
Interactive Geometry Decals

Jens Schneider Joachim Georgii Rüdiger Westermann

Technische Universität München
Email: {jens.schneider|georgii|westermann}@tum.de

Abstract

We present a novel real-time method for geomet-
ric displacement mapping on arbitrary 2-manifold
triangle meshes. It is independent of the surface
resolution and allows very fine geometric details to
be added. We first compute a local surface param-
eterization using barycentric particle tracing and a
constrained mass-spring system. This system satis-
fies the hard constraint of keeping all mass points
on the surface. We propose a novel, entangled
spring topology that is regularly 6-connected and
has a chromatic number of 2. Therefore, the sys-
tem can be efficiently solved on the GPU using a
Gauss-Seidel solver. To render the displaced sur-
face, we introduce a new GPU technique to cut out
a surface patch at sub-pixel precision. The displace-
ment mesh is then smoothly blended into the result-
ing opening. We show that our method overcomes
common problems of displacement mapping such
as limited resolution of the base surface and the
need for a low-distortion global parameterization.

1 Introduction

Displacement mapping [4, 5] is a popular method
to add geometric details to a 3D polygonal object
that are difficult to model explicitly. When used
to augment polygonal surfaces displacement map-
ping requires fine mesh subdivision such that the
surface can accurately reflect the desired geomet-
ric details. If the surface regions are known where
geometric details will be added, these regions can
be refined locally in a pre-process. However, in
scenarios where the detail geometry is dynamically
moved or re-positioned, this requirement limits the
use of displacement mapping. In this case, the sur-
face has either to be subdivided uniformly up to the
maximum required resolution, or the affected sur-
face regions have to be refined adaptively. Both ap-
proaches have drawbacks because they require ei-

Figure 1: High-resolution geometry decals (5122

each) added to a textured model. Our method is
independent of the resulution of the base mesh and
it achieves interactive frame rates for the placement
and rendering of the decals.

ther a huge amount of primitives to be stored or
a local refinement kernel to be evaluated in every
frame. Furthermore, because vertex positions in the
refined mesh do generally not coincide with the po-
sitions of samples in the displacement field, severe
reconstruction artifacts can occur.

1.1 Contribution

In this paper we present a fast and high-quality
method for mapping fine-detail geometric displace-
ments onto 2-manifold triangle base meshes that
is independent of the mesh resolution. This
is achieved by using a separate displacement
geometry—the displacement grid—to replace parts
of the base mesh. To align the displacement grid
with the base surface, we present a novel approach
to interactively compute a local surface parameteri-
zation. We trace a regular 2D grid on the base sur-
face, and we then introduce a special 6-connected
constrained mass-spring system to interactively re-
lax the grid towards isometry. The mass-spring sys-
tem is solved directly on the 3D surface, thereby en-
forcing all mass points to stick to this surface. Due
to the special topology of the spring network, the
relaxation process can be accelerated significantly
by a modified GPU-based constrained Gauss-Seidel

VMV 2009 M. Magnor, B. Rosenhahn, H. Theisel (Editors)

solver. Vertices of the relaxed grid are finally
displaced using a pre-computed displacement field
(also see Figure 1).

Figure 2: At saddle points, many local parameter-
izations show distortions. Left: The method by
Schmidt et al. [27]. Right: Our method results in
less severe distortions at patch boundaries.

The resulting parameterization is similar to the
discrete exponential map approach by Schmidt et al.
[27], yet it does not generally map geodesics in the
tangent plane to geodesics on the surface. However,
our method generally results in less distortions (see
Figure 2) since we construct the parameterization
in a forward manner by tracing paths on the mesh.
Unlike the patchino approach [25] we do not require
a global parameterization of the base mesh.

To render a visually smooth transition between
the base mesh and the geometry decal, we intro-
duce a cutout mask to discard the part of the base
mesh that is covered by the geometry decal. The
decal is then blended smoothly into this opening.
To enable a seamless embedding of the decal into
the base mesh, appearance properties such as tex-
ture coordinates and tangent frames are propagated
from the base mesh to the decal for rendering.

Currently, our method is limited to local dis-
placements constructed from height fields. We do
not provide means to cover the entire base surface
and we assume the geometric features added to be
small compared to features of the base surface.

