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Abstract

With the ever increasing resolution of scanned elevation models, geometry throughput on the GPU is becoming a
severe performance limitation in 3D terrain rendering. In this paper, we investigate GPU ray-casting as an alter-
native to overcome this limitation, and we demonstrate its advanced scalability compared to rasterization-based
techniques. By integrating ray-casting into a tile-based GPU viewer that effectively reduces bandwidth require-
ments in out-of-core terrain visualization, we show that the rendering performance for large, high-resolution
terrain fields can be increased significantly. We show that a screen-space error below one pixel permits piecewise
constant interpolation of initial height samples. Furthermore, we exploit the texture mapping capabilities on recent
GPUs to perform deferred anisotropic texture filtering, which allows for the rendering of digital elevation models
and corresponding photo textures. In two key experiments we compare GPU-based ray-casting to a rasterization-
based approach in the scope of terrain rendering, and we demonstrate the scalability of the proposed ray-caster
with respect to display and data resolution.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing Algorithms I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—
Texture, Raytracing, Virtual Reality

1. Introduction and Contribution

Due to the ever increasing size and resolution of scanned
digital elevation models (DEMs) and corresponding photo
textures, geo-spatial visualization systems are more and
more facing the problem of dealing with TB data sets.
Figure 1 shows such a gigantic model, which covers a
56 km × 85 km area of the Alps at a resolution of 1 m and
12.5 cm for the DEM and the photo texture, respectively.
This amounts to over 860 GB of data, bearing the risk of
severe bottlenecks both in data access and rendering.

To avoid these bottlenecks, a number of previous ef-
forts have tackled the problem of bandwidth and render-
ing throughput limitations by using dedicated compression
schemes [Ger01, LH04, GMC∗06], efficient data manage-
ment and streaming strategies [LP02,CGG∗03,CKS03], and
adaptive level-of-detail triangulations [LKR∗96, DWS∗97,
LP01,LP02], to name just a few. Due to these advancements,
it is now possible on commodity PCs to stream spatially ex-
tended high-resolution terrain fields to the GPU at rates al-
lowing interactive rendering at reasonable quality. Neverthe-
less, as it has been shown recently by Dick et al. [DSW09],
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with increasing display resolution and a maximum geomet-
ric screen-space error below one pixel, geometry through-
put on the GPU is becoming a severe performance limita-
tion. For instance, the particular view shown in Figure 1 al-
ready requires rendering of about 30 million triangles on a 2
megapixel display.

To overcome this limitation, we present a GPU terrain ren-
dering algorithm using ray-casting. Our method is similar
to recent work by Tevs et al. [TIS08] in that it uses maxi-
mum mipmaps of the height field to speed up ray traversal
on the GPU. Compared to this work, we propose a more ef-
ficient and numerically stable ray traversal scheme for the
regular height field pyramid that is used as ray-casting ac-
celeration structure. In addition, we have integrated the GPU
ray-caster into a tile-based visually continuous terrain ren-
dering method, which enables rendering from a LOD hierar-
chy with respect to a given screen-space error. Interestingly,
we will show that a screen-space error below one pixel per-
mits piecewise constant interpolation of initial height sam-
ples at no visual quality degradation. This allows us to avoid
the expensive computation of ray intersection points with the
bilinearly interpolated height field as proposed by Tevs and
co-workers.

To support interactive rendering of TB data sets including
scanned photo textures, we further present a novel deferred
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Figure 1: A textured DEM of Vorarlberg, Austria (56 km × 85 km) is rendered on a 1920 × 1080 view port using our method.
The spatial resolution of the DEM and the texture is 1 m and 12.5 cm, respectively. Even though we render to a 2 megapixel
view port, an average frame rate of about 30 fps is achieved at a geometric screen-space error of below one pixel.

texturing method including full anisotropic texture filtering.
For a ray’s intersection point with the terrain height field, we
compute the texture derivatives along the screen-space axes
and let the GPU perform hardware-supported anisotropic
texture sampling.

