
Volume xx (200y), Number z, pp. 1–16

Efficient Geometry Compression for GPU-Based Decoding in

Realtime Terrain Rendering

Christian Dick, Jens Schneider, and Rüdiger Westermann

Computer Graphics & Visualization Group
Technische Universität München

Abstract

We present a geometry compression scheme for restricted quadtree meshes and use this scheme for the compression

of adaptively triangulated digital elevation models (DEMs). A compression factor of 8-9 is achieved by employing

a generalized strip representation of quadtree meshes to incrementally encode vertex positions. In combination

with adaptive error-controlled triangulation this allows us to significantly reduce bandwidth requirements in the

rendering of large DEMs that have to be paged from disk. The compression scheme is specifically tailored for GPU-

based decoding since it minimizes dependent memory access operations. We can thus trade CPU operations and

CPU-GPU data transfer for GPU processing, resulting in twice faster streaming of DEMs from main memory into

GPU memory. A novel storage format for decoded DEMs on the GPU facilitates a sustained rendering throughput

of about 300 million triangles per second. Due to these properties, the proposed scheme enables scalable rendering

with respect to the display resolution independent of the data size. For a maximum screen-space error below one

pixel it achieves frame rates of over 100 fps, even on high resolution displays. We validate the efficiency of the

proposed method by presenting experimental results on scanned elevation models of several hundred gigabytes.

Categories and Subject Descriptors (according to ACM CCS): E.4 [Data]: Coding and Information Theory - Data
Compression I.3.3 [Computer Graphics]: Picture/Image Generation - Viewing Algorithms I.3.5 [Computer Graph-
ics]: Computational Geometry and Object Modeling - Surface Representations, Geometric Algorithms, Object
Hierarchies I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism - Virtual Reality

1. Introduction

Advances in the science and technology of remote sensing
have led to a sheer explosion of the size and resolution of
digital elevation models (DEMs). Today, spatial resolutions
as high as 1 meter are available for some areas, and data at
only slightly lower resolution is currently being acquired for
ever larger regions worldwide. Figure 1 shows a DEM of the
State of Utah, which covers a 460 km × 600 km area at a
resolution of 5 meters. This already amounts to over 20 GB
of raw data, excluding additional photo textures that are typ-
ically acquired at an even higher resolution. From this obser-
vation it becomes clear that the challenge in terrain rendering
today is to maintain interactive frame rates for data sets that
vastly exceed the available main memory. In particular on
high-resolution displays, where the number of primitives to
be sent to the GPU for rendering is significantly increasing,

too, terrain rendering performance is limited by bandwidth
restrictions rather than computational or rendering power.

Meeting these requirements on recent PC architectures is
still challenging because of limitations in memory and com-
munication bandwidth. As the data is too large to fit into
main memory, the rendering process involves frequent disk
access. Today it is well accepted that this operation is the
most important aspect of terrain rendering performance, and
considerable effort has been spent on reducing the amount
of data to be loaded from disk. The method that has been do-
ing this most rigorously is the geometric clipmap approach
proposed by Losasso and Hoppe [LH04]. As an alternative
to error controlled re-meshing of the terrain height field, a
regular height map pyramid is used to compress large DEMs
by as much as a factor of one hundred. Geometric clipmaps
are very effective in reducing expensive disk access, but on

submitted to COMPUTER GRAPHICS Forum (10/2009).

2 C. Dick, J. Schneider & R. Westermann / Efficient Geometry Compression for GPU-Based Decoding in Realtime Terrain Rendering

Figure 1: A textured DEM of the State of Utah (460 km × 600 km) is rendered on a 1920 × 1080 view port using our method.

The spatial resolution of the DEM and the texture is 5 m and 1 m, respectively. Even though we render to a 2 megapixel view

port, an average frame rate of over 135 fps is achieved at a geometric screen-space error of below one pixel.

the other hand they require uniform mesh tesselation inde-
pendent of the height field variation. Therefore, in particular
at high display resolution and low pixel-error bound, they
tend to increase the number of height values that have to be
uploaded to the GPU as well as the number of rendered tri-
angles.

2. Contribution

The primary focus of this paper is the development of a com-
pression scheme for large DEMs to reduce disk access and
CPU-GPU data transfer in terrain rendering. The method we
propose works on restricted quadtree meshes, which are gen-
erated by error-controlled adaptive tesselation of an eleva-
tion model. This allows us to significantly reduce the number
of triangles required to represent the height field and to pre-
cisely specify the maximum deviation of the rendered field
from the initial elevation model.