2 Related Work

Today, subdivision-based displacement mapping
can be efficiently performed using GPU-based tech-
niques [9, 33, 30, 18, 19, 3]. While being a fine
technique, uniform subdivision results in a huge
amount of triangles to be computed, stored, and ren-
dered if small geometric features are added. Adap-
tive subdivision can alleviate this short-coming, but
it is not suitable for real-time applications that move
displacements dynamically across the base surface.

The reason is that dynamic memory allocation can-
not be performed efficiently on recent GPUs. Al-
though future graphics APIs will provide function-
ality for adaptive subdivision [14], the performance
implications are not yet clear. Furthermore, the tri-
angulation of the subdivision surface is generally
not aligned with the displacement field, resulting in
potential reconstruction artifacts.

As an alternative to geometric displacement map-
ping, image-based techniques seek to simulate the
appearance of a displaced object without the dis-
placement being modeled geometrically. Prominent
examples include bump [2], parallax [20], and relief
mapping [24, 26]. These techniques can achieve in-
teractive frame rates at a reasonable image quality,
but they require a consistent surface parameteriza-
tion to map the displacement onto the surface.

View-independent and generalized displacement
maps [34, 35] store a five-dimensional map of the
displacements in which the distance between the
surface and the displaced geometry is encoded for
each potential view. These methods handle sil-
houettes correctly and do not require a surface pa-
rameterization. Shell-based methods encode dis-
placements into image layers or volumetric textures
[23, 21, 10], thereby modeling the displacement as
a spatial structure. However, all these methods re-
quire substantial pre-processing and compression if
the displacement field changes.

Most traditional displacement techniques map
the displacement field to the underlying surface via
a parameterization. Generating a low-distortion
parameterization on an arbitrary 2-manifold mesh,
however, is numerically involved [13, 17, 29]. A
particular class of methods computes surface pa-
rameterizations by solving linear systems [6, 22,
37, 31, 36, 28] or graph searches [27]. Thus, these
approaches are suitable for interactive applications.
Specifically, local parameterization techniques us-
ing spring networks [12, 25] interpret a part of the
mesh as a mass-spring network. Then, they fix the
boundary of this part in a 2D domain and they re-
lax the network to a steady configuration that mini-
mizes some energy functional.

3 Displacement Grid Layout

Our displacement mapping technique takes as in-
put an arbitrary surface point pc, a height field, its
orientation dc at pc in the surface’s local tangent
plane, and the extent of the displacement field in

object space. Figure 3 illustrates these settings for
a particular example. The mapping of the displace-

Figure 3: Displacement mapping overview. Top
left: A coarse grid is traced on the surface, start-
ing with the center point (red) and a reference di-
rection (blue). Top right: A higher resolution grid.
Bottom left: The displaced grid. Bottom right: The
rendered surface.

ment field onto the surface is then performed with-
out any further user intervention. It is computed in
two phases: the initial grid layout phase, which is
entirely performed on the CPU due to the inherently
sequential nature of the algorithm, and the grid re-
laxation phase, which can be executed efficiently in
parallel on the GPU.

In the first phase, a regular grid is traced on the
surface using barycentric vertex tracing. This trac-
ing proceeds by “jumping” from one triangle edge
to the next one until a pre-defined distance has been
exceeded. The final vertex position can then be
determined by linear interpolation between the last
two edge crossings.

Starting at pc, three new grid vertices are gener-
ated by moving a step on the surface along dc, a di-
rection d′

c orthogonal to dc, and the half-way direc-
tion between dc and d′

c (see Figure 4(2)). Step sizes
are chosen according to the grid spacing. Next, the
resulting 2× 2 grid is grown along ±dc and ±d′

c as
shown in Figure 4(3). At each corner vertex, a new
direction half-way between the respective propaga-
tion directions is computed and used to generate
a new corner point (see Figure 4(4)). Every new
non-corner vertex stores the direction it was reached
from and uses this direction to advance the grid ver-
tices in the next iteration. To constrain each vertex
to the surface, directions are first rotated into the
plane spanned by the triangle containing the vertex
before using them to advance the grid. At corner
vertices, the two respective front directions are first

rotated into the tangent plane, and they are then av-
eraged to obtain the direction into which to advance
the vertex.

