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Fig. 1. Visualizations of the Millennium Simulation with more than 10 billion particles at different scales and a screen space error
below one pixel. On a 1200x800 viewport the average frame rate is 11 fps.

Abstract—In this paper we investigate scalability limitations in the visualization of large-scale particle-based cosmological simula-
tions, and we present methods to reduce these limitations on current PC architectures. To minimize the amount of data to be streamed
from disk to the graphics subsystem, we propose a visually continuous level-of-detail (LOD) particle representation based on a hier-
archical quantization scheme for particle coordinates and rules for generating coarse particle distributions. Given the maximal world
space error per level, our LOD selection technique guarantees a sub-pixel screen space error during rendering. A brick-based page-
tree allows to further reduce the number of disk seek operations to be performed. Additional particle quantities like density, velocity
dispersion, and radius are compressed at no visible loss using vector quantization of logarithmically encoded floating point values.
By fine-grain view-frustum culling and presence acceleration in a geometry shader the required geometry throughput on the GPU
can be significantly reduced. We validate the quality and scalability of our method by presenting visualizations of a particle-based
cosmological dark-matter simulation exceeding 10 billion elements.

Index Terms—Particle Visualization, Scalability, Cosmology.

1 INTRODUCTION

Particle-based cosmological simulations play an eminent role in re-
producing the large-scale structure of the Universe. Today, numerical
simulations of the dark-matter distribution using as much as billions
of particles have been carried out, and the results of these simulations
have to be analyzed for a better understanding of the structure forma-
tion process in the Universe.

One of the most popular simulations is the Millennium Run, where
more than 10 billion particles have been used to trace the evolution
of the matter distribution in a cubic region of the Universe with
over 2 billion light-years on a side, resulting in terabytes of stored
output. The simulation itself ran 28 machine days at 0.2 Tflops
using 1 Tbyte RAM. By comparing the simulation results to large
observational surveys, the physical processes underlying the buildup
of real galaxies and black holes can be clarified. Especially by
analyzing the substructure in simulated halos and subhalos, the hope
is to prove or contradict recent claims and hypotheses on the matter
distribution in the Universe.
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By today, for the largest available cosmological simulations an in-
teractive visual analysis is not feasible, and the exploration is mainly
performed via database queries, data mining techniques, and visual-
izations of vastly reduced subsets of the full dataset. On the other
hand, it can be perceived that an even stronger awareness of the im-
portance of interactive visualization techniques for data exploration is
growing in the community. One important reason is that especially in
cosmological data it is not yet completely understood what the rele-
vant scientific information in the vast amount of stored output is. This
makes it difficult to apply fully automatic analysis techniques, which
typically need a precise specification of the structures to search for.
As a consequence, the community increasingly tries to put experts and
their capabilities into the center of the exploration process, to support
them by visualization tools that can effectively exploit the humans’
perceptual and cognitive abilities, and to let them interactively guide
the search process.

To achieve interactive visualizations of cosmological particle sim-
ulations as large as the Millennium Run, we have to consider scala-
bility with respect to the size of the data in the whole visualization
process. From the massive amount of particles to be visualized it be-
comes clear that the challenge in cosmological visualizations today is
to maintain interactive frame rates for datasets that vastly exceed the
available main memory. Since the number of primitives to be sent
to the GPU for rendering is significantly increasing, too, the visual-
ization performance is strongly limited by bandwidth restrictions. In
addition, even on recent high-end graphics accelerators (GPU) geom-
etry throughput and rasterization load induced by particle rendering
considerably limit the performance.



2 CONTRIBUTION

The primary focus of this paper is to address scalability limitations in
the visualization of very large cosmological particle simulations and
to investigate how far one can reach on recent PC architectures by
reducing these limitations. The methods we propose are based on a
hierarchical encoding of particle positions and attributes into a tree
data structure. This data structure stores partitions of the underlying
domain at ever finer resolution, with the sub-domains in each parti-
tion being quantized uniformly using 8 bit per coordinate component.
The partitions are recursively refined until the spatial resolution of the
simulation is reached.

To reduce the number of particles at each resolution level, particles
falling into the same quantization bin are merged if the rendering of
the resulting particle at this level does not introduce a visible error.
By this means, we build a level-of-detail representation that allows re-
ducing aliasing artifacts as well as the number of rendered primitives.
In combination with a page-tree that stores a number of adjacent sub-
domains in one contiguous memory block, memory bandwidth and the
number of disk seek operations can be reduced considerably.

