. We
compare two different methods to generate a streak surface: a) by computing a patch-based surface representation that avoids any
interdependence between patches, and b) by computing a particle-based surface representation including particle connectivity, and
by updating this connectivity during particle refinement and coarsening. In the rendering stage, the surface is either rendered as a
set of quadrilateral surface patches using high-quality point-based approaches, or a surface triangulation is built in turn from the given
particle connectivity and the resulting triangle mesh is rendered. We perform a comparative study of the proposed techniques with
respect to surface quality, visual quality and performance by visualizing streak surfaces in real flows using different rendering options.

Index Terms—Unsteady flow visualization, streak surface generation, GPUs.

1 INTRODUCTION

In interactive flow visualization, the integration and visualization of
stream lines has been a standard tool from its very beginning. With
the consideration of time-dependent flows, path lines and streak lines
have moved into the focus of research because they reflect important
properties of the flow: while a path line describes the path of a mass-
less particle in the flow, a streak line shows the positions of particles
that have been released continuously at a fixed location in the past.

The visualization of integral surfaces has been proven to be com-
mon and useful in visual flow exploration. In the case of stream and
path surfaces, their extraction is well-understood. The main idea is to
integrate the front line of the surface and apply if necessary an adaptive
refinement/coarsening to it. After the front has passed, the generated
surface remains unchanged.

Streak surfaces have a strong relation to experimental flow visual-
ization where external materials such as dye, hydrogen bubbles or heat
energy are injected into the flow. The advection of these external ma-
terials creates streak lines and shows the flow patterns. Due to this
reason, analogues to these experimental techniques have been adopted
by researchers in computer-aided scientific visualization for flow ex-
ploration. However, up to now streak surfaces are rarely applied be-

∙ K. Bürger (E-mail: buerger@tum.de) and R. Westermann (E-mail:

westermann@tum.de) are with the Computer Graphics & Visualization

group, Technische Universität München.

∙ Holger Theisel (E-mail: theisel@isg.cs.uni-magdeburg.de) is with the

Visual Computing group, University of Magdeburg.

Manuscript received 31 March 2009; accepted 27 July 2009; posted online

11 October 2009; mailed on 5 October 2009.

For information on obtaining reprints of this article, please send

email to: tvcg@computer.org .

cause of the computational complexity of streak surface generation.
Since streak surfaces may change their shape everywhere and at any
time of the integration, every part of the surface has to be monitored
at any time of the integration for adaptive refinement/coarsening. Due
to this fundamental difference to stream and path surfaces, the con-
sideration of streak surfaces makes only sense if their evolution over
time is shown, e.g., in a pre-computed video sequence or in interactive
applications with a real-time performance.

The only approach so far to address the real-time requirement was
proposed by Funck et al. [20]. It combines the streak surface integra-
tion with a smoke metaphor, leading to cancelation effects of prob-
lematic surface parts: parts of the streak surface where an adaptive
refinement is necessary are rendered less opaquely. In this way, smoke
like structures are obtained by a streak surface integration without any
adaptive refinement. On the other hand, the value of this approach for
visual flow exploration is limited because it cannot guarantee to find
all relevant flow structures and fine structures can only be revealed if
the initial tessellation of the mesh already respects these subtleties.

2 CONTRIBUTION

In this paper, to the best of our knowledge, we present the first real-
time approach for adaptive streak surface integration and high-quality
rendering. We achieve this by using particle-based approaches in
which either the surface is represented as a set of surface patches that
can be handled independent of each other, or a closed surface triangu-
lation is computed from the given particle set. For both approaches we
have developed methods for interactive surface refinement and coars-
ening based on local surface properties.

While the former approach is elegant in its simplicity, it requires
redundant particle computations and lacks flexibility in the rendering
process. Even though we use an advanced rendering method similar to
high-quality point-splatting [2], rendering artifacts at patch boundaries

can not be avoided entirely. The second approach, on the other hand,
yields a closed surface representation providing a variety of render-
ing options, but it can result in deformed triangulations and rendering
artifacts thereof.

Our paper makes the following specific contributions:

∙ A patch-based scheme for the adaptive generation of streak sur-
faces, and a high-quality patch-based surface rendering tech-
nique.

∙ A particle-based adaptive refinement/coarsening scheme for
streak surface generation, and a novel method to construct a
closed triangular streak surface from a set of particles.

These approaches run entirely on the GPU and allow for real-time
performance if certain requirements are fulfilled. In particular, for
an efficient processing of time-dependent fields, as many consecutive
time steps as are required by the numerical integrator are supposed to
fit into GPU memory. In addition, our methods assume the flow fields
to be given on Cartesian grids that can be stored in 3D texture maps on
the GPU. As it was shown in Krueger et al. [10], particle tracing can
then be mapped efficiently on the SIMD architecture underlying cur-
rent GPUs. In principle, the extension of our approaches to tetrahedral
grids is straight forward [15], but it comes at an additional expense
due to more complex operations for point location and interpolation,
as well as the fact that particles might have to integrate over many
elements in one time step.

The remainder of this paper is organized as follows. In the next
chapter we review previous work that is related to ours. An intro-
duction to streak surfaces is given in Section 4. Section 5 presents a
novel technique to construct and render a patch-based streak surface
representation. In Section 6 we describe the particle-based technique
for streak surface generation in which local connectivity information
is used to build a surface triangulation. In Section 7 we evaluate the
performance of our approaches, and we discuss their advantages and
limitations. We conclude the paper with an outline of future research
in the field.