1 2 3 4 6

q

50 4

qq

4

q q q

5

10

p
1

p
2

pp
3

2 3 10

p
1

p
2

2 3

p
3

pp p

q q

Figure 4: Tracing of a quadrangular grid. The user
picks a position (1) and the patch is automatically
grown around this position (2-6) using an advancing
front algorithm (new points are colored green).

To prevent the traced grid from having self-
intersections, we exploit the knowledge we have
about the relative position of vertices to each other
in the 2D grid. If a position qi is “left” of a posi-
tion qi+1, then, after advancing the front to obtain
pi+1 from qi and pi+2 from qi+1 (the index shift
stems from corner points), pi+1 should be “left” of
pi+2. Although the notion of “left” is intuitive in
flatland, it becomes highly complex on curved sur-
faces. Hence we first compute a plane η spanned by
the base surface normal at qi and the edge from qi to
pi+1. If the positions qi+1 and pi+2 are on the same
side of η, we connect them by an edge and proceed.
If not, positions pi+1 and pi+2 have to be swapped
in the current front, and we proceed by checking
the ordering between pi and pi+1 by backtracking
one position (see Figure 5). To prevent grid edges
to cross again in an upcoming step, the tracing di-
rections of two vertices are replaced by their aver-
age direction. The described method can resolve all

21 3 4
q

4

qqqq

4

qq

0

q q

4

qq q q

4

qqq

pp
1

0

p
3 3

3

p

32

p
1

0

2
p

p
32

p

1

p
3

2
p p

3 12

p
1p p

0 13

η

2

p

1

12
p p

02

Figure 5: Since naı̈ve connectivity of propagating
fronts (1) results in folds (2), re-ordering the posi-
tions (3) is used to avoid these problems (4).

folds that are caused by adjacent vertices in the grid.
To avoid folds that are caused by vertices connected
via more than one edge, k-tuples of positions have
to be examined. Since for large k the underlying
base mesh cannot be safely assumed to be locally
planar, a plethora of pathological cases arises that
seem to be very difficult—if at all possible—to re-
solve. To avoid these cases, we only use a small

neighborhood k = 3, . . . , 5 at the risk that not all
folds are resolved.

4 Grid Relaxation

To improve the quality of the displacement grid,
we utilize a mass-spring-based system. A center of
mass is placed at every vertex and each edge is in-
terpreted as a spring. Note that this notion does not
exclude additional springs that do not coincide with
edges. In our scenario, two types of constraints have
to be ensured

1. Soft constraints: Each spring has to recon-
stitute its rest length. This is handled directly
by the mass-spring system. In a converged
state, internal forces due to compression of
springs are compensated by opposing external
forces. A stiffness can be associated with each
spring to modify the importance of the respec-
tive constraint.

2. Hard constraints: Each mass point (vertex)
has to be constrained to the base surface.
While the initial grid satisifies this constraint,
it has to be enforced during the relaxation pro-
cess.

Figure 6: A 2D grid is placed on the nose of the
Mannequin mesh. From left to right: The initial
grid, the relaxed grid after 16 iterations, the final
grid after 36 iterations.

Figure 6 depicts our mass-spring system that obeys
these constraints.

The challenge in the grid relaxation process is
to efficiently ensure all hard constraints. Even for
one single vertex, the number of hard constraints is
on the order of the number of triangles of the base
mesh. Therefore, it is impractical to incorporate
all hard constraints into the system of mass-spring
equations. We propose a constrained Gauss-Seidel
solver that solves one vertex at a time and then im-
mediately enforces the hard constraint for this ver-
tex. In Section 6 we show that the convergence of
our solver benefits greatly of considering hard con-
straints as soon as possible. Note that this is dif-
ferent to solving the mass-spring equations using

a conjugate gradient solver, where hard constraints
can only be ensured after each full iteration.

4.1 Mass-Spring System

To solve the mass-spring equations we utilize a
variation of the approach proposed by Baraff and
Witkin [1] for cloth simulation. They arrived at the
following compact system of equations(

M + Δt
∂f

∂v
− Δt

2 ∂f

∂x

)
Δv = Δt

(
f + Δt

∂f

∂x
v

)
,

where M is the mass matrix, Δt is the simula-
tion step size, f contains the forces, and x and v
refer to position and velocity of mass points. In
addition we apply Rayleigh damping of the form
∂f/∂v = −κI , where I is an identity matrix, to
improve numerical stability [7]. Updating a par-
ticular vertex now corresponds to solving a sin-
gle equation of the above system for Δv using a
Gauss-Seidel step. We first compute the new veloc-
ity v(t + Δt) = v(t) + Δt · Δv and the change
in position Δx = Δt · v(t + Δt) of this vertex.
Then, we trace the vertex on the surface into the di-
rection Δx by a distance equal to ‖Δx‖2. Finally,
v(t + Δt) and Δv have to be adjusted according
to the vertex movement to ensure consistency with
the mass-spring system. In order to prevent the grid
from moving due to the mass-spring relaxation, we
never update the position of the center of the grid.