By means of our developments, we show that ray-casting
can effectively reduce geometry load and per-fragment over-
draw on the GPU, and therefore yields superior frame rates
than rasterization-based approaches for high terrain resolu-
tions. Since the maximum mipmap for a tile’s height field
is built on the GPU once a tile becomes visible, maximum
mipmaps do not require any additional information to be
stored. Especially in the current application, where mem-
ory access and bandwidth limitations are a major concern,
maximum mipmaps thus have a clear advantage over alter-
native ray-casting acceleration methods like cone stepping
[Dum06, PO07] or precomputed distance fields [Don05].

The remainder of this paper is organized as follows: In the
next section, we outline previously published LOD methods
and techniques for terrain rendering. Next, we describe our
height field ray traversal algorithm, and show how it is ex-
tended to utilize the maximum mipmap acceleration struc-
ture. We then focus on the anisotropic texture filtering, and
show how to exploit tile to tile occlusions to further improve
the rendering performance. Next, we describe the integra-
tion of the new method into a large-data out-of-core terrain
rendering engine. In Section 5, we compare our new ray-
casting approach to a highly optimized rasterization render-
ing method. The paper is concluded with a discussion and
remarks on future work.

2. Related Work

Previous work in the field of terrain rendering can roughly
be categorized into mesh- and grid-based techniques. Most
of the mesh-based methods use the rasterization approach
to render the terrain and focus on efficient LOD schemes
to reduce the per-frame workload. Most of the grid-based
solutions utilize some sort of ray-casting or grid traversal
approach to directly operate on the height field to generate
the image.

2.1. Mesh-based Terrain Rendering

Over the last decade, a number of view-dependent LOD
techniques for terrain rendering have been proposed, which
differ mainly in the hierarchical structures used. Previ-
ous work can be classified into dynamic remeshing strate-
gies, region-based multi-resolution approaches, and regular
nested grids, all of which allow for visually continuous LOD
rendering. For a thorough overview of the field let us refer
here to the recent survey by Pajarola and Gobbetti [PG07].

2.2. Terrain Ray-Casting

Early terrain ray-casting implementations such as Mus-
grave [Mus88] were based on a combination of the digi-
tal difference analyzer (DDA) algorithm and traditional tri-
angle/ray intersection ideas. Musgrave later presented the
quasi-analytic error-bounded (QAEB) ray-tracing (formally
published in the book Texturing and Modeling [EMP∗02])
to render fractal terrains directly from their analytic descrip-
tion. For photo-realistic flight simulator applications, Cohen
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et al. [CS93,CORLS96] proposed hierarchical ray-tracing in
a pyramidal data structure to speed up the image generation.
While Lee and Shin [LS95] presented more efficient grid
traversal strategies, later, Henning and Stephenson [HS04]
improved the performance of the traversal by replacing the
cell-based method entirely by a run-based approach.

While CPU-based terrain ray-casting systems have a long
history, only recently—with the advent of sophisticated GPU
features—hardware-accelerated terrain ray-casting methods
have been published. Qu et al. [QQZ∗03] presented a GPU-
based ray-casting system for elevation data but did not in-
tegrate sophisticated acceleration structures. Mantler and
Jeschke [MJ06] focused on the efficient rendering of veg-
etation integrated into a GPU-based ray-casting approach.
Their method like many other GPU-based techniques [OP05,
PO06], however, only uses a fixed step size to trace over
the height-field and thus may miss fine structures, produc-
ing only approximate results. To improve the approximation,
nested intervals were used on the GPU, but still these meth-
ods were only approximations and were therefore primarily
applied for secondary effects [Ohb03, Wym05] or in combi-
nation with precomputed safety radii [Dum06,PO07,Mic08,
Don05, BD06, JMW07]. To utilize both the GPU as well as
the CPU power Balciunas et al. [BDZ06] presented a hybrid
model that, in a first pass, rasterizes a low resolution version
of the terrain on the GPU and uses the depth information
as starting point for a CPU-based ray-casting system; for a
medium sized model they report timings of 3-10 fps. Most
closely related to our approach are the recent contributions
by Oh et al. [OKL06] and Tevs et al. [TIS08], both using a
similar idea of the traversal of a maximum quadtree on the
GPU, which is a simplified version of a maximum/minimum
mipmap [GBP06, CHCH06].