Besides their coordinate, particles of cosmological simulations
carry floating point attributes such as mass density, velocity disper-
sion, and radius, which significantly increase the data to be stored and
transferred. To address this problem, we employ a vector quantization
scheme after the attributes have been scaled logarithmically. Since the
quantized data can be decoded efficiently on the GPU, we can trade
CPU-GPU data transfer for GPU processing, resulting in three times
faster streaming of large particle sets from disk into GPU memory.

Regardless of these efforts, geometry throughput and rasterization
of particle splats on the GPU still remain critical bottlenecks for in-
teractive visualizations. To further reduce this problem we propose
techniques to discard particles from the rendering process as early as
possible by fine-grain view-frustum culling and presence acceleration.
The latter approach takes advantage of the fact that it is not necessary
to render many particles in regions with small contributions to the in-
tegrals over physical quantities. These problems as well as ideas for
further optimizations will also be addressed in the discussion at the
end of this paper.

The remainder of this paper is organized as follows: In the next sec-
tion we review previous work that is related to ours. An overview of
the Millennium Simulation and the visualization technique we employ
are given in Sections 4 and 5. Subsequently, we present the com-
ponents of the proposed scalable rendering pipeline and discuss our
strategies for data representation (Section 6), memory management
(Section 7), and rendering (Section 8). In Section 9 we analyze the
different components of our method and the framework as a whole.
We conclude the paper with an outline of future research in this field.

3 RELATED WORK

Today, interactive data visualization is established as a key technology
for the exploration of large and complex-structured datasets as they
arise in almost all areas of science and engineering. There is a vast
body of literature related to visual data analysis that we will not at-
tempt to overview here, however [10, 16] discuss many related issues
and provide useful references on these subjects.

Recent work on the visualization of astronomical data include the
development of infrastructures for high-performance computing en-
vironments [2, 11, 19], volume rendering techniques for the visual-
ization of star formation and planetary nebulae [14, 17], methods for
visualizing uncertainty in large-scale astrophysical environments [12],
and the comparison of different simulations by comparative visualiza-
tion [1].

Other approaches underline the importance of user-tailored visu-
alization and interaction techniques in the field of astrophysics, like
the development of scalable WIM (world-in-miniature) user interfaces
that facilitate travel and wayfinding at large spatial scales [13], or
user-controlled interaction that supports multiple abstraction views of
galaxy clusters and the selection of structures in spatial sub-domains
[15, 21].

For particle data from cosmological simulations, software rendering
[6, 20, 7] is still most commonly used for visual data analysis. Effi-
cient multi-resolution point splatting techniques based on spatial sub-
division schemes have been proposed in [8, 9, 26], but the size of to-
day’s simulations demands scalable out-of-core rendering approaches,
which support these visualization techniques by efficient data manage-
ment and transfer [4]. To cope with this ever increasing amount of data
to be visualized, parallel visualization systems [2, 11] and infrastruc-
tures for visual data mining in distributed data sources [3] have been
proposed so far, including mechanisms for data handling, querying,
and interaction.

4 THE MILLENNIUM RUN

The goal of the Millennium Simulation Project1 is to investigate
the evolution of the Universe based on a Lambda-Cold Dark Matter
(ΛCDM) model of the accelerating expansion of the universe. For this
purpose, the growth of dark matter structure was traced from redshift
z = 127 to the present by using a N-body/SPH-simulation in which the
collisionless dark matter fluid was represented by a set of discrete point
particles. With a total number of 21603 ≈ 1010 particles, distributed
in a periodic box of 2.23 billion lightyears, this is one of the largest
particle-based simulations ever performed. For a detailed description
of the numerical code used to compute the Millennium N-body simu-
lation as well as the scientific results of the Millennium Project let us
refer to the work by Springel et al. [23, 25].

In order to investigate the time-dependent dark matter distribution,
the intermediate results of the simulation have been stored in 64 snap-
shots. Besides its own 3D floating point coordinate, each particle in a
single snapshot carries additional physical quantities such as an adap-
tive smoothing radius, density, and velocity dispersion, each of which
is encoded in one floating point value. For a single snapshot this results
in a total amount of memory of 225 GB.

5 COSMOLOGICAL VISUALIZATION

The visualization technique we propose aims at showing the dark mat-
ter distribution in 3D space. It follows a visualization approach for
cosmological particle data that is commonly used for offline visualiza-
tions of the Millennium Simulation [24]. In this approach, the squared
dark matter density is integrated along the lines of sight and scaled log-
arithmically to increase the contrast in pixel brightness. The dark mat-
ter velocity dispersion, i.e., the spread of velocities of stars or galaxies
in a cluster, is weighted by the squared dark matter density and aver-
aged along the lines of sight. It is encoded into the color hue using a
particular transfer function to emphasize regions of high dispersion.