4.2 Spring Topology

In this work we use an entangled topology for the
mass-spring system as shown in Figure 7.

1

1

α

1+3α

1+α α

1+3α

1+αα

α

i,j

i,j

(i mod 2) xor (j mod 2) = 0

0 1 2 3 4 8765

8

7

6

5

4

3

2

1

0

i

j 1

(i mod 2) xor (j mod 2) = 1

1

Figure 7: The entangled topology of the mass-
spring system used for grid relaxation together with
its connectivity rules.

This particular topology has the following bene-
ficial properties. Firstly, it is regularly 6-connected.
Thus, only six forces have to be gathered per mass
point. Furthermore, like all regular topologies, it

can be stored implicitly. Secondly, it can be ver-
tex colored using only two colors. Consequently
half of the vertices can be updated in parallel, re-
sulting in the high degree of parallelism needed to
efficiently map the solver to the GPU. Thirdly, the
red and blue springs in Figure 7 effectively resolve
folds and avoid new folds to emerge, because the
existence of folds implies that some springs are not
at rest length.

To keep the system isotropic, we choose a rel-
ative stiffness (and damping) weight of 1 for the
black springs. For the other springs, weights are
chosen such that the products of spring directions
and weighting factors sum up to 0. The system
thereby has a single free parameter α to weight the
red and blue springs against the black ones.

4.3 GPU Implementation

The main challenge in the realization of mass-
spring systems on the GPU is to overcome the mu-
tual exclusion of read/write accesses to the same
buffer in current graphics APIs. Therefore, we use
a gathering approach [15, 32, 8], which collects the
spatial information about adjacent grid points via
texture fetches and then performs the position up-
date in a pixel shader.

Our implicit constrained Gauss-Seidel solver re-
quires read access to the first k−1, already updated
elements when updating the kth element. Since our
topology has a chromatic number of 2, we can re-
duce the number of necessary rendering passes from
one pass per vertex (naı̈ve implementation) to just
two. This is because all vertices with the same color
only depend on vertices of the other color, and can
consequently be processed in parallel.

Therefore, we group vertices based on their color
into sets of buffers. Each set contains positions x,
velocities v, and velocity updates Δv for a single
color. Furthermore, due to the mutual R/W exclu-
sion, another set of output buffers is needed. Since
the topology is regular, it is never stored explicitly.
Table 1 sketches our algorithm.

Since half of the vertices can be processed in
parallel, our implementation greatly benefits from
computation and memory parallelism on recent
GPUs (also see Section 6). However, since pivot-
ing cannot be performed easily on the GPU, slightly
more iterations when compared to a CPU imple-
mentation with pivoting are necessary to meet the
same accuracy. In our tests, these additional iter-

Table 1: Algorithm for grid relaxation
For each vertex color c (rendering pass)

For each mass point x of color c, generate a fragment.
For each fragment do (pixel shader):

1. Read positions of masses in the 1-ring neighborhood.
2. Calculate force fx acting on x according to

Hooke’s Law and Rayleigh damping.
3. Calculate derivatives ∂f/∂x and ∂f/∂v (Derivatives

can be determined analytically [1]).
4. Perform block Gauss-Seidel step to compute Δvx.
5. Trace distance dt(vx + Δvx) on the base surface to

update position of x.
6. Re-compute v and Δv based on updated x.
7. Write updated x, v, and Δv to an output buffer.

Swap old input buffer and output buffer.

ations prooved to be negligible in terms of perfor-
mance.