In contrast to all of the previous approaches, our ren-
dering system, however, is able to handle arbitrarily large
data sets via a tiling mechanism together with a highly GPU
optimized quadtree traversal scheme that outperforms any
previous implementations, while still guaranteeing an exact
ray/terrain intersection.

3. GPU-based Terrain Ray-Casting

Our terrain rendering technique works on a tile-based multi-
resolution representation of the terrain model. Each tile con-
sists of a height field of size N × N samples and an ortho-
graphic photo texture. In our current implementation, a tile
size of N = 512 is used. For details, we refer the reader to
Section 4. In every frame, the set of tiles representing the ter-
rain at the current view is determined, and these tiles are ren-
dered in front-to-back order using the ray-casting approach
described in the following sections.

To render a tile, we cast rays of sight through the centers
of those pixels which are covered by the tile. For each ray,
we determine the first intersection point with the tile’s height
field. The tile’s photo texture is then sampled at that location
to obtain the color of the respective pixel.

3.1. Ray Traversal Algorithm

The ray-casting of a tile is performed in a single rendering
pass and is initiated by rendering the back faces of the tile’s
bounding box, which generates a fragment for each pixel
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Figure 2: The ray-casting is implemented by marching from
texel to texel. In each step, the ray’s exit point from the cur-
rent texel is computed, which is equal to the entry point to
the next texel along the ray and thus also yields the index of
that texel. In the figure, the ray enters the tile’s bounding box
on the top and leaves on the right.

covered by the tile. Rendering back instead of front faces
has the advantage that the case when the viewer position is
inside the bounding box of the tile does not have to be treated
in a special way [Mic08]. The ray-casting is done in the
height field’s local texel-space for the x- and y-coordinate,
and in normalized world-space for the z-coordinate. The co-
ordinates of the vertices of the bounding box are issued as
per-vertex attributes, thus for each ray the exit point BoxExit
from the bounding box is available in the fragment shader.
Furthermore, the current eye point Eye is issued as a con-
stant buffer variable.

The actual ray-casting is performed in the fragment
shader. First, we compute the ray’s direction Dir as Dir =
BoxExit − Eye and we determine the ray’s entry point
BoxEntry by intersecting the ray with the tile’s bounding
box. To simplify the computations and thus to speed up
the ray-casting process, we only handle the case Dirx ≥
0∧Diry ≥ 0. All other cases are reduced to this case by
mirroring, e.g., if Dirx < 0, we set Dirx ← −Dirx and
BoxEntryx← N−BoxEntryx. Note that this requires to mir-
ror the texture coordinates to access the tile’s height field
accordingly. To reduce the number of conditional branches
and needed registers within the ray-casting loop, we test for
the sign (≥ 0, < 0) of each of Dirx, Diry, and Dirz at the
beginning, and replicate the ray-casting loop for each of the
eight branches.

Starting from the bounding box entry point, we cast the
ray until it hits the height field or leaves the domain of the
tile. Let TexEntry denote the ray’s entry point to the cur-
rent height field texel. At the beginning, TexEntry is ini-
tialized with TexEntry← BoxEntry. The ray-casting loop
is run while the ray does not intersect the height field and
does not leave the domain of the tile, i.e., TexEntryx <
N ∧ TexEntryy < N. In each ray-casting step, we fetch the
current height field texel (bTexEntryxc ,bTexEntryyc), and
we compute the ray’s exit point TexExit from that texel. If
the ray does not intersect the height field within the texel,
we set TexEntry← TexExit and proceed with the next ray-
casting step. The entry/exit points as well as the correspond-
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Figure 3: To determine the exit point of a ray from a texel,
two of its edges (bold) have to be considered. Of the ray’s
two intersection points with these edges, TexExit is the one
with the smaller ray parameter.
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Figure 4: Dependent on whether the ray is ascending or de-
scending, for the intersection test the texel’s height value has
to be compared with the height value of either the texel entry
or exit point, respectively.

ing height field texels along a ray are illustrated in Figure
2.