3 RELATED WORK

We do not attempt here to survey the vast number of approaches in
stream line and path line integration because they are standard in flow
visualization. For a thorough overview, however, let us refer to the
report by Post et al. [11]. Graphics hardware related algorithms for in-
teractive flow exploration were presented in [3, 4, 5, 10, 15, 17]. The
usefulness of streak lines for the exploration of time-dependent flow
fields has been proven in several applications, but due to the computa-
tional complexity of streak line integration and adaptive stream surface
construction streak surfaces have only rarely been used in practice.

Hultquist [9] presented the first adaptive stream surface integration
approach, which was later extended in different ways: The approach
by Stalling [18] uses local topological information to increase accu-
racy. Scheuermann et al. [14] compute exact solutions of stream sur-
faces inside piecewise linear vector fields. In the work by van Wijk
[19] a global implicit approach for certain stream surfaces is given.
Recently, a construction method for stream surfaces of high polyno-
mial precision has been introduced by Schneider et al. [16]. Garth
et al. [8] discussed a number of enhancements in the context of vor-
tex extraction. In another work by Garth et al. [7], improved integral
surface accuracy was achieved by separating characteristic line inte-
gration and integral surface triangulation. A particle-based approach
for the generation and rendering of stream surfaces was proposed by
Schafhitzel in [13].

The methods proposed by Schafhitzel [13] and Garth et al. [7] are
also the only approaches describing the surface extraction in a time-
dependent context for path surfaces. The generalization from stream
surfaces to path surfaces is rather straightforward because only the
kind of integration at the surface front has to be replaced.

The first approach for streak surface integration is the smoke surface
approach presented by Funck et al. in [20]. There, the adaptivity prob-
lem of streak surfaces is solved by extracting the surface with a smoke

metaphor and therefore avoiding any adaptive refinement. While this
gives interesting smoke-like structures, it is unable to produce fully
adaptive opaque streak surfaces.

4 STREAK SURFACES

Streak surfaces are defined by repeatedly setting out particles on a
line-shaped seeding structure over a certain time interval. The collec-
tion of all these particles at a certain time denotes the streak surface.
Technically, a streak surface can be obtained in the following way for
a 3D time-dependent flow field v(x, t): the seeding structure is con-
sidered to be a polyline consisting of the points s0, ...,sn. At the time
ti = t0+ i ∆t we start a path line integration of the particle xi, j from the
seeding point s j and observe its behavior over t:

xi, j(t) = xi, j(ti)+
∫ t

ti

v(xi, j(s),s) ds (1)

with xi, j(ti)= s j, i= 0, ...,m and j = 0, ...,n. For t ≥ tm = t0+m ∆t, the
streak surface can be considered as a rectangular vertex array (xi, j(t)).
We call a column (xi,0, ...,xi,n) a time line, while a row (x0, j, ...,xm, j)
is a streak line. The vertices are the surface points from which a closed
surface representation has to be built.

During the integration, the distance between both adjacent time
lines and streak lines may vary at any location of the surface. Thus,
after every integration step the surface has to be checked everywhere
for adaptive refinement or coarsening. This means that, based on an
appropriate refinement/coarsening criterion, new particles have to be
seeded between adjacent points along a particular time or streak line,
or adjacent points have to be merged. This process is computationally
very complex because streak surfaces appear to have a rather large dis-
tortion after their seeding. An increase of the surface area by a factor
of 100 or more is usual, leading to a high number of refinement steps.
It is worth noting that in an interactive application, the adaptive re-
finement/coarsening has to be monitored and carried out at any time
simultaneously with real-time performance.

5 PATCH-BASED STREAK SURFACE GENERATION

By using a patch-based approach, the streak surface generation and
rendering process is split into a set of independent operations on each
patch. These operations can then be executed in parallel, and all the
patches can be rendered independent of each other. The computation
of adjacency information between surface points, as it is required for
the computation of a surface triangulation, can be avoided.

5.1 Patch Generation and Refinement

As described in Section 4, a streak surface can be constructed by re-
peatedly setting out particles on a line-shaped seeding structure over a
certain time interval and by connecting these particles to form a closed
surface. All particles (xi,0, ...,xi,n) released at time ti = t0+ i ∆t reside
on one advancing front. We call this front the time line tli.

Whenever a new time line tli is released, our approach computes
n quadrilateral patches pi,v, with v = 0, ...,n−1. Each patch consists
of four vertices (sv,sv+1,xi,v,xi,v+1), which are duplicated and stored
separately for each patch. The initial time line is removed. The patch
vertices are then advected through the flow as described before, and
the shape changes a patch undergoes due to the particles movements
are used to steer the refinement process.

The refinement of surface patches is performed for each patch sep-
arately wrt. an area-based criterion. Specifically, we set a threshold
to Ξ2, where Ξ is the distance between adjacent points on the seeding
structure. If, at any time, the area of a patch is greater than αΞ2, where
α is a real number larger than 1 controlling the subdivision strength,
the patch is subdivided into two quadrilaterals. This is performed by
splitting the patch along its longest edge and the edge opposite to it.
The two new patches and their vertices are stored separately, and the
refined patch is removed (see Figure 2).

s1

s2

s3

x0,0

x0,1

x0,2

x0,3

p0,0

p0,1

p0,2

s0

s3

x0,0

x0,3

p0,0

p0,1

p0,2

s0 s0

s3

x0,0

x0,3

p1,0

p1,2

x1,0

x1,3

p0,0

p0,2

(a) (b) (c)

p1,1

Fig. 2. (a) A patch-based streak surface representation after the first
time line has been released. (b) Left: Patch p0,1 meets the refinement
criterion and is split into two patches. Right: The surface patches after
the second integration step. The generation of new surface points due
to the splitting operation has lead to a hole in the surface representation.
(c) The corresponding layout of the linear memory segments storing the
surface patches in each time step.