4.4 Relaxation Quality

To assess the quality of the relaxed grids, we use a
quality metric of the form

g = 50

⎛
⎝1 − σ (Ai)

μ (Ai)
− 1

360◦
∑
i,j

|βij − 90◦|
⎞
⎠ ,

where μ (Ai) is the average area of the quadrangu-
lar grid cells with a standard deviation of σ (Ai).
Here, βij refers to the jth interior angle of cell i.
The metric measures isometry by placing a penalty
on non-right angles and area deviations. The con-
stants are chosen empirically such that positive val-
ues (up to a maximum of 10) correspond to accept-
able visual quality.

We further use the metric g to steer the parame-
ters of the Gauss-Seidel solver by requiring that g
increases monotonically in each iteration. If this is
not the case, a partial restart of the mass-spring sys-
tem is performed. Denoting the state prior to the
last iteration by xold etc., we set x ← xold, v ←
− 1

2
vold, Δv ← −Δvold. This restores the last po-

sitions and sets v and Δv such as to step back a
little further in the simulation. Then, the solver is
resumed, but with Δt ← 1

2
Δtold and 5% higher

damping factors. On the other hand, if from one re-
laxation step to the next progress was made we in-
crease Δt by 10% and decrease the damping factors
by 2%. These values have been found and validated
empirically. Note that due to these restarts the sys-
tem can never diverge. Furthermore, a gain of about
2 points in g is typically achieved—independent
of the grid resolution—when compared to the best
possible set of static Gauss-Seidel parameters.

5 Rendering

For each vertex of the displacement grid, a full tan-
gent frame is computed via barycentric interpola-
tion from properties of the base mesh. These frames
are then re-orthogonalized by using their normal as
reference. Since the geometry decal also stores a
local tangent frame to reflect the geometry of the
displacement field, we can transform the per-vertex
normal using these two frames in order to obtain a
properly aligned normal on the geometry decal.

Displacements along the outward-pointing nor-
mal of the base mesh can be rendered using standard
depth testing. In constrast, displacements along the
negative normal direction can remove parts of the
base mesh. They can be rendered using depth peel-
ing [11]; however, this reduces the performance if
the base mesh has a high depth complexity. To over-
come this drawback, we present a new method to
render these displacements by using a cutout mask.
This mask is used to exclude parts of the base mesh
from rendering on a per-fragment basis. It is similar
to the trim texture used by Guthe et al. [16] but does
not require any re-tesselation.

If the base mesh is fully parameterized, the cutout
mask is generated by rendering the displacement
grid into a 2D render target. We replace each ver-
tex’ coordinates by its texture coordinates carried
over from the base mesh. Thereby, the displace-
ment grid leaves an “imprint” in the texture domain
of the base mesh. Note that if the parameterization
of the base mesh contains discontinuities, grid trian-
gles have to be clipped against these seams to avoid
artifacts.

If no global parameterization of the mesh is
known, we can still utilize this technique, but the
local parameterization of each decal is used as do-
main for the cutout mask. Note that in case of such
local cutout masks each mask is static and can be
computed in advance.

In either case, the cutout mask can be mapped
to the base mesh and all fragments covered by the
displacement grid can be discarded. If local cutout
masks are used, multiple fetches from these masks
have to be performed. To avoid undesirable arti-
facts due to the finite resolution of the cutout mask,
we slightly increase the size of the grid by padding
it with zero displacement values before rendering it
into the cutout region. As can be seen in Figure 8 no
artifacts are visible, although the texel aspect ratio

is about 1:2. By choosing a sufficiently high resolu-
tion of the cutout mask, sub-pixel precision can be
achieved.

Figure 8: From left to right: Result of adding a
bump (red) to a mesh, the cutout mask in texture
space, and the wireframes of the left image. In the
middle, the patch area (red) can be distinguished
from the padding necessary to avoid artifacts (blue).

In a final pass, the geometry decal is rendered by
displacing vertices of the grid in the vertex shader.
It is intrinsically clear that the geometry decal can
be animated in several ways. Firstly, a sequence of
displacements can be used. Secondly, the geometry
decal can move over the mesh by moving the pick
point pc. Thirdly, the base mesh can be animated if
its topology is known throughout the process. Note
that the decal has only to be fully traced and relaxed
in each animation step for the latter two animation
modi. For these modi, a global cutout mask has also
to be generated in each animation step

6 Results

We validated our approach on an Intel Core2Duo
6600 at 2.4GHz with 2GB RAM and an NVIDIA
GeForce 280GTX. Rendering was performed to an
8× anti-aliased 1600 × 1200 viewport.