It is clear that due to the nature of the SPH-model underlying the
Millennium Simulation, along the lines of sight the physical quantities
have to be reconstructed locally at the sampling points using an SPH
kernel interpolation scheme. Such a scheme, however, requires access
to all particles within the kernel support, meaning that extensive search
operations supported by acceleration structures like kD-tress have to
be performed. Unfortunately, such a resampling scheme can by no
means be fast enough to be used in an interactive application.

The common approximation is thus to splat each particle separately
onto the image plane, and to accumulate the quantities on a per-pixel
basis before they are scaled appropriately. Figure 1 shows some im-
ages of the Millennium Simulation at different scales, which have been
generated by this approach. Even though this approach is not physi-
cally correct, it has been shown to produce visualizations that are very
similar to those generated by the SPH-based approach and allow for an
equally good analysis of the data. In this approach, in analogy to the
behavior of light, the total density of a single particle falls off as the
square of its distance to the viewer. An additional fall-off is usually
applied to fade-out the density field beyond some depth of interest.

The major requirement on a cosmological visualization technique
capable of dealing with data as large as the Millennium Simulation is
scalability throughout the entire visualization pipeline, including the
streaming of the data from the hard disk to the graphics processor. The

1http://www.mpa-garching.mpg.de/galform/virgo/millennium/



major constraints in this pipeline are memory and bandwidth limita-
tions, disk access latency, and the geometry and rasterization through-
put on current graphics hardware. According to these constraints, an
efficient cosmological visualization technique has to be built on the
following components:

• A data representation that minimizes the amount of data to be
transferred and rendered while preserving visual quality.

• An efficient out-of-core and in-core data management to quickly
select and access the data.

• A rendering scheme that can effectively exploit the capabilities
of current graphics accelerators to enable interactive visual data
exploration.

6 DATA REPRESENTATION

Our visualization technique builds on a multi-resolution representation
of large particle sets in combination with a data-specific compression
scheme. The multi-resolution representation is stored in an adaptive
octree data structure. Thus, accessing the data that is stored in this
structure exhibits O(log2(N)) complexity (with N being the grid size
corresponding to the maximum refinement level). In the current appli-
cation we refine up to the spatial resolution of the simulation, i.e., to
an effective grid size of 128K3. The sub-spaces represented by each
octree node are discretized into regular grids of size 83.

6.1 Multi-Resolution Hierarchy
The multi-resolution hierarchy is constructed bottom-up in a pre-
process, i.e., the original particle data is stored in the nodes at the finest
level of the tree. At the coarser hierarchy levels, particles from the next
finer level are either merged, copied, or omitted depending on their ra-
dius of influence and their density. The particular LOD-construction
method we employ is described in Section 6.3. Figure 2 shows three
nodes of the multi-resolution hierarchy, each of which represents a part
of the region encoded in the previous node at increasing resolution.

Fig. 2. Three nodes in the multi-resolution particle hierarchy with in-
creasing resolution from from left to right.

As the entire dataset has a size of 225 GB, we split the spatial do-
main into 83 blocks to fit the corresponding data into main memory.
For each block we compute the respective subtree of the octree in par-
allel. Upon completion of this process all subtrees are merged into
one octree, which is then re-organized into a page tree to accommo-
date faster data access. The construction of this page tree is discussed
in Section 7.1.

6.2 LOD-Selection
Given the size q of the quantization cells at a particular LOD, the max-
imum world space error that is introduced by quantizing particle coor-
dinates to cell centers is δ =

√
3 ·q/2. During rendering a strategy is

required to select those octree nodes that result in a sub-pixel error on
the screen, and, thus, yield a visually continuous LOD rendering that
is lossless wrt. the current image resolution.

Given the world space error δ , the vertical screen resolution resy,
and the vertical field of view f ovy, we can determine the minimum
distance dmin to the viewer as of which a node can be rendered before
it has to be refined:

dmin =
δ · resy

2 · tan( f ovy/2)
· τ.

Here, τ < 1 is the maximum allowed screen-space error in pixels. To
maintain this error during rendering, each node that is closer to the
viewer than dmin has to be replaced by its 8 children.

6.3 Particle Thinning
The LOD-selection strategy tries to always render octree nodes whose
projection is approximately equal or less than one pixel. Taking this
into account, particles can be classified with respect to the number of
pixels they would cover if they were rendered at a particular level:
points cover at most one pixel and sprites cover more than one pixel.

Since all points in the same quantization bin will fall into the same
pixel on the screen, they can be merged to one single point (see Figure
3). To determine the dark matter density and velocity dispersion of this
point wrt. to the individual contributions, an density-weighted filtering
is computed in a pre-process.