5.2 GPU Implementation

Today, advanced GPU functionality [1] provides new possibilities to
efficiently perform patch-based streak surface generation: the geom-
etry shader can manipulate a primitive stream by appending or re-
moving primitives, and the stream out stage can be used to direct
the resulting stream to intermediate buffers in GPU memory. Since
buffer resources cannot be bound as pipeline input and stream out tar-
get simultaneously, we use two instances and toggle between them in
a ping-pong fashion.

Each surface patch is represented by its four vertices, a scalar value
counting the number of integration steps, and a counter indicating its
refinement depth. On the GPU, for every patch this information is
stored as one contiguous data block in a vertex array buffer. Since cur-
rent GPUs cannot change the size of a resource residing in GPU mem-
ory dynamically, a buffer that is large enough to store the entire streak
surface has to be allocated before the surface construction begins. By
letting the user select the number n of patches that are released in each
time step, the maximum refinement depth d, as well as the maximum
number of integration steps m a patch can perform until it is removed,

the buffer must be able to store n×2d × (m−d +1) patches.

The streak surface construction starts by storing n zero area patch
primitives p

0
j , with j = 0, ...,n − 1, at the beginning of the vertex

array buffer. In the following we assume n to be an even number.
These elements are used in every time step to repeatedly release a
new patch front into the flow. The respective vertices of patch p

0
j are

(s j,s j+1,s j,s j+1). In each integration step, all buffer elements are
passed to the geometry shader and processed as follows: For each of
the first n/2 elements p

0
j with j = 0, ...,n/2−1 the shader writes the

two zero area patches p
0
2× j and p

0
(2× j)+1

to the output buffer. Access

to the vertices of these patches is achieved by binding the input stream
buffer as shader resource. Since these n patches are written first, they
are always at the beginning of the buffer. For each of the remaining
n/2 elements the shader appends two patch elements to the buffer,
which represent the currently released patch front. These patches are
then expanded by integrating their last two vertices to new positions.

For the remaining buffer elements, which contain patches that were
released into the flow at previous time steps, the refinement criterion
is evaluated before the integration is performed. If a refinement is not
carried out, the geometry shader advects the patch vertices, increments
the integration step counter and appends the patch element to the out-
put stream. Otherwise, the geometry shader splits the element as de-
scribed, advects the four original as well as the two new vertices, and
appends the two new primitives to the output stream. The refinement
counters of the new primitives are set to the counters of the refined
patch and incremented by one. Figure 2(c) illustrates the growth of
the vertex array buffer due to the seeding and refinement of surface
patches.

5.3 Patch-based Streak Surface Rendering

The patch-based surface representation can be rendered directly by
sending the vertex array buffer through the graphics pipeline and ras-
terizing the patches separately. However, since T-vertices are intro-
duced by the particular refinement strategy, holes in the surface repre-
sentation can occur. To cover these holes, we adopt a rendering tech-
nique that was introduced by Botsch and co-workers in the context of
point splatting [2]. Figure 3 shows an adaptively refined patch-based
streak surface (α = 1.2), which was rendered using simple point ren-
dering of the patch centroids (left) and the patch-based splatting ap-
proach (right).

Fig. 3. (Left) Rendering of the patch centroids of a patch-based streak
surface. (Right) The same streak surface rendered via quad-splatting.

A two pass rendering approach is performed before deferred per-
pixel surface lighting is computed. Therefore, all patches in the
vertex buffer are rendered twice. In each pass a geometry shader
enlarges every patch by changing its vertices pxk (k = 0, ...,3) to
pxk + β ∣∣pxk − c∣∣. Here, c is the patch centroid and β is a user de-
fined scaling factor. As shown in Figure 4, patches are then split into
the four triangles spanned by their centroid and the patch vertices be-
fore they are rendered.

In the first rendering pass, commonly referred to as visibility pass,
a depth imprint of the enlarged surface patches closest to the viewer
is generated. In the second pass, also known as attribute pass, the
patch-based surface representation is rendered again using a biased
depth test on the generated depth imprint. In this way, only patch sam-
ples close to the first rendered surface survive. In a pixel shader, the
patch attributes like color and normal are weighted by a Gaussian ker-
nel centered at the patch centroid, and these contributions are finally
accumulated via additive blending and normalization. In this way, a
smooth transition of patch attributes is obtained in regions where mul-
tiple enlarged patches overlap.

(b)(a) (c)

c

Fig. 4. (a) Separate triangulation and rendering of each patch leads to
holes in the streak surface. (b) Holes are covered by rendering enlarged
patches. (c) Rendering enlarged patches in a way similar to high-quality
point splatting yields a closed and smooth surface visualization.

Due to the bending of streak surfaces, it can happen that surface
samples having a large geodesic distance from each other become
close to each other and fall into the same pixel. In this case, the bi-
ased depth test might let both samples pass and accumulate in the pixel
buffer. To avoid this we assign two additional parameter values to each
patch. The first value indicates a patch’s position in the ordered set of

4

8

12

16

4

8

12

16

sj-1

sj

sj+1

sj+2

xi,j

xi,j-1

xi,j+1

xi,j+2

xi,j xi,j

4

8

12

16

4 4

8
8

12
12

16 16

xi,j-1

xi,j+1

xi,j+2

xi,j+3

10 10

xi,j

(a) (b)