In our tests, we used two models, a chess
board (12 triangles) and the Mannequin from
Aim@Shape (reduced to 32000 triangles, see Fig-
ure 1). Both models are textured, including a bump
and an environment map. We measured the times
needed to trace, relax, and render a single geom-
etry decal with resolutions varying from 322 to
5122. Furthermore, we measured the time required
to generate a 40962 global cutout mask. For local
cutout masks, rendering times are by about 0.3 ms
worse per decal than stated in Table 2. Last but
not least, we measured the time required by a single
mass-spring step as well as the number of iterations
needed for convergence. In our experiments, the

GPU-based mass-spring system was consistently
about 17× faster than a carefully tuned CPU ver-
sion. CPU timings are thus omitted from the table.

The overall performance is strongly affected by
the layout phase that includes tracing, resolving
folds, and propagation of appearance properties.
This step is faster for the chess board, since less
crossings of vertices over mesh edges have to be
computed. As expected, the mass-spring system
converges in a single step and performs no updates
on the planar chess board.

The second column in Table 2 shows that ren-
dering the base mesh with geometry decals is ex-
tremely fast even for high-resolution displacement
meshes. As can be seen, our method renders mul-
tiple medium-size geometry decals at fully interac-
tive rates. For resolutions up to 1282 even a moving
decal can be handled at fully interactive rates.

−5

Quality g

−10
−15

+5
0

before 6 5 4 3 2 1

Figure 9: Top: Quality of our parameterization after
60 iterations. Vertices were constrained to the sur-
face after every nth step (ranging from 6 to 1). Bot-
tom: The bar color corresponds to the initial grid
placement.

In Figure 9, we show a detailed analysis of the
convergence of the constrained Gauss-Seidel solver.
For three different 642 grids, the quality gain due to
60 relaxation steps using the entangled topology is
shown. We varied the frequency at which vertices
are constrained to the surface. Clearly, the bar graph
indicates the benefits of ensuring hard constraints as
soon as possible, making our Gauss-Seidel solver
superior to other solvers. Figure 10 depicts con-
vergence plots of 36 iterations of our solver for the
same three grids. As can be seen, the relaxation step
improves the quality of the grid significantly, even
if not all folds could be resolved (blue) due to the
high curvature of the base mesh.

For our mass-spring system, we initially set all
masses to 3.9, damping and stiffness constants to
κd = 15 and κs = 59, and the step-size to

Δt = 0.002. Note that κd as well as Δt are adapted
dynamically by our approach.

-15

-10

-5

 0

 5

 0 5 10 15 20 25 30 35

Q
ua

lit
y

Iteration

Figure 10: Convergence plot of the three grids
shown in Figure 9.

6.1 Limitations

Currently, our approach is restricted to displace-
ments described as height fields. However, it is pos-
sible in theory to extend the local parameterization
to a thin shell around the mesh to allow full 3D dis-
placements. Furthermore, we are limited to small,
non-overlapping decals. Overlapping decals can in
theory be resolved if a global parameterization is
known, but still their extent has to be appropriate
with respect to the local curvature of the base mesh.
Also, intrusions so large that they pierce the back
of the mesh are currently not resolved. Animations
of the base mesh must either not change the topol-
ogy, or a smooth mapping of surface points from
one frame to the next must be provided. The rea-
son is that the decal placement has to be properly
resolved in each step.

7 Conclusion and Future Work

Our experiments show that the proposed method
works well in practice and interactive frame rates
can be achieved for the positioning, editing, render-
ing, and animation of highly detailed geometry de-
cals.

Our method works best if the geometric features
to be added are small in comparison to geometric
features of the base mesh. On the other hand, if
the surface has features on a similar scale as the
displacements, displacement mapping as such is ill-
posed. In the presence of such small features, our
method fails to resolve all folds in the initial grid
layout in the worst case. Also, as with essentially
all displacement techniques, the local curvature ra-
dius limits the maximum height of displacements.