The compression scheme we present reduces the mem-
ory requirements of restricted quadtree meshes by a factor
of 8-9, and it thus allows us to reduce bandwidth require-
ments when large DEMs have to be streamed from disk. The
scheme builds on a generalized strip representation of such
quadtree meshes to incrementally encode vertex positions.
It is specifically tailored for GPU-based decoding since it
avoids the explicit depth-first traversal of the quadtree hier-
archy and allows for immediate decoding of elements in the

compressed stream. In particular, it does not require any as-
sociated index structure and can thus avoid dependent mem-
ory access operations on the GPU.

Due to this particular design, our method can make ex-
haustive use of the GPU and trades disk access, CPU oper-
ations, and CPU-GPU data transfer for GPU processing. By
effectively exploiting computation and bandwidth capacities
on recent GPUs, bandwidth limitations in the rendering of
large DEMs can be greatly alleviated. Even though data de-
coding is performed on the GPU, our method maintains a
sustained throughput of about 300 million triangles per sec-
ond. This amounts to a frame rate of over 100 frames per
second, independently of the extent and resolution of the
data set to be rendered. This throughput is achieved even
at high image resolutions of several megapixels and a maxi-
mum screen-space error below one pixel. The approach runs
on low-end single-core PCs and does not require any sophis-
ticated disk technology.

We have integrated the proposed compression scheme
into a tile-based visually continuous terrain rendering
method, which renders very large DEMs and photo tex-
tures at high resolution (see Figure 1). To reduce the mem-
ory used by terrain photo textures, we employ the S3TC
fixed-rate compression scheme [S3]. It has been established
as the de facto standard for texture compression, with the
DXT1 codec at 6:1 compression ratio being used in ter-
rain rendering. Even though the S3TC scheme does not per-

submitted to COMPUTER GRAPHICS Forum (10/2009).

C. Dick, J. Schneider & R. Westermann / Efficient Geometry Compression for GPU-Based Decoding in Realtime Terrain Rendering 3

form favorable to other compression schemes like JPEG and
JPEG2000, both with respect to compression ratio and re-
construction quality, S3TC allows compressed textures to be
stored and randomly accessed in GPU memory and supports
anisotropic texture filtering.

The remainder of this paper is organized as follows: In
the next section we outline previously published LOD tech-
niques for terrain rendering. Next, we describe our novel ge-
ometry compression scheme for quadtree meshes, and we
show how to make use of the GPU for mesh decoding. We
then describe the memory management strategies underly-
ing our terrain rendering method. In Section 8 we present
a detailed analysis of all parts of this method. The paper is
concluded with a discussion and remarks on future work.

3. Related Work

Over the last decade, a number of view-dependent LOD
techniques for terrain rendering have been proposed, which
differ mainly in the hierarchical structures used. Previous
work can be classified into dynamic re-meshing strate-
gies, region-based multi-resolution approaches, and regular
nested grids, all of which allow for visually continuous LOD
rendering. For a thorough overview of the field let us refer
here to the recent survey by Pajarola and Gobbetti [PG07].

View-dependent refinement techniques construct a con-
tinuous LOD triangulation in every frame with respect to
a given world-space deviation and screen-space error toler-
ance. Early approaches were based on triangulated irregu-
lar networks (TINs) as introduced by Peucker [PFL78] and
Fowler [FL79] because of their approximation quality (see,
for instance, the terrain rendering methods proposed by Gar-
land and Heckbert [GH95] and Hoppe [Hop98]). Irregu-
lar triangulations minimize the amount of triangles to be
rendered at a given approximation error, but on the other
hand they require quite elaborate data structures making
them rather CPU intense. Consequently, more regular tri-
angulations have been used, for instance, bintree hierar-
chies [LKR∗96, DWS∗97] and restricted quadtree meshes
[VB87, Paj98], both of which are based on longest edge bi-
section. Compared to TINs such triangulations tend to in-
crease the number of polygons required to represent a DEM
at a particular approximation quality, but they simplify the
re-meshing process and can thus reduce CPU processing at
run-time. By employing advanced traversal and data access
strategies, (semi-)regular triangulations can be rebuilt from
scratch in every frame even for large DEMs [LP01, LP02].

Region-based multi-resolution approaches partition the
terrain into tiles that can be processed independently
[KLR∗95, SN95, Blo00]. To avoid any re-meshing at run-
time, mesh hierarchies at varying approximation error are
pre-computed and appropriate approximations are selected