0

4

8

6

4

2

0

8

6

4

2

0

8

6

4

2

0

5

7

1

ti+1 ti+2 ti+3 ti+4

xi,0

xi,1

xi,2

0 1 1 2

1 1 1

0 1 2 1

2

1 2 2

2 2

0 0 0 0

2

7

xi,0 xi,1 xi,2

xi,0 xi,2 xi,4

xi,0 xi,2

xi,0 xi,3 xi,6

xi,6

8

(c) (d)

Fig. 5. (a) In each time step a new time line is released from the seeding line. Node values show particle ids. (b) Left: Prior to integration, each
particle xi, j evaluates refinement criteria based on its local neighborhood (red). Middle: xi, j satisfies a refinement criterion and performs a particle
split. Right: The resulting time line after the subsequent integration step. (c) Evolution of a time line over four integration steps. Green and red
nodes indicate refinement and coarsening events, respectively. Numbers next to the nodes indicate the refinement level. (d) Changes in the linear
memory segment bi due to vertex refinement/coarsening.

all possible patches along the seeding structure. Starting with the ini-

tial patches pi,v, which are assigned the positions v× 2d , in every re-
finement step the first new patch keeps the position of the refined patch

and the second patch adds 2d−k to this position. Here, k is the current
refinement level. The index i of each patch is assigned as the second
parameter value. In the visibility pass, these values are rendered into
a separate render target, and they are then used in the attribute pass to
discard those fragments that are close to the rendered surface samples
but have parameter values that differ more than a given threshold.

6 MESH-BASED STREAK SURFACE GENERATION

Patch-based streak surface generation entirely avoids to store and up-
date any connectivity between the patches. On the other hand, because
every patch stores its own set of vertices even though they might be
shared between patches, a considerable amount of memory is wasted
and numerical integration of the same vertex is performed up to four
times. To overcome this overhead we propose a novel GPU approach
to construct an adaptive triangular streak surface representation from
the set of seeded particles.

Similar to the data layout that was used in the patch-based approach,
all particles seeded into the flow are stored in a linear vertex buffer.

Each initially seeded particle xi, j is assigned an index idi, j = j × 2d ,
where d is the maximum refinement depth. The particle set belonging
to a particular time line tli is stored in a contiguous block bi in this
buffer. The blocks are ordered such that block bi−1 follows block bi,
with block b0 being the last in the buffer.

In every time step the particles are processed in the order of their
occurrence in the buffer, and they are written to the output buffer in
the same order. If a new particle is generated due to the splitting of an
existing particle, it is placed directly behind this particle in the output
buffer. If a particle is removed, it is simply not written into this buffer.
On the GPU this is realized by executing a geometry shader with a
variable primitive output of 0-2 elements for each incoming primitive.
In the same way as described in the previous section, the maximum
buffer size has to be computed up front depending on the number of
particles per time line, the maximum refinement depth, and the maxi-
mum number of integration steps. Then, two ping-pong buffers of this
size have to be allocated.

6.1 Particle Refinement

Our method for generating an adaptive streak surface triangulation
from a given set of subsequently released time lines can be separated
into three passes:

∙ Time line refinement: Every time line is refined/coarsened based
on local criteria like stretching, compression, and line curvature,
as well as a global criterion taking into account the change in
surface area.

∙ Connectivity update: The connectivity between particles on ad-
jacent time lines is established.

∙ Streak line refinement: The connectivity information is used to
compute local streak line properties, which are considered to
steer the refinement of streak lines.

6.1.1 Time line refinement

Time line refinement adapts the particle density along each time line
prior to the particle integration. The refinement/coarsening criteria
we apply have been adopted from previous work in the field. The
first criterion considers the flow divergence at a particle position as
introduced in [9]. Let Φ(x,y) be the distance between particles x and
y, and Ξ the initial distance between two adjacent seed points, then
the particle xi, j spawns a new particle between xi, j and xi, j+1—we call
this operation particle splitting—if

Φ(xi, j,xi, j+1)> α Ξ (2)

Similar to [8], the second criterion considers the approximate local
curvature along a time line. Let Θ(u,v,w) be defined as

Θ(u,v,w) =

(

u−v
∣∣u−v∣∣ ⋅

w−v
∣∣w−v∣∣

)

+1

2
(3)

where u,v,w are three particle coordinates. A particle xi, j is split if

Θ(xi, j−1,xi, j,xi, j+1)+Θ(xi, j+2,xi, j+1,xi, j)> β (4)

In this way, the deviation of the time line from a straight line is ap-
proximated and used to steer the local time line refinement.

Particle splitting is performed by fitting a cubic polynomial p(t)

through xi, j−1, xi, j, xi, j+1 and xi, j+2, and by evaluating p(t) at t = 1
2 :

p(1/2) =−
1

16
(xi, j−1 +xi, j+1)+

9

16
(xi, j +xi, j+2) (5)

Based on the indices idi, j of the initially seeded particles xi, j , every
new particle on a time line gets assigned its index in the ordered set
of all possible particles along this line as described in the previous
section for surfaces patches. We will subsequently call these indices
the particle ids. Figure 5 illustrates the changes in the particle layout
on a time line due to refinement and coarsening events.

To prevent the streak surface from unlimited stretching, we adapt
a criterion that was proposed for stream surfaces in [9]. We compare
the current distance between two particles to their distance in the last
time step in relation to the distance a particle has moved due to the
integration. Let Ψ(x,y, t) be the distance between particles x and y at
time t, and xi, j,t the position of particle xi, j at time t. We mark an
edge as invalid, meaning that it will not be refined any further, if the
following expression evaluates to true:

Ψ(xi, j,xi, j+1, t)−Ψ(xi, j ,xi, j+1, t −1) > γ Φ(xi, j,t ,xi, j,t−1) (6)

If an edge has been classified as invalid or cannot be refined any
further, it is not considered in the triangulation of the streak surface

described below. In this way, the surface is cut in regions where it
stretches too much, e.g., if it evolves around obstacles in the flow as
demonstrated in Figure 6. Finally, in addition to inserting new parti-
cles we remove a particle xi, j if the following condition is met:

(Φ(xi, j,xi, j−1)+Φ(xi, j,xi, j+1)< δΞ) ∧

(Θ(xi, j−1,xi, j,xi, j+1)+Θ(xi, j ,xi, j+1,xi, j+2)< ζ) (7)

Due to this coarsening we avoid vertex clustering in regions of high
convergence, and we prevent the generated triangles from becoming
too small.