Sprites in one cell, on the other hand, can only be merged without
visual loss if the differences of their radii hi and h j is not perceivable
during rendering (see Figure 3). For this purpose, we use the fusion
criterion |hi − h j|/q < ε , where ε is a sufficiently small number. If
this condition is not fulfilled, the particles are stored separately at the
respective level. Note that due to the local coherence of smoothing
lengths in a SPH simulation, almost identical radii within one cell are
very likely to occur, particularly at finer resolution levels.

++
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+

(a)

Fig. 3. Resolution dependent particle merging: (a) Particles with a ra-
dius less than the cell size are merged into one single point primitive.
(b) Particles covering more than one pixel can only be merged if their
radii are equal. (c) Otherwise, they can not be combined in a meaningful
way.

In order to further decrease the number of particles per node, we
introduce a rule for discarding particles depending on their density
contribution. Based on dmin and the quadratic density fall-off, the pro-
jected squared dark-matter density ρ2

i of a particle on the screen can
be computed. Together with the minimum density for color coding
ρmin, we discard a particle if ρ2

i < ρ2
min/n. Here, n can be interpreted

as the maximum number of discarded particles whose sum of squared
densities is still smaller than ρmin. These particles do not have any
influence on the final image.

The easiest way to find a reasonable value for n is to simulate the
criterion on the GPU and to experiment with different values. As an
objective criterion, the scene can be rendered with and without the
threshold in order to compute the image difference. This procedure
can be repeated for a certain number of different views or while flying
through the dataset until a good threshold is found.

6.4 Attribute Compression
Besides their coordinates, the particles stored in the multi-resolution
representation carry floating point attributes such as mass density, ve-
locity dispersion, and radius. Due to the nature of the simulation these
properties are stochastically dependent. Therefore, to reduce the mem-
ory required to store these attributes we employ a vector quantization
scheme after the attributes have been scaled non-linearly.



As can be seen in the histogram in Figure 4, all three parameters
have a high dynamic range. A standard vector quantizer, however, is
designed to minimize the sum of squared errors. This is problematic
because the same absolute distance between each data point and its
respective quantization point is thus deemed acceptable by the vector
quantizer.
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Fig. 4. Histogram of the three particle quantities. For each quantity, we
split the range of values in 1024 equal intervals and count the number
of occurences of a parameter value in each interval. Full ranges are
[6.73 ·10−47,2.11] (smoothing radius), [8.80 ·10−2,4.84 ·108] (dark matter
density) and [2.26,1.46 ·107] (velocity dispersion).

Especially with regard to the logarithmic color coding of squared
dark matter density and velocitiy dispersion during rendering, it is a
much better choice for the quantizer design to minimize the relative
error, because large absolute errors are not acceptable for small values.
From the histogram it is apparent that quantizing logarithms of values
will drastically decrease relative errors, albeit at the cost of increasing
the sum of squared errors. By logarithmizing (base 2) each component
of the 3D data points prior to quantization we can reduce the maximum
relative error from 3.63 ·1039% to about 540% (average relative error
from 3.63 · 1039% to 13%) for an 8 Bit per 3D vector quantization.
Note that this does not affect the coding efficiency, since it is sufficient
to exponentiate the codebook entries prior to decoding. Also note that
changing the base of the logarithm allows a further trade-off between
minimization of squared errors and relative errors.

Figure 5 presents the resulting distortion induced by vector quanti-
zation using codebooks of varying size. As will be shown in the re-
sults, by using an 8 bit index with an average relative error of 13% we
can already generate images which can hardly be distinguished from
those that have been generated using the original data. By increasing
the bit depth to 12 or 16 bit, the error can be reduced to 5% or 2%
respectively.
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Fig. 5. Average relative error introduced by vector quantization of parti-
cle quantities with varying bit depth.

Since the quantized data can be decoded efficiently on the GPU by
means of texture lookups, we can trade CPU-GPU data transfer for
GPU processing, resulting in three times faster streaming. For details
of the vector quantization we refer to Schneider et al. [22].

7 MEMORY MANAGEMENT

In every frame, the octree is traversed in a top-down fashion on the
CPU to determine the nodes that have to be rendered. Of these, those
nodes that are not residing in main memory have to be read from disk.
During tree traversal, the minimum distance criterion (see Section 6.2)
is used to determine the LOD for the current view, and once a node has
been determined the traversal in the current sub-tree can be stopped.
In addition, view frustum culling is applied to discard those subtrees
that are not visible.

Even though frame-to-frame coherence significantly reduces the
amount of data to be read from disk, for very large datasets and high-
resolution display systems there is still a vast amount of data that has to
be streamed from disk to CPU memory in an interactive visual explo-
ration session. In the following we describe a number of mechanisms
to keep the impact of data streaming on the frame rate as minimal as
possible.