Figure 3 shows the computation of the ray’s exit point
TexExit from the current height field texel. Of the two in-
tersections with texel edges, TexExit is the one with the

smaller ray parameter t. Let ∆tx := (bTexEntryxc+1)−TexEntryx

Dirx
,

∆ty := (bTexEntryyc+1)−TexEntryy

Diry
and ∆t := min{∆tx,∆ty}.

Then, TexExit = TexEntry+∆t ·Dir. To avoid infinite loop-
ing due to roundoff errors, we explicitly set the coordi-
nate corresponding to the intersected texel edge, i.e., if
∆t = ∆tx, then TexExitx = bTexEntryxc+1, else TexExity =
bTexEntryyc+1.

The intersection test is illustrated in Figure 4. Let Height
denote the height value of the current height field texel.
If the ray is running upwards, i.e., Dirz ≥ 0, the ray in-
tersects the texel iff TexEntryz ≤ Height. If the ray is
running downwards, i.e., Dirz < 0, the ray intersects the
texel iff TexExitz ≤ Height. In the former case, if an in-
tersection is detected, TexEntry is the intersection point.
In the latter case, the intersection point within the texel’s
domain has to be computed explicitly as TexEntry +

max
{

Height−TexEntryz

Dirz
,0

}

·Dir.

When the casting of the ray is completed, we sample the
photo texture at the intersection point to obtain the color
value for the respective pixel, or we discard the fragment
if the ray does not intersect the height field. The anisotropic
texture filtering is described in Section 3.3.

In the fragment shader, we also compute the screen-space
depth of the intersection point and output this value as depth
buffer value. Thus, the ray-casting approach can be com-
bined with rasterization-based rendering of polygonal geom-
etry [Mic08].

3.2. Acceleration Structure

To speed up the ray-casting process, we employ an accel-
eration structure which effectively reduces the number of
ray-casting steps to find a ray’s intersection point with the
height field. The basic idea is to use precomputed informa-
tion during ray-casting, which enables to aggressively ad-
vance the ray for multiple texels per step, without intersect-
ing the height field. Such a technique is cone step map-
ping [Dum06], which also has been used in the context of
terrain rendering [Mic08]. This technique places a circular
cone above each height field texel. In a preprocess, the max-
imum angle for each cone is computed such that the cone
does not intersect the height field. During ray-casting, the
ray can then safely be advanced inside a cone, without inter-
secting the height field. The disadvantage of this technique is
that the precomputation has to be done in an offline prepro-
cess, which requires to store the results on disk. For height
fields of several hundred gigasamples, this would consume
tremendous amounts of disk space and disk bandwidth.

In our work, we therefore favor a maximum mipmap pyra-
mid of a tile’s height field as proposed in [TIS08]. Each texel
in this pyramid is the maximum of the corresponding 2 × 2
texels in the next finer level. Considering a texel at some
level in the pyramid, if a ray does not intersect this texel,
it also does not intersect the original height field within the
entire domain of that texel. The pyramid is built directly on
the GPU by using a simple multi-pass approach, and only in-
troduces additional GPU memory requirements of 1

3 of the
memory needed to store the height field. In the following,
the original height field is associated with level number 0,
and the coarser levels are associated with ascending level
numbers.

To utilize this acceleration structure, the ray traversal al-
gorithm presented in Section 3.1 is extended as follows. Let
` denote the current level in the pyramid which is used to
test for ray intersection. At the beginning, we start with
the second coarsest level consisting of 2× 2 texels, i.e.,
`← MaxLevel− 1 (we skip the coarsest level, since every
ray starts at the bounding box of the tile and thus intersects
the single texel of that level). In each ray-casting step, we

first fetch the current texel
(⌊

TexEntryx

2`

⌋

,
⌊

TexEntryy

2`

⌋)

from

the current level `, and we compute the exit point TexExit
of the ray from that texel as described in Section 3.1, with
⌊

TexEntryx/y

⌋

+ 1 in the computation being replaced by
(⌊

TexEntryx/y

2`

⌋

+1
)

·2`. If the ray intersects the texel, we ad-

vance the ray to the intersection point, i.e., if Dirz < 0, we

set TexEntry← TexEntry+max
{

Height−TexEntryz

Dirz
,0

}

·Dir.

c© The Eurographics Association 2009.