Fig. 6. Application of criterion (6) prevents a streak surface from un-
limited stretching by cutting edges if no additional refinement can be
performed.

6.1.2 Connectivity update

Due to time line refinement and coarsening the connectivity between
particles on adjacent time lines has to be computed in each integration
step. Therefore, every particle on time line tli searches for the particle
on tli+1 and the one on tli−1 having the id closest to its own one on the
respective time line. We will call these two particles the predecessor
and the successor of a particle. In particular, for a particle xi, j we
select the successor xi+1,succ with the closest id ≤ the particle’s id
and the predecessor xi−1,pred with the closest id ≥ the particle’s id
(see Figure 7 (a)). Once the predecessor and the successor have been
determined, references to them are stored as offsets to the absolute
position of the particle in the vertex array buffer, and they are used as
described below to build a closed surface representation.

Finding the two particular neighbors requires every particle to
search the vertex buffer to the left and to the right of it, with the search
radius depending on the number of particles on time lines tli−1, tli and
tli+1. We will describe in Section 6.3 how to determine these numbers
in a very efficient way on the GPU.

8

12

16

4 4

8

12

16

8

10

14

6

8

12

8

12

1010

10

xi,j

xi-1,pred

xi+1,succ

xi+1,succ+1

xi-1,pred-1

z dist

tli+1 tli tli-1tli+1 tli tli-1

xi,j

(a) (b)

Fig. 7. (a) Each particle on time line tli selects its successor (red arrows)
and predecessor (green arrows) on adjacent time lines based on the
closest matching particle id. (b) The distance estimate of a particle xi, j

to its adjacent time line tli+1 is based on an intermediate particle z,
exhibiting the same particle id.

6.1.3 Streak line refinement

In this pass, a complete time line is added to or removed from the
streak surface. The criterion to steer the refinement/coarsening is
based on the maximum Euclidean distance between neighboring time
lines.

A new time line is inserted between tli and tli+1 if the maximum of
the shortest distances between particles on tli and the time line tli+1

exceeds a user defined threshold. An existing time line is removed if
the maximum of the shortest distances to both adjacent time lines falls
below a given threshold. Unfortunately, since we do not know the
exact time line between the given vertices, computing the shortest dis-
tance from a particle to this line is not possible in general. Therefore,
we proceed as follows: Since xi+1,succ is the closest existing control
point on tli+1 with idi+1,succ ≤ idi, j and its adjacent particle xi+1,succ+1

has a larger particle id, we first interpolate an intermediate position z
on the line segment spanned by xi+1,succ and xi+1,succ+1 as follows:

a =
idi, j − idi+1,succ

idi+1,succ+1 − idi+1,succ

z = xi+1,succ +a(xi+1,succ+1 −xi+1,succ) (8)

We then compute the Euclidian distance between xi, j and z, and we
use this distance as the shortest distance of xi, j to the time line tli+1.
The distance to the preceding time line tli−1 is determined analogously
(see Figure 7(b)).

A new particle front that is added due to streak line refinement con-
tains the same number of particles as the time line triggering the re-
finement event. As shown in Figure 8, the new front is stored as a
contiguous block in the vertex buffer right before this time line. Parti-
cle positions and normal values are linearly interpolated between xi, j
and intermediate values on tli+1 as described in Equation (8).

tl2 tlr tl1 tl0

(a) (b)

tl2 tl1 tl0

tl2 tlr tl1 tl0

Fig. 8. Streak line refinement: (a) The time line tl1 satisfies the refine-
ment criterion and spawns the new time line tlr . The corresponding
changes in the vertex array buffer are illustrated in (b).

6.2 Streak Surface Triangulation and Rendering

To render the surface as a watertight triangle mesh a final pass is exe-
cuted. Prior to triangulation, a geometry shader validates the connec-
tivity and updates the neighborhood for all particles residing on time
lines whose adjacent time lines have been removed due to streak line
refinement.

A closed surface representation is generated by using the particle
connectivity to compute a triangulation of adjacent time lines. For
each particle that is sent to the rendering pipeline the geometry shader
creates two triangles and appends them to the output stream. The first
triangle is spanned by the vertex xi, j, its local right neighbor xi, j+1,
and its successor on the time line tli+1. The second triangle consists
of the vertex xi, j , its local left neighbor xi, j−1, and its predecessor on
the time line tli−1. Since this process is performed for every vertex, a
watertight surface is generated. Figure 10 illustrates this triangulation
process.

Triangles containing an edge that was marked invalid due to the cri-
terion in Equation (6) are excluded from the output stream. Note that
particles on the surface border (i = 0∨ i = n∨ j = 0∨ j = m) contain at
least one invalid neighbor, such that the corresponding triangle is also
excluded from the stream out.

Fig. 9. (a) The surface parametrization, consisting of time line and particle ids, is used to color the surfaces with stream lines. (b) Visualization of
transparent streak surfaces by application of depth peeling.