7.1 Disk Transfer
To reduce the number of disk seek operations and thus to increase
the data throughput from disk to main memory, in each octree level
the nodes having the same parent are packed together and stored as a
single data block on disk. We refer to these collections as pages and
treat them as one entity in terms of storage and transfer. If a page size
is below a given minimum size, additional nodes below those stored
in the page are added in a breadth-first manner. Since a page typically
contains more data than is required in a particular view, the minimum
page size has to be chosen such as to yield a good balance between
performance and main memory usage. In our experiments, a page size
of 3 MB turned out to be a good trade-off. Figure 6 illustrates the
relation between a tree data structure and pages in this data structure.
As can be seen, the pages itself represent a tree data structure, which
we refer to as page tree.

Fig. 6. Illustration of the relation between a tree data structure (left) and
a page tree (right), which stores a number of nodes belonging to the
same parent node.

The page tree is stored on disk and dynamically loaded into main
memory during runtime. To determine whether the data of a page is
required for rendering, it is sufficient to check the distance criterion
for the parent of the page as it has a smaller dmin than all of its de-
scendants. According to the movements of the viewer, the page tree
is dynamically built top-down and destroyed bottom-up within main
memory, such that a maximum amount of data can be re-used in every
frame. Simultaneously, the octree is built and destroyed by adding and
removing the nodes contained in these pages. Note that nodes only
store pointer to the respective data blocks in the page tree, so that the
data is not stored twice in main memory.

7.2 Pre-Fetching and Caching
For hiding disk access latency, we use asynchronous I/O combined
with a pre-fetching scheme to load pages that might be required in
upcoming frames. We load all nodes having a distance to the camera
dcam ≤ dmin + dprefetch, resulting in a sphere-shaped pre-fetching re-
gion that supports arbitrary rotations. As has been shown by Ng et al.
[18], although the use of a sphere-shaped region increases the overall
memory requirement, when moving along the line of sight the amount
of data to be read from disk is only marginally increased.



The pre-fetching scheme loads every page that might be required
after a camera translation of length dprefetch. In order to hide disk
access latency, this distance is chosen such that the time for loading
the largest page is less than the time for moving the camera to the
position where the node is required for rendering.

When flying through the dataset, there will eventually be pages,
which are not required in main memory anymore because the corre-
sponding pages have fallen outside the pre-fetching region. However,
as long as enough main memory is available we do not remove the data
but move it into a LRU cache. Hence, a page can be reused without
any additional cost until the memory is required by another page.

8 RENDERING

To render the particles stored in the set of selected octree nodes, they
are copied into vertex array buffers on the GPU. These buffers are then
rendered as described below. To optimize the resource management on
the GPU, we avoid time-consuming creation and deletion of resources
per node by using buddy memory allocation. This means that a set
of vertex buffers of a size that it is sufficient for every node is allo-
cated, and these buffers are split recursively into equally sized pieces
if less memory is needed. If the data in refined blocks is not used
anymore, the blocks are merged again to be available for larger vertex
arrays. Like the LRU caching scheme used on the CPU, the data cor-
responding to nodes that are not required anymore are kept in graphics
memory until they have to be paged out due to resource shortage.

The rendering approach is realized in two passes. In the first pass,
the particles are projected onto the screen in order to accumulate the
squared dark matter density and the weighted velocity dispersion along
the lines of sight. The result is stored in a render target that is bound
as a texture resource in the second pass. In this pass, the pixels fi-
nal colors are computed by using the accumulated values as texture
coordinates into a pre-computed 2D color transfer function.

Due to our multi-resolution representation, the particle coordinates
of a node are encoded according to their discretization within the cor-
responding sub-domain. By using the size of the node as scale factor
and its position as translation vector, we can decode them into spatial
coordinates. The particle attributes are looked up from the quantiza-
tion codebook.

8.1 Particle Projection
The particle projection onto the screen is performed by splatting. Par-
ticles that are classified as points are simply rendered as point primi-
tives. For sprites, we use a geometry shader to expand each particle
to a screen aligned face that has to be large enough to cover the pro-
jected area of the particle’s smoothing kernel. The respective size is
computed as r = h/

√
1−h2/d2, where h is the smoothing radius and

d the distance to the camera (see Figure 7).
Via texture coordinates the relative distance of each vertex of the

face to the particle center is stored as vertex attribute, which is inter-
polated on a per-fragment basis during rasterization. In a pixel shader,
we have to perspectively correct the interpolated distance r′ in order to
retrieve the minimal distance s = r′/

√
1+ r′2/d2 of the respective line
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Fig. 7. Perspective correction for line of sight integration through a
spherical particle. (a) Instead of using the smoothing length h as splat
extend, the projective extent r at the distance d of the particle center is
computed first. (b) During fragment shading the closest distance s from
r′ and d (given as fragment attributes) to the line of sight is computed. s
is then used to determine the line integral through the particle.

of sight to the particle center (see Figure 7). Now, s can be either used
for computing the line integral through the smoothing kernel on the fly
or to look-up the pre-computed integral value from a one-dimensional
texture map.