In the future we would like to investigate GPU-
friendly methods to obtain the initial displacement
grid, including a method to resolve folds. Currently,
this process consumes a significant amount of time,

Table 2: Performance evaluation using the Mannequin and the chess board (the latter ones in parentheses).
Grid Layout Rendering Cutout Mask Mass-Spring / step # steps #Triangles

- - (-) 2.0ms (1.7ms) - (-) - (-) 0 (0) 32K (12)
322 3.2ms (1.5ms) 2.2ms (1.8ms) 0.3ms (0.3ms) 0.05ms (0.05ms) 24 (1) 34K (2K)
642 5.8ms (4.0ms) 2.4ms (2.0ms) 0.4ms (0.4ms) 0.25ms (0.23ms) 37 (1) 40K (8K)
1282 18.0ms (15.2ms) 3.2ms (2.8ms) 0.7ms (0.7ms) 0.95ms (0.89ms) 53 (1) 64K (32K)
2562 63.8ms (61.2ms) 7.0ms (6.9ms) 2.2ms (2.2ms) 3.08ms (2.94ms) 74 (1) 160K (128K)
5122 272.7ms (234.0ms) 22.2ms (20.0ms) 7.8ms (7.8ms) 10.27ms (9.97ms) 112 (1) 544K (512K)

and we consequently hope to improve the overall
performance of our technique by an efficient real-
ization on recent GPUs.

References
[1] D. Baraff and A. Witkin. Large steps in cloth simulation. In

ACM SIGGRAPH, volume 32, pages 43–54, 1998.

[2] J. F. Blinn. Simulation of wrinkled surfaces. ACM Computer
Graphics, 12(3):286–292, 1978.

[3] T. Boubekeur and C. Schlick. A flexible kernel for adap-
tive mesh refinement on GPU. Computer Graphics Forum,
27(1):102–114, 2008.

[4] R. L. Cook. Shade trees. ACM Computer Graphics,
18(3):223–231, 1984.

[5] R. L. Cook, L. Carpenter, and E. Catmull. The reyes image
rendering architecture. ACM Computer Graphics, 21(4):95–
102, 1987.

[6] M. Desbrun, M. Meyer, and P. Alliez. Intrinsic parame-
terizations of surface meshes. Computer Graphics Forum,
21(3):209–218, 2002.

[7] M. Desbrun, M. Meyer, and A. H. Barr. Cloth Modeling
and Animation, chapter Interactive Animation of cloth-like
Objects in Virtual Reality, pages 219–239. A.K. Peters Ltd.,
2000.

[8] C. A. Dietrich, J. L. D. Comba, and L. P. Nedel. ShaderX 5
- Advanced Rendering Techniques, chapter Storing and Ac-
cessing Topology on the GPU: A Case Study on Mass-Spring
Systems, pages 565–578. Charles River Media, 2006.

[9] M. Doggett and J. Hirche. Adaptive view dependent tes-
sellation of displacement maps. In ACM/EG Workshop on
Graphics Hardware, pages 59–66, 2000.

[10] G. Elber. Geometric texture modeling. IEEE Computer
Graphics and Applications, 25(4):66–76, 2005.

[11] C. Everitt. Interactive order-independent transparency. Tech-
nical report, NVIDIA White papers, 2001.

[12] M. S. Floater. Parametrization and smooth approximation
of surface triangulations. Computer Aided Geomtric Design,
14(3):231–250, April 1997.

[13] M. S. Floater and K. Hormann. Advances in Multiresolution
for Geometric Modelling, chapter Surface Parameterization:
a Tutorial and Survey, pages 157–186. Springer, first edition,
2004.

[14] K. Gee. Direct3D 11 tesselation. Talk at the Microsoft
Gamefest Conference, 2008.

[15] J. Georgii and R. Westermann. Mass-spring systems on the
GPU. Simulation Modelling Practice and Theory, 13:693–
702, 2005.

[16] M. Guthe, A. Balázs, and R. Klein. GPU-based trimming
and tessellation of NURBS and T-spline surfaces. ACM
Transactions on Graphics, 24(3):1016–1023, 2005.

[17] K. Hormann, A. Sheffer, B. Lévy, M. Desbrun, and K. Zhou.
Mesh parameterization: Theory and practice. ACM SIG-
GRAPH 2007 Course Notes.

[18] X. Huang, S. Li, and G. Wang. Displacement modeling:
Hardware-accelerated interactive feature modeling on sub-
division surfaces. The Visual Compututer, 23(9):861–872,
2007.

[19] X. Huang, S. Li, and G. Wang. A GPU based interactive
modeling approach to designing fine level features. In ACM
Graphics Interface, pages 305–311, 2007.