Once the triangulation has been generated it can be rendered di-
rectly using various rendering styles. Since the tupels i, idi, j that
are stored for each particle correspond to a surface parametrization,
they can be used to texture the streak surface. In Figure 9 (a) this
parametrization was used to color the surface with streak lines. In (b)
depth peeling was applied to create a semi transparent visualization of
the streak surface, which was combined with image based edge detec-
tion to amplify sharp features on the streak surface.

tli-1tlitli+1

xi,j

xi,j-1

xi,j+1

xi-1,predxi+1,succ

(a)

(b) (c)

Fig. 10. Streak surface triangulation: (a) Vertex connectivity and refine-
ment events: Green edges indicate vertex splitting, blue edges indicate
vertex merging, and red edges indicate streak line refinement. The re-
sulting triangulation is shown in (b). In (c) the two triangles generated
by the vertex xi, j are colored blue. Colored yellow are the two triangles
generated by vertex xi, j+1.

6.3 GPU Implementation

In mesh-based streak surface generation, analogously to the particles,
each time line gets assigned a unique id and a counter indicating its
refinement depth. For a time line released at time ti = t0 + i ∆t the id

is set to 0 and incremented by 2d in each time step. New time lines
that are added due to a refinement event adapt this key in the same
way as it was described for particles before. This key is then used by
the particles on each time line to index into a 1D array—having as
many entries as there can be time lines—that stores time line specific
information. On the GPU, this array is realized as 2D texture to avoid
texture resolution limits. Figure 11 shows the content of this array for
a set of time lines before (a) and after one integration step (b).

Furthermore, each particle carries two additional offsets, which are
used in combination with the time line id to determine the id of ad-
jacent time lines. These offsets are initialized with 2d and changed
accordingly whenever streak line refinement adds/removes an adja-
cent time line. Figure 11 (c) depicts the change of offsets due to the
refinement of time line tli−1.

Parallel to the buffer update during time line refinement (see 6.1.1),
we bind a texture render target to the rendering pipeline and rasterize

tli-2tli-1tli

34 3

tli-1tli

4 33

tli+1 tli-1tli

4 33

tli+1

3

tlr

(a) (b) (c)

Fig. 11. Three time lines of nine possible time lines exist. The number
of vertices on each time line is stored in corresponding entries in a 1D
array. Red/green arrows indicate the offsets every time line stores to
its neighbors in the array. (a) Array indices before and (b) after one
integration step. (c) Offsets to adjacent time lines change due to streak
line refinement.

each particle as a point primitive into the texel indexed by the respec-
tive time line id. By using additive blending, the number of particles
residing on each time line is obtained and can be accessed by the par-
ticles during the connectivity update and streak line refinement passes.

In the connectivity update pass every particle writes to a second
array its absolute position in the vertex array buffer in the same way.
By using a maximum blend operator, the second array contains for
each time line the absolute vertex buffer position of the last particle
on the respective time line. These values are needed in the streak line
refinement pass to append all particles on a new time line as contiguous
block to the vertex array buffer. Additionally, for each particle its
distance to neighboring time lines is computed during the connectivity
update, and the maximum distance to each adjacent time line is stored
separately in an additional texture target. These values are then used
in streak line refinement to evaluate the refinement criterion.

To find successors for particles on tli, the connectivity pass has to
search in an interval containing as much elements as there are on tli
and tli+1 because the absolute position of a particle in its respective
memory block bi is not yet known. The tuple of time line and particle
ids forms a strictly monotonic increasing key over the whole vertex
array buffer that is used in a binary search in the interval to the left of
a particle to find its successor. The predecessor is determined analo-
gously.

In streak line refinement, new time lines are appended as contiguous
blocks to the vertex array buffer. Each particle on a time line tli that
triggered a streak line refinement decides based on its absolute position
in the memory block bi whether it should contribute two particles to
the new time line or account for two particles of tli.

During both refinement passes, we do not remove neighboring par-
ticles/time lines at once. If multiple adjacent particles satisfy the coars-
ening criterion in the time line refinement pass, we remove only every
second particle. The decision which particle will be removed is based
on a modulo criterion applied to the tuple of particle id and depth
counter. Analogously we do not remove adjacent time lines at once
during the streak line refinement pass.

7 RESULTS AND DISCUSSION

To validate our methods for GPU-based streak surface generation and
rendering, we have realized the developed algorithms with the DirectX
10 API. Performance tests were carried out on a 2.66 GHz Core 2 Duo
processor, equipped with a NVIDIA GTX280 graphics card with 1024
MB local video memory. Results were rendered to a 2560 × 1600
viewport. In all of our experiments an explicit fourth-order Runge-
Kutta scheme at single floating point precision was used for numer-
ical particle integration. Detailed timings for interactive streak sur-
face construction and rendering are given below. For the efficient han-
dling of time-varying flow fields on the GPU we utilize the two-stage
streaming approach that was presented in [5].

We have tested the proposed approaches in two real-world scenarios
consisting of time dependent 3D simulation results given on Cartesian
grids:

∙ Flow around a square cylinder: Result of a DNS simulation
of the three-dimensional flow around a square cylinder between
parallel walls at Re = 220.0 [12]. The simulation was carried out
on an unstructured tetrahedral grid. We used a resampled version
with a uniform grid resolution of 192× 64× 48 and a temporal
resolution of 102 steps in the course of our work.

∙ Flow around a cylinder: Large eddy simulation of an incom-
pressible unsteady turbulent flow around a wall-mounted cylin-
der at Re = 200.000 [6]. 22 time steps were simulated. The size
of the data grid is 256×128×128.