C. Dick, J. Krüger & R. Westermann / GPU Ray-Casting for Scalable Terrain Rendering

Furthermore, if ` > 0, we step one level down in the pyra-
mid, i.e., `← `− 1 (if ` = 0, TexEntry is the intersection
of the ray with the height field, and the algorithm is fin-
ished). If the ray does not intersect the texel, we advance the
ray to the texel’s exit point by setting TexEntry← TexExit,
and step one level up if the ray leaves a 2× 2 texel block,
i.e., ` ← min{`+1− (Edge mod 2) ,MaxLevel−1} with

Edge =
⌊

TexExitx
2`

⌋

if ∆t = ∆tx, and Edge =
⌊

TexExity
2`

⌋

oth-

erwise. We then proceed with the next ray-casting step.

This technique greatly accelerates the ray-casting process.
In our experiments, we observed a speedup of about 5 com-
pared with the original approach described in Section 3.1.

3.3. Anisotropic Texture Filtering

After the intersection point of the ray and the terrain has been
found, we sample the tile’s photo texture at that location to
obtain the color for the respective pixel. We use the Sam-
pleGrad function provided by Direct3D 10, which enables
anisotropic texture filtering by specifying the sampling lo-
cation as well as two vectors spanning a parallelogram that
approximates the pixel’s projection into texture-space. Typ-

ically, these are the vectors
(

∂u
∂x

, ∂v
∂x

)

and
(

∂u
∂y

, ∂v
∂y

)

, where
∂u
∂x

, ∂u
∂y

, ∂v
∂x

and ∂v
∂y

are the partial derivatives of the tex-
ture coordinates u and v as function of screen-space po-
sition (x,y), evaluated at the pixel’s center. These deriva-
tives are computed automatically by the graphics hardware
in rasterization-based rendering of polygonal surfaces.

In our ray-casting method, we compute the pixel’s foot-
print manually by employing a two step approach. First, we
project a texel located at the sampling position from texel-
space into screen-space. Assuming that the projection is lo-
cally linear, we then use the texel’s footprint in screen-space
to approximate the pixel’s footprint in texel-space.

Let P denote the intersection point of the ray and the
height field. We start with projecting the vectors (1,0)
and (0,1), spanning a texel located at (Px,Py) in texel-
space, orthographically onto the tangent plane to the height
field at the intersection point P. This corresponds to
the orthographic mapping of the photo texture onto the

height field. The resulting vectors are
(

1,0,
∂h(Px,Py)

∂ut

)

and
(

0,1,
∂h(Px,Py)

∂vt

)

, with the x/y-coordinates being in texel-

space (ut ,vt) and the z-coordinate being in normalized
world-space. The height field’s partial derivatives ∂h

∂ut
and ∂h

∂vt

at (Px,Py) are computed by using central differences (except
for the tile border, where forward/backward differences are
used). We then reproject the vectors into screen-space, re-
turning vectors a and b which span the texel’s footprint in
this space.

In the second step, the vectors (1,0) and (0,1), spanning
a pixel in screen-space, are expressed in the basis formed by
the vectors a and b. The resulting coordinate vectors span
a parallelogram which approximates the pixel’s footprint in
texel-space, and are used as input to the SampleGrad texture
sampling function (after scaling by 1

N to switch from texel-
to texture-space).

3.4. Occlusions Between Tiles

In this section, we show how the rendering of multiple tiles
using the presented ray-casting approach can further be op-
timized by exploiting occlusions between tiles.

The basic idea is to render the tiles in front-to-back order,
and to spawn a ray only if for the respective pixel no inter-
section with previously rendered tiles has been found yet,
i.e., for each pixel at most one intersection is determined.
The early-z test, which skips the fragment shader invocation
for a fragment if it will fail the depth test, would be perfectly
suited to implement that optimization, but we are discarding
fragments in the fragment shader (if a ray does not intersect
the height field), which deactivates early-z testing on cur-
rent graphics hardware. We therefore pursue a different ap-
proach, which is similar to the idea of the early-z test in that
we immediately exit the fragment shader and thus skip the
expensive ray-casting loop, if we detect that an intersection
for the respective pixel has already been found.