8.2 Performance Issues on the GPU
Regardless of our efforts to minimize the number of rendered particles,
geometry throughput and rasterization of particle splats on the GPU
still remain critical bottlenecks for interactive visualizations. We fur-
ther reduce these problem by discarding particles from the rendering
process as early as possible in order to forgo the unnecessary expand-
ing of splats and to reduce the number of primitives that are further
processed and rasterized.

For this purpose we employ fine-grain view-frustum culling and in
addition, we reapply presence acceleration that has been introduced in
Section 6.3 on a per-particle basis. The impact of the latter technique
is especially profitable, since we fade-out the densities at the end of
our viewing distance. Thus, there is usually a significant number of
particles that drop below the density threshold and can therefore be
discarded.

Besides the number of particles, the choice of the proxy geometry
for rendering point sprites has a considerable impact on the rendering
performance as well. Using equilateral triangles instead of quads cuts
the number of primitives into halves and significantly increases the
geometry throughput, even though the area for rasterization is enlarged
by a factor of 3

√
3/4.

Finally, rendering multiple fragments to the same screen location
in a rapid succession leads to a considerable lack of performance. To
minimize this effect, the particle data should be shuffled to create a
random order for rendering the particles.

9 RESULTS AND ANALYSIS

We have implemented our visualization framework in C++ using Di-
rectX 10 and HLSL for rendering. Our experiments have been carried
out on a standard PC equipped with an Intel Core 2 Quad Q9450 2.66
GHz processor, 4 GB of RAM, and a NVIDIA GeForce GTX 280
with 1024 MB video memory and PCI Express 2.0 x16. The data was
stored on a striped RAID 0 consisting of two ATA Hitachi HDS72101
hard disks. In all of our experiments we have quantized the particle at-
tributes using 8 bit per component, and we have selected a maximum
allowed screen space error of 0.8 pixels.

9.1 Data Representation
The original dataset has a total size of 225 GB, including particle den-
sity, radius of influence, and velocity dispersion. The generation of the
multi-resolution hierarchy, the quantization of particle attributes, and
the creation of the page tree took roughly 5:20 hours. In comparison
to the simulation itself, which took 28 machine days on a supercom-
puter, and the fact that rendering movies of the dataset in software
takes several hours as well, this duration is rather small.

The final octree has 10 LODs, with the coordinates of the parti-
cles in one node being quantized uniformly using 8 bits per compo-
nent. Thus, at the finest LOD an uniform spatial resolution of 128K3

is achieved, which is even slightly higher than the resolution (105) at
which the simulation has been performed.

To validate our visualization approach with respect to speed and
quality we have created two datasets, the first one using 8 bits to quan-
tize particle quantities and the other one using 16 bits. This results in
an overall compression rate of 6 : 1 and 4.8 : 1, respectively, for the
particle data. The respective page-trees are 159 GB and 198 GB in
size.

Table 1 shows detailed statistics for the multi-resolution particle hi-
erarchy. Level 0 represents the finest LOD and contains all particles of
the simulation. With increasing level, the number of particles are suc-
cessively reduced due to particle thinning as proposed in Section 6.3.
At finer LODs the effect is rather minor, which is not surprising due
to the conservative approach we use. With increasing LOD, however,
the reduction between two consecutive levels increases up to 91%.



Table 1. Statistics for each level of the particle multi-resolution hierarchy. Merged shows the number of merged particles from level n− 1 to level
n. Skipped gives the number of particles which have been skipped at level n due to presence acceleration, but which may contribute to a merged
particle at level n+1. Sprites and Points show the number of sprites and points, respectively, with their sum being listed in Particles. Average gives
the average number of particles per node.