7.1 Performance

Representative timings in milliseconds (ms) for integration, adaptive
refinement and rendering using the patch-based approach are listed in
Table 1. Values in the first three columns show the number of patches
n, the maximum particle lifetime m, and the refinement depth d. The
values in column labeled Pts show the average number of surface
patches. Column Int contains timings for integration and refinement,
Vis for the rendering of the resulting surface, and column Ttl the total
amount of time required for the construction of the adaptively refined
streak surface and subsequent rendering. As some of the presented set-
tings require buffers larger than the available GPU memory, we used
static buffer sizes independent of the chosen parameters but increased
their size in case of a buffer overflow and restarted the performance
test.

n m d Pts Int Vis Ttl

50 500 4 40k 1.3 5.0 7.5
50 500 8 55k 1.8 6.6 9.9

100 1000 4 128k 3.6 5.4 10.5
100 1000 8 167k 4.7 7.0 13.5
200 1000 4 365k 9.4 9.9 20.6
200 1000 8 545k 13.9 14.6 29.9
400 1000 4 1.28M 28.5 30.0 59.7
400 1000 8 2.08M 48.8 49.8 99.8

Table 1. Performance statistics for the patch-based streak surface gen-
eration and rendering. Timing statistics in milliseconds are listed in
columns 5-7. Even for more than one million surface patches the streak
surface construction and rendering took less than 60 milliseconds.

Timing statistics for mesh-based streak surface generation and ren-
dering are given in Table 2. The maximum depth for both refinement
strategies were equally set to d. Values in the column labeled Pts con-
tain the number of surface particles, column Int and Con show the
times that were required for particle integration including time-line re-
finement and the connectivity update, respectively. Column Slr gives
timings for streak line refinement and column Vis gives the time re-
quired for surface triangulation and rendering. Finally, column Ttl
shows the total time required for the construction and rendering of the
adaptively refined triangular mesh.

n m d Pts Int Con Slr Vis Ttl

30 500 4 49k 2.4 1.1 0.9 2.2 8.1
30 500 8 64k 3.1 1.4 1.0 2.8 9.5
50 500 4 116k 5.2 2.3 1.8 4.6 14.8
50 500 8 188k 8.0 3.8 2.5 7.3 22.3
100 1000 4 295k 12.0 5.8 3.8 11.2 34.2
100 1000 8 351k 14.1 7.1 4.4 13.3 39.8
200 1000 4 952k 36.7 20.3 11.3 35.5 105.0
200 1000 8 1.18M 46.0 25.7 14.1 44.7 132.2

Table 2. Performance statistics for the mesh-based streak surface gen-
eration and rendering. Columns 5-9 present timings in milliseconds.
The construction and rendering of a mesh-based streak surface con-
sisting of more than 350K particles took less than 40 milliseconds.

7.2 Quality Comparison

To compare the visual quality, we have used both approaches to gener-
ate the same streak surfaces at comparable sample densities. As shown
in Figure 12, the patch-based approach suffers from artifacts that are
common to point-splatting approaches. In particular, the patch align-
ment in regions of high curvature tends to produce rather rough surface
structures. While increasing the patch areas can cure those artifacts,
it tampers with the actual extracted streak surface and requires to in-
crease the bias of the attribute pass. This, however, in turn leads to
the accumulation of incoherent surface parts. In addition, blending of
overlapping patch attributes tends to blur high frequent surface fea-
tures. The mesh based approach, on the other hand, avoids all these
problems and delivers a closed surface representation that can be ren-
dered using standard polygon rasterization. Sharp features and high
frequent geometric details are preserved and the interpolation of ver-
tex normals results in a smooth illumination.

Fig. 12. This image shows the same streak surface that was generated
using the patch-based (top) and the mesh-based (bottom) approaches
at comparable sample density. While patch-based splatting results in
artifacts and blurring at fine surface details and silhouettes, the mesh-
based approach yields a high-quality surface representation.

To achieve comparable quality, the patch-based approach requires
a significantly higher sampling density. The following plot shows the
sample density of both approaches, extracting streak surfaces at com-
parable visual quality.

0K

50K

100K

150K

 0 200 400 600 800 1000 1200 1400

#
 P

ri
m

it
iv

e
s

Integration steps

Patch-based
Mesh-based

0K

100K

200K

300K

400K

 0 100 200 300 400 500 600 700 800 900

#
 P

ri
m

it
iv

e
s

Integration steps

Patch-based
Mesh-based

Fig. 13. The plots show the sample density of both approaches during
streak surfaces generation at comparable visual quality. Top: Statistics
for the square cylinder data set. Bottom: Statistics for the LES data set.

7.3 Conclusion

In this paper, we have presented two real-time techniques for con-
structing and rendering adaptively refined streak surfaces on the GPU.
The patch-based approach performs particle integration and adaptive
refinement in one step. In the proposed setup we tried to minimize
additional complexity regarding the refinement criterion, integration
expense and the maximum output performed by the geometry shader,
resulting in real time performance even for huge amounts of patches
traced in parallel. We also presented visualization methods for this
representation by adapting point-splatting techniques to render the
loose patch set as closed surface.

The mesh-based approach addresses the increased integration ex-
pense by introducing connectivity information between the surface
samples. This does not only remove redundant particle integration but
also allows the application of more sophisticated adaption criteria as
well as coarsening the particle set during surface construction. On that
account, the mesh-based approach delivers visually comparable streak
surfaces to the patch-based approach with a much smaller set of sur-
face samples. Furthermore, the closed surface representation can be
rendered outright and a multitude of rendering styles can be applied
efficiently.

We are aware of the fact that the current triangulation can lead to
distorted triangles in highly diverging flow regions or areas of high
shear strain between adjacent time lines. Thus, we will investigate
alternative triangulation methods in the near future.