This is implemented by using an additional rendering pass
for each tile, which precedes the actual ray-casting pass, and
in which we detect those pixels covered by the tile for which
no intersection has been found yet. In this pass, we render the
back faces of the tile’s bounding box into an offscreen render
target, consisting of a one component, unsigned integer tex-
ture which is cleared with 0 at the beginning of every frame.
With each fragment, we store a unique tile ID, which is ob-
tained from a counter enumerating the tiles being rendered
in each frame. In this pass, depth testing is enabled, but writ-
ing into the depth buffer is disabled. Thus, exactly for those
pixels covered by the tile’s bounding box for which no inter-
section has been found yet, the tile ID is written into the off-
screen render target. Then, in the ray-casting pass, we again
render the back faces of the tile’s bounding box, as described
in Section 3.1. In this second pass, depth testing is disabled
(i.e., set to “pass always”), and writing to the depth buffer is
enabled. In the fragment shader, we first fetch the ID stored
in the offscreen render target for the respective pixel. If this
ID is equal to the current tile ID, we spawn a ray. Otherwise,
we discard the fragment and immediately exit the fragment
shader, without entering the ray-casting loop. Thus, for each
pixel at most one intersection point is determined.

Dependent on the amount of occlusion, in our experi-
ments we observed an average speedup of about 2 by using
this optimization.

4. System Integration

In this section, we outline the integration of the proposed
ray-casting method into a terrain rendering system, which
we have presented in our previous work [DSW09].

This system is capable of rendering very large out-of-core
terrain data sets by utilizing CPU and GPU memory paging
and prefetching techniques, and provides continuous level
of detail by using a tile-based multi-resolution representa-
tion of the terrain model. In a preprocessing step, we first
build a Gaussian pyramid of the terrain’s entire height field
and photo texture by averaging blocks of 2 × 2 samples to
obtain a sample in the next coarser level. Then, each level
is tiled into square regions, with each tile covering exactly
four tiles in the next finer level. The tiles are organized in a
quadtree, which we refer to as the tile tree. For each tile, a
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restricted quadtree mesh is constructed, which approximates
the tile’s height field within a prescribed world-space error
tolerance. This mesh, along with the tile’s photo texture, is
stored on disk. To reduce storage and bandwidth require-
ments, we have developed a geometry compression scheme
for restricted quadtree meshes, and we use the S3TC DXT1
codec to compress the photo texture. Both schemes allow for
GPU-based decoding.

During runtime, out-of-core data loading is handled asyn-
chronously by a separate IO-thread, which works indepen-
dently of the rendering thread and dynamically builds and
destroys the tile tree in main memory, dependent on the
movements of the viewer. In every frame, the tile tree cur-
rently available in main memory is traversed in preorder,
and the tiles to be rendered at the current view are deter-
mined by view frustum culling and level of detail computa-
tion, maintaining a screen-space error tolerance of 2

3 pixels.
In the preorder traversal, the children of a tile are visited
in an order that yields a front-to-back sorting of the tiles to
be rendered. Exploiting frame-to-frame coherence, only tiles
not already residing in graphics memory are uploaded to the
GPU. For each of these tiles, a mipmap pyramid of the tile’s
photo texture is gathered from the tile hierarchy on-the-fly,
and the mipmap pyramid as well as the compressed geome-
try is then loaded into GPU memory. In our previous work,
the geometry was then expanded into a triangle list, which
was rendered using rasterization-based graphics.

For this work, we have replaced the rendering part of the
system. Instead of expanding the compressed geometry into
a triangle list, we now rasterize the tile’s mesh into a one
component, 16 bit floating point (UNORM) texture to recon-
struct the tile’s height field. It is worth noting that for high-
detail data sets with a large number of triangles per tile, this
height field even requires less GPU memory than the triangle
list. The height field, overlaid with the tile’s photo texture, is
then rendered using our ray-casting approach presented in
Section 3.