Level Merged Skipped Sprites Points Particles Average
9 1 149 203 319 196 713 663 0 5 443 448 5 443 448 5 443 448
8 1 389 651 438 1 335 618 568 0 15 741 862 15 741 862 1 967 732
7 1 270 473 711 2 700 351 786 6 324 410 34 335 672 40 660 082 635 313
6 1 231 730 796 3 551 487 161 403 898 837 56 099 581 459 998 418 898 434
5 1 278 797 785 3 197 259 628 1 992 911 560 53 045 187 2 045 956 747 499 501
4 1 284 656 859 2 135 299 112 4 343 694 323 43 020 725 4 386 715 048 133 871
3 1 111 595 593 1 082 261 354 6 692 845 763 31 563 902 6 724 409 665 25 651
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Fig. 8. The quality of vector quantization using 8 bit (left) and 16 bit (middle) for the compression of particle attributes is compared. On the right,
the data was visualized using the original floating point attribute values. Close-up views are used to emphasize the quality of vector quantization.
For the compressed data, the histogram of the color differences to the original image are shown below the close-up views.

In comparison to the total number of particles, the fraction that is
represented as points is marginal up to level 7. In fact, this number is
considerably larger, but since the points are typically part of very dense
regions their number is reduced significantly by the proposed parti-
cle thinning strategy. While the total number of particles decreases
for ever coarser LODs, the average number of particles per node is
steadily increasing due to the decreasing number of nodes. In addi-
tion, on larger scales the data is distributed more uniformly across the
nodes, resulting in a higher fill rate of the quantization bins. According
to the increasing average number of particles per node, on levels 4 and
higher the amount of memory required to store the particles exceeds
the selected page size. Therefore, the collection of several nodes into
one page does only occur on the four finest LODs.

In Figure 8 we compare the quality that can be achieved by vector
quantization of particle attributes using 8 bits and 16 bits per compo-
nent. In both cases the differences to the original data can hardly be
seen, and they are only noticeable by investigating a magnified area
in the data. To give an objective measure of the difference, we com-
pute the Euclidean distance of all pixels in the RGB color space for
multiple views. The histogram of the difference between the 8 bits
compressed data and the original data backs up the visual impression
by an average error of 2.0 in color space, where 255 corresponds to full
intensity. With regard to the compression rate of 12 : 1, a high fidelity
can be achieved. Comparing the 16 bit dataset with the uncompressed
version, the difference is not even visible in the zoomed area so that
the images can be regarded as visually equivalent. The analysis of the
histogram proves that the images are not identical, but with an average
error of 0.2 these differences are negligible.

9.2 Performance Measurements

To analyze the impact of the various parts of our visualization ap-
proach on its performance, we have measured memory consumption,
data transfer rates, geometry throughput, and rendering performance
during a straight flight at constant velocity through the Millennium
Simulation. The velocity was 12.76 million lightyears per second, at a
side length of the cubic simulation domain of 2.23 billion lightyears.
The results are shown in Figure 9. By using a straight path, the amount
of data in the spherical pre-fetching region that can be re-used in every
frame is minimized. The particle data was rendered onto a 1200×800
viewport.

As can be seen in the uppermost plot, the main memory consump-
tion is more or less constant around 1.5 GB. This is due to the pre-
fetching scheme, which effectively hides variations in bandwidth re-
quirements that are imposed by spatial variations of the particle densi-
ties. In the hard disk transfer rate in the second plot these variations are
much more apparent, which is in particular caused by a large number
of parallel I/O requests. However, with a maximum of about 105 MB/s
we are still far away from the maximum data throughput of the striped
RAID 0, which is above 200 MB/s. Most of the time, the transfer rate
is below 60 MB/s. Hence, the sustained transfer rate of today’s stan-
dard hard disks is sufficient for data streaming. Even if the used disk
system would not be able to achieve the required peak rate, this would
probably not result in a loss of detail since the measured transfer is
only caused by data pre-fetching.

The third plot in Figure 9 shows the amount of graphics memory
that is required for rendering. With an average size of 202 MB and a
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Fig. 9. Performance measurements and memory statistics for a flight
through the Millennium dataset. Memory and bandwidth requirements
are not at the system limits. Geometry throughput on the GPU effec-
tively limits the performance when rendering onto a 1200×800 viewport.

maximum size of 246 MB, the memory requirements are remarkably
low. In addition, with a CPU-GPU transfer rate of at most 35 MB/s
we are far below the bandwidth that is available on current graphics
hardware. In combination with the proposed pre-fetching scheme, the
data to be rendered is resident in main memory when it is needed and
can directly be streamed to the GPU.

The lower three plots of Figure 9 show the performance measure-
ments for rendering. Overall, an average frame rate of 10.5 fps is
achieved, with a minimum and maximum of 7.7 and 15.0 fps, respec-
tively. To analyze the effectiveness of the proposed data reduction
strategies, we have tried to render the same flight without applying
particle thinning and presence acceleration, yielding an average frame
rate of 1.63 fps.