As the proposed techniques have only been validated for flow fields
on cartesian grids, we will investigate their performance on unstruc-
tured grids in the near future. Since none of our techniques inherently
depend on a uniform grid structure, we expect this implementation
to be straightforward. Yet, as particle tracing in unstructured grids
comes at an additional expense due to more complex operations for
point location and interpolation, it will most likely make the mesh-
based approach the favorable technique not only in terms of quality of
the resulting image but also performance wise.

ACKNOWLEDGMENTS

The authors wish to thank Simone Camarri and co-workers for provid-
ing the square cylinder data set as well as Tino Weinkauf for provid-
ing the downsampled version. Furthermore we wish to thank Octavian
Frederich et al. for providing the second time-dependent data set.

REFERENCES

[1] D. Blythe. The Direct3D 10 system. SIGGRAPH ’06: ACM SIGGRAPH

2006 Papers, pages 724–734, 2006.

[2] M. Botsch, A. Hornung, M. Zwicker, and L. Kobbelt. High-quality sur-

face splatting on today’s GPUs. Proceedings Eurographics/IEEE VGTC

Symposium Point-Based Graphics, 0:17–141, 2005.

[3] R. W. Bruckschen, F. Kuester, B. Hamann, and K. I. Joy. Real-Time Out-

of-Core Visualization of Particle Traces. In IEEE 2001 Symposium on

Parallel and Large-Data Visualization and Graphics (PVG2001), pages

45–50, 2001.

[4] K. Bürger, P. Kondratieva, J. Krüger, and R. Westermann. Importance-

Driven Particle Techniques for Flow Visualization. In Proceedings of

IEEE VGTC Pacific Visualization Symposium 2008, 2008.

[5] K. Bürger, J. Schneider, P. Kondratieva, J. Krüger, and R. Westermann.

Interactive Visual Exploration of Instationary 3D-Flows. In Eurograph-

ics/IEEE VGTC Symposium on Visualization (EuroVis), pages 251–258,

2007.

[6] O. Frederich, E. Wassen, and F. Thiele. Flow Simulation around a Fi-

nite Cylinder on Massively Parallel Computer Architecture. In Inter-

national Conference on Parallel Computational Fluid Dynamics, pages

85–93, 2005.

[7] C. Garth, H. Krishnan, X. Tricoche, T. Bobach, and K. I. Joy. Generation

of Accurate Integral Surfaces in Time-Dependent Vector Fields. IEEE

Transactions on Visualization and Computer Graphics, 14(6):1404–

1411, 2008.

[8] C. Garth, X. Tricoche, T. Salzbrunn, T. Bobach, and G. Scheuermann.

Surface Techniques for Vortex Visualization. In Proceedings of Joint Eu-

rographics - IEEE TCVG Symposium on Visualization, pages 155–164,

2004.

[9] J. P. M. Hultquist. Constructing stream surfaces in steady 3D vector

fields. In VIS ’92: Proceedings of the 3rd Conference on Visualization

’92, pages 171–178, 1992.

[10] J. Krüger, P. Kipfer, P. Kondratieva, and R. Westermann. A Particle Sys-

tem for Interactive Visualization of 3D Flows. IEEE Transactions on

Visualization and Computer Graphics, 11(6):744–756, 2005.

[11] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch. Feature

Extraction and Visualisation of Flow Fields. In Eurographics 2002 State

of the Art Reports, pages 69–100. 2002.

[12] S.Camarri, M. Salvetti, M. Buffoni, and A.Iollo. Simulation of the three-

dimensional flow around a square cylinder between parallel walls at mod-

erate Reynolds numbers. In Proceedings of XVII Congresso di Meccanica

Teorica ed Applicata, 2005.

[13] T. Schafhitzel, E. Tejada, D. Weiskopf, and T. Ertl. Point-based Stream

Surfaces and Path Surfaces. In Proceedings of Graphics Interface 2007,

pages 289–296, 2007.

[14] G. Scheuermann, T. Bobach, H. H. K. Mahrous, B. Hamann, K. Joy, and

W. Kollmann. A Tetrahedra-based Stream Surface Algorithm. In VIS

’01: Proceedings of the Conference on Visualization ’01, pages 151–158,

2001.

[15] M. Schirski, C. Bischof, and T. Kuhlen. Interactive Particle Tracing on

Tetrahedral Grids Using the GPU. In Proceedings of Vision, Modeling,

and Visualization (VMV), pages 153–160, 2006.

[16] D. Schneider, A. Wiebel, and G. Scheuermann. Smooth Stream Surfaces

of Fourth Order Precision. In Eurographics/IEEE VGTC Symposium on

Visualization (EuroVis), pages 871–878, 2009.

[17] H.-W. Shen, G.-S. Li, and U. D. Bordoloi. Interactive Visualization

of Three-Dimensional Vector Fields with Flexible Appearance Control.

IEEE Transactions on Visualization and Computer Graphics, 10(4):434–

445, 2004.

[18] D. Stalling. Fast Texture-based Algorithms for Vector Field Visualiza-

tion. PhD thesis, FU Berlin, Department of Mathematics and Computer

Science, 1998.

[19] J. J. van Wijk. Implicit Stream Surfaces. In VIS ’93: Proceedings of the

4th Conference on Visualization ’93, pages 245–252, 1993.

[20] W. von Funck, T. Weinkauf, H. Theisel, and H.-P. Seidel. Smoke Sur-

faces: An Interactive Flow Visualization Technique Inspired by Real-

World Flow Experiments. IEEE Transactions on Visualization and Com-

puter Graphics, 14(6):1396–1403, 2008.