5. Results

In this section, we give a detailed analysis of the perfor-
mance of both the rasterization-based and the ray-casting-
based approach. All benchmarks were run on a stan-
dard desktop PC, equipped with an Intel Core 2 Quad
Q9450 2.66 GHz processor, 8 GB of RAM, and an NVIDIA
GeForce GTX 280 graphics card with 1024 MB of local
video memory. For all tests, the far plane was set to 600 km,
and the screen-space error tolerance was set to 2

3 pixels.

5.1. Data Sets

For our tests, we used two different data sets. The first data
set is a digital model of Vorarlberg, Austria, consisting of
a digital surface model at a resolution of 1 m and an ortho-
graphic photo texture at a resolution of 12.5 cm for a region
of 56 km× 85 km, resulting in a total of 860 GB of data (see
Figure 1). The height field of this data set is extremely de-
tailed and clearly exhibits vegetation and buildings.

The second data set is a digital elevation model of the
State of Utah at a resolution of 5 m, accompanied by an or-
thographic photo texture of 1 m (see Figure 5). With a spa-
cial extent of 460 km × 600 km, this data set has a size of

Figure 5: Screenshot of the Utah data set, rendered with the
ray-caster. With an extent of 460 km× 600 km at a resolution
of 5 m and 1 m for the height field and texture, respectively,
this data set amounts to 790 GB of data.

Figure 6: Color coded iteration step count until a hit is
found (from black = 0 steps to white = 50 steps).

790 GB. Contrary to the first data set, its height field does not
contain vegetation and buildings, which have been removed
by the provider during data processing. Thus, its height field
is much smoother than the one of the Vorarlberg data set.

5.2. Performance Analysis

In the first qualitative analysis in Figure 6 we show the num-
ber of traversal steps until a hit with the surface is found,
color coded from black (= 0 steps) to white (= 50 steps),
for the scene shown in Figure 1. Without our pyramidal ac-
celeration structure we would expect up to 1024 steps for
a tile size of 512 × 512. In the image, however, it can be
seen clearly how effective the quadtree traversal is. Only
relatively few rays come close to 50 steps. Overall, we ob-
serve a speedup of about 5 compared to an unoptimized ray-
caster that simply steps through the highest resolution of the
quadtree. As can be seen in Figure 7 and 8 in which the frame
rates for a flight over the Vorarlberg and Utah data set are
shown, the performance scales linearly with the screen res-
olution and remains independent of the data set. This shows
that our approach scales excellently in the complexity of the
terrain. Note that the fluctuations in frame rate are mainly
due to the varying sky/terrain coverage of the screen during
the course of the flight. The massive peaks in the frame rate
show up when the camera is facing down onto the terrain. In
this case only very few traversal steps are necessary to find
the intersection.
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Figure 7: Ray-casting frame rate over the course of a flight
over the Vorarlberg data set. A screen captured video of the
flight can be seen in the accompanying video.
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Figure 8: Ray-casting frame rate over the course of a flight
over the Utah data set.

In the upper diagrams of Figures 9 and 10, we compare the
frame rates of our novel ray-casting approach and our previ-
ous highly optimized rasterization-based solution [DSW09],
using a 1280 × 1024 view port. For the Vorarlberg data set
(Figure 9), the ray-caster achieves about twice the perfor-
mance of the rasterizer, even though our optimized rasterizer
has an average throughput of about 350 million triangles per
second. In the few cases where the two curves come close to
each other or the rasterizer even overtakes the ray-caster, a
relatively small number of triangles are sufficient to render
the terrain, i.e., the camera is looking at a smooth region of
the terrain or is facing down onto the terrain.

In the lower diagrams of Figures 9 and 10, we com-
pare the GPU memory consumption of the two approaches
for the tiles’ triangle lists (96 bits/triangle) or height fields
(16 bits/sample + mipmaps), respectively (the GPU mem-
ory required for the photo textures is the same for both ap-
proaches). For the Vorarlberg data set (Figure 9), the ray-
caster requires much less memory and has an almost con-
stant memory footprint of only about 128 MB to interac-
tively render a data set of about one terabyte. In contrast to
this, the rasterizer requires much more memory although it
already operates on a compressed representation. Further-
more, as the memory consumption depends on the “rough-
ness” of the terrain currently in view, memory consumption
is fluctuating significantly over the path of the flight for the
rasterizer, but not for the ray-caster.