Regarding geometry throughput, we achieve a peak performance of
394 million particles per second, with 280 million particles per second
in average. This is interesting, because the theoretical maximum of our
target architecture is at roughly 300 million triangles per second. Due
to fine-grain view frustum culling and presence acceleration, however,
the number of effectively rendered sprites is significantly below the
number given in the diagram. Based on benchmarks we can state that
the maximal throughput of our rendering approach is in fact about 220
million sprites per second, where the loss in performance is introduced
by the geometry shader. This throughput is further reduced when ren-
dering very dense regions. Despite our multi-resolution strategy, an
overdraw of more than 2000 is not unusual in the current application,
clearly indicating that rasterization will become the rendering bottle-
neck.

Figure 10 illustrates this problem and the effect of the density based
culling strategy proposed in Section 8.2. The bottom pictures give in-
formation about the fragment overdraw for rendering with both culling
techniques enabled (left) and without these techniques (right), lead-
ing to the same visual output (top image). The color coding ranges
from an overdraw of 0 (black), 500 (magenta) to 3000 (red) with a

Fig. 10. Top: Comparison of image quality with (left, 10.4 fps) and with-
out (right, 4.4 fps) presence acceleration. Bottom: Pixel overdraw in
the respective upper image. Hue encodes the overdraw from black (0
fragments) over magenta (500 fragments) to red (3000 fragments).

linear interpolation of the color’s hue for the values between 500 and
3000. Obviously, the number of pixels with a high overdraw as well
as the maximum overdraw of fragments is much lower in the left im-
age. Combined with GPU view frustum culling this results in a perfor-
mance gain of 236%, yielding 10.4 fps instead of 4.4 fps. The culling
techniques for themselves achieve frame rates of 9.2 (view frustum
culling) and 4.7 fps (density-based culling).

Figure 11 illustrates the scalability of our system with regard to the
viewport resolution. We attribute this scalability to the presence ac-
celeration scheme, as it effectively prevents the geometry load from
scaling linearly with screen resolution. Consequently, the drop in per-
formance is mainly due to the increased fragment load, which — due
to the use of a geometry shader — scales more gracefully.
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Fig. 11. Average frame rate and standard deviation for rendering the
Millennium Simulation data at different viewport resolutions.



10 DISCUSSION

The results presented in the previous section have proven the capa-
bility of our proposed techniques to render datasets with billions of
particles at interactive frame rates on common PC hardware. By quan-
tizing particle coordinates into a regular spatial grid and by using vec-
tor quantization to compress particle attributes, compression rates of
up to 6 : 1 are achieved at very high fidelity. By employing an octree-
based multi-resolution hierarchy, the amount of data to be transferred
and rendered is considerably reduced. Based on an efficient memory
management the streaming of data from hard disk to the video memory
is completely hidden from the user for continuous camera movements.
The measurements in Figure 9 clearly demonstrate the scalability of
the framework, allowing for the interactive rendering of much larger
datasets than the Millennium Run.

The bottleneck in the rendering of large particle data turns out to be
the geometry throughput on recent GPUs. Despite their highly paral-
lel streaming architecture, the massive geometry load induced by the
rendered particles lets the GPU become the limiting performance fac-
tor. To overcome this limitation, one possible solution is to reduce
the number of rendered particles by using alternative rendering primi-
tives. For instance, recent findings in the context of GPU-based terrain
rendering [5] show significant advantages of ray-casting over rasteri-
zation for the rendering of high-resolution polygonal terrains, where
the polygons are approximately one pixel in size. The reason is that
ray-casting can effectively exploit the regular grid structure underlying
such fields and avoids pixel overdraw, while the performance of ras-
terization is limited by the polygon throughput on the GPU. Similar to
this approach, it might be promising to resample regions exhibiting a
high particle density into volumetric textures, and to render the dataset
by means of a hybrid scheme using volume ray-casting and particle
rasterization.

11 CONCLUSION AND FUTURE WORK

In this paper, we have presented a scalable approach for the interactive
visualization of large cosmological particle data on recent PC architec-
tures. By quantizing particles into a multi-resolution octree structure
and introducing rules for particle merging and deletion when no visual
error is implied, we can significantly reduce the amount of data while
maintaining a user-defined screen space error. Combined with an out-
of-core and in-core data management to efficiently access the data and
optimized particle splatting we are able to visualize one time-step of
the Millennium Run exceeding 10 billion particles at interactive frame
rates. To our best knowledge, this is the first approach that is able to
interactively visualize particle data of this size.

As the massive geometry and rasterization load is the limiting per-
formance factor of current particle rendering, our primary focus in the
future will be to investigate alternative visualization techniques that
have a better scalability with regard to the number of particles, such
as volume ray-casting. By employing those techniques for overdense
regions, we hope that a hybrid approach will lead to a considerable
better rendering performance and scalability.
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