[20] T. Kaneko, T. Takahei, M. Inami, N. Kawakami,
Y. Yanagida, T. Maeda, and S. Tachi. Detailed shape rep-
resentation with parallax mapping. In ACM Artificial Reality
and Telexistence, volume 11, pages 205–208, 2001.

[21] J. Kautz and H.-P. Seidel. Hardware accelerated displace-
ment mapping for image based rendering. In Graphics In-
terface, pages 61–70, 2001.

[22] B. Lévy, S. Petitjean, N. Ray, and J. Maillot. Least squares
conformal maps for automatic texture atlas generation. ACM
Transactions on Graphics, 21(3):362–371, 2002.

[23] F. Neyret. Modeling, animating, and rendering complex
scenes using volumetric textures. IEEE TVCG, 4(1):55–70,
1998.

[24] M. M. Oliveira, G. Bishop, and D. McAllister. Relief texture
mapping. In ACM SIGGRAPH, volume 27, pages 359–368,
2000.

[25] H. Pedersen. A framework for interactive texturing on
curved surfaces. In ACM SIGGRAPH, pages 295–302, 1996.

[26] F. Policarpo, M. M. Oliveira, and J. a. L. D. Comba. Real-
time relief mapping on arbitrary polygonal surfaces. ACM
Transactions on Graphics (I3D), 24(3):935–935, 2005.

[27] R. Schmidt, C. Grimm, and B. Wyvill. Interactive decal com-
positing with discrete exponential maps. ACM Transactions
on Graphics, 25(3):605–613, 2006.

[28] A. Sheffer, B. Lévy, M. Mogilnitsky, and A. Bogomyakov.
ABF++: fast and robust angle based flattening. ACM Trans-
actions on Graphics, 24(2):311–330, April 2005.

[29] A. Sheffer, E. Praun, and K. Rose. Mesh parameterization
methods and their applications. Foundations and Trends
� in CG and Vision, 2(2):105–171, 2006.

[30] L.-J. Shiue, I. Jones, and J. Peters. A realtime GPU subdivi-
sion kernel. In ACM SIGGRAPH, volume 24, pages 1010–
1015, 2005.

[31] V. Surazhsky and C. Gotsman. Explicit surface remeshing.
In EG Symposium on Geometry Processing, volume 1, pages
17–28, June 2003.

[32] E. Tejada and T. Ertl. Large steps in GPU-based deformable
bodies simulation. Simulation Modelling Practice and The-
ory, 13:703–715, 2005.

[33] A. Vlachos, J. Peters, C. Boyd, and J. L. Mitchell. Curved
PN triangles. In ACM I3D, pages 159–166, 2001.

[34] L. Wang, X. Wang, X. Tong, S. Lin, S. Hu, B. Guo, and
H.-Y. Shum. View-dependent displacement mapping. ACM
Transactions on Graphics, 22(3):334–339, 2003.

[35] X. Wang, X. Tong, S. Lin, S.-M. Hu, B. Guo, and H.-Y.
Shum. Generalized displacement maps. In EG Symposium
on Rendering, pages 227–234, 2004.

[36] R. Zayer, C. Rössl, and H.-P. Seidel. Setting the bound-
ary free: a composite approach to surface parameterization.
In ACM/EG Symposium on Geometry Processing, volume 3,
page 91, 2005.

[37] M. Zwicker, M. Pauly, O. Knoll, and M. Gross. Pointshop
3D: an interactive system for point-based surface editing.
ACM Transactions on Graphics, 21(3):322–329, 2002.

Note: This color-plate is only available in the digital version of this paper.

Figure 11: A water simulation on a circular domain is used to animate the displacement field. The simula-
tion was pre-computed on a 2562 grid and has 319 time steps. We achieve a rendering performance of over
140 frames per second on a 1600 × 1200 viewport.

Figure 12: Using our cutout approach we achieve more than 15 fps on a 1600 × 1200 viewport rendering
the following scenes. Top left: Using rotations to propagate trace directions does not fail at acute angles.
Top right: A 69K triangle bunny mesh displaces by starfishes (5122 each). Bottom left: A sphere displaced
by 20 instances of a flower decal (1282). Bottom right: A sphere displaced by one starfish (5122) and ten
footsteps (160× 378 each).

