



# Exploring the Millennium Run Scalable Rendering of Large-Scale Cosmological Datasets

Roland Fraedrich, Jens Schneider, Rüdiger Westermann Technische Universität München

# Millennium Run

#### Goal

- Simulation of the evolution of the Universe (ACDM-Model)
- Setup
  - N-body/SPH simulation with 2160<sup>3</sup> > 10<sup>10</sup> particles
  - Cubic region of 2.23 billion light-years per side
  - Effective resolution of 100,000<sup>3</sup>
  - 28 machine days at 0.2 Tflops using 1 TB RAM
- Output
  - Per snapshots: Position + attributes of all particles (225 GB)







## Contribution

- Scalable rendering approach
  - Datasets > 10 billion particles
  - Data volume > 200 GB
  - Interactive frame rates
  - Common PC hardware
  - Screen space error < 1 pixel</li>







## **Major Constraints for Rendering**

- Limited Geometry Throughput
- Memory Limitations (GPU)
- RAM  $\rightarrow$  GPU Transfer
- Memory Limitations (RAM)
- HD → RAM Transfer
- Disc Access Latency





### **Visualization Approach**

- SPH Particle Properties
  - Position (float3), Radius (float)
  - Density (float), Velocity Dispersion (float)
- Common Visualization Technique
  - Order-independent integration along the line of sight
    - Squared density  $\rho^2$
    - Velocity dispersion weighted with  $\rho^2$







## **Visualization Approach**

#### Common Visualization Technique

- Order-independent integration along the line of sight
  - Squared density  $\rho^2$
  - Velocity dispersion weighted with  $\rho^2$
- Color Coding
  - Brightness: Logarithm of  $\rho^2$
  - Hue:

VISOS

Logarithm of velocity dispersion weighted with  $\rho^2$ 





#### **Data Representation**



General Idea:

viso9

- Hierarchical data representation
- Minimize number of particles for a given subpixel error for any view



#### **Data Representation**



- Multi-Resolution Hierarchy
  - Octree-based data structure
  - Subdomains are discretized into regular grids of size 8<sup>3</sup>
  - Refinement down to 128K<sup>3</sup>

. VISO9



## **Particle Thinning**

Merging of particles within a quantization bin

- (a) Particles with a diameter < 1 pixel ( $\rightarrow$  single point primitive)
- (b) Particles with the same radius
- $(\rightarrow \text{ single point sprite})$
- (c) All other particles remain separated





# **Particle Thinning**

- General Idea:
  - Discard particles having no influence on final image
- How to measure influence on screen?
  - Density of particle  $\rho$
  - Inverse-square law
  - *d<sub>min</sub>* of octree node



If ρ<sup>i</sup><sub>max</sub> < P<sub>min</sub> of color table → Particle not visible
<u>However</u>: Integration of *n* of such particles can be visible
→ adopt rule to ρ<sup>i</sup><sub>max</sub> < P<sub>min</sub> / n to discard particles.



#### **Attribute Compression**

- Additional particle quantities (radius, temperature, density)
  - High range of values
  - Stochastically dependent
- Vector quantization

   (Logarithmically scaled to minimize relative error)
  - 8 bit (12 : 1): error ≈ 13 %
  - 12 bit (8 : 1): error ≈ 5 %
  - 16 bit (6 : 1): error ≈ 2 %





#### **Attribute Compression**



Original

16 bit VQ (6:1) Avg. Error: 0.2<sup>\*</sup> 8 bit VQ (12:1) Avg. Error: 2.0<sup>\*</sup>

\*Error measured as Euclidean distance in RGB color space  $r,g,b \in [0,255]$  for multiple views.





## Data Management

- General Idea:
  - Increase overall data throughput by reducing number of disk seek operations
- Collect data of nodes into pages:
  - Siblings are stored together
  - If pageSize < 3 MB</li>
    - → Fill pages breadth-first







# Rendering

- Node selection (CPU)
  - Tree traversal (top down)
  - View-frustum culling



- LOD-selection based on user-defined subpixel screen space error
- Loading of pages if necessary (asynchronous I/O)
- Sphere-shaped pre-fetching region
- Buddy-system on GPU

~ VISO9

LRU-Cache on GPU and CPU







## Rendering

- 1<sup>st</sup> Pass: Integration along viewing rays
  - Order-independent Rendering (BlendAdd)
    - Point Primitives
    - Point Sprites
  - Result

. VISO9

- Integrals of  $\rho^2$  and weighted velocity dispersion
- Stored in a 2D render target
- 2<sup>nd</sup> Pass: Color Coding
  - Single texture fetch into color table



Velocity Dispersion







# Rendering

- Bottleneck:
  - Heavy geometry and rasterization load
- Solution:
  - Discard particles from the rendering pipeline as early as possible
    - Fine-grain view-frustum culling
    - Density-based culling



10.4 fps

4.4 fps





#### Results



- → RAM Usage ≈ 1.5 GB
- → Disk Transfer < 110 MB/s
- → Video Memory < 250 MB
- → GPU Upload < 35 MB/s
- → Rendered Particles ≈ 30 M
- → Rendering Speed ≈ 11 fps
- → Throughput ≈ 280 MP/s

PC: Intel Core 2 Quad 2.66 GHz NVIDIA GeForce GTX 280 (1024 MB) RAM: 4 GB PCI Express 2.0 x16



#### Results

Scalability with regard to the screen resolution







## Summary

- Interactive visualization of cosmological particle data
  - Achieving 13 fps for datasets exceeding 10 billion particles
  - Scalable to much larger datasets
- Components
  - Hierarchical data representation
    - Significant reduction of particle data at no visual loss
  - Efficient out-of-core and in-core memory management
    - Effectively hiding unavoidable data streaming
  - High performance rendering
    - To deal with the remaining load of particles



#### **Future Work**

- Bottleneck
  - High geometry and rasterization load
- Correct Volume Rendering
  - Ray Tracing using volume rendering integral
  - "Sorting" of particles necessary
- Extension to time-dimensional data
  - Millennium Run: 20 TB
  - Requires new data representation