For the lower resolution Utah data set (Figure 10), how-
ever, the compression of the regularly sampled height field
into a mesh pays off and the rasterizer is both faster and has
a smaller memory footprint than the ray-caster. Note that the
ray-caster does not slow down for this data set and still runs
at about 40-50 fps, but the rasterization approach simply be-
comes much faster due to a significantly reduced number of
triangles to be rendered per frame. This observation leads us
to the conclusion that for low and medium resolution data
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Figure 9: Direct comparison of the Ray-Casting vs. Raster-
ization frame rate and GPU memory consumption over the
course of a flight over the Vorarlberg data set.

 0

 64

 128

 192

 256

 320

 0  20  40  60  80  100  120  140  160  180
 0

 64

 128

 192

 256

 320

G
eo

m
et

ry
 G

P
U

 M
em

or
y

Time (s)

Ray-Caster (MB)
Rasterizer (MB)

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0
 50
 100
 150
 200
 250
 300
 350
 400

F
ra

m
e 

R
at

e

Utah - Ray-Caster vs. Rasterizer
Ray-Caster (fps)
Rasterizer (fps)

Figure 10: Direct comparison of the Ray-Casting vs. Raster-
ization frame rate and GPU memory consumption over the
course of a flight over the Utah data set.

sets a hybrid approach may be the fastest solution. Fortu-
nately, our system allows us to render every tile with a dif-
ferent strategy, which should depend on the number of trian-
gles of the tile and the distance to the viewer. Therefore, in
the near future we plan to realize such a hybrid approach.

6. Conclusion and Future Work

In this work, we have tackled scalability limitations of ter-
rain viewers, with special emphasis on the development of
an advanced rendering back-end. Our goal was to analyze
the potential of GPU ray-casting for scalable rendering of
gigantic elevation maps and corresponding photo textures on
high-resolution display systems. Specifically, we wanted to
find out whether ray-casting on the GPU can be positioned as
a real alternative to rasterization-based rendering approaches
in geo-spatial visualization systems.

Based on current work in the field of GPU ray-casting of
height fields, we have proposed some novel contributions in
the scope of terrain rendering. These contributions include
the integration of GPU ray-casting into a tile-based contin-
uous LOD renderer for large digital elevation models, and a
method for fast and stable traversal of regular height field
pyramids on the GPU. We have further proposed a novel
technique to perform deferred anisotropic texture filtering at
visible terrain samples, thus reducing texture fetch opera-
tions significantly.

Based on these developments we have carried out a
detailed performance analysis of terrain rendering using
ray-casting, including the comparison to a highly efficient
rasterization-based approach. Our analysis has shown that
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for moderate data resolutions GPU ray-casting can not
achieve the performance of its rasterization-based counter-
part. The reason lies in the computation and memory access
overhead that is introduced by ray-traversal. At large height
field resolutions, however, this overhead can be amortized
and the assumed logarithmic complexity of ray-casting in
the number of height samples can deploy its full potential.

With respect to our findings, in the future we will continue
research on alternative geometry compression schemes for
DEMs. At first glance this does not seem to be directly re-
lated to the investigations in this work, but if we have a closer
look it turns out that the use of a ray-caster for terrain ren-
dering eventually allows us to use more effective compres-
sion schemes as we do so far. In the current work we have
employed a geometry compression scheme that is based on
a particular adaptive triangulation method for height fields.
One of the reasons why this method was chosen is that it can
effectively reduce the number of triangles that are needed to
represent the height field within a certain error tolerance. To
render the DEM using ray-casting, however, we first convert
the adaptive representation into a regular height map. Con-
sequently, one future challenge will be the development of
advanced compression schemes for the initial regular height
field, and then to either perform GPU ray-casting on the
compressed representation or to first convert it into the kind
of height-field pyramid that is used in the current work.
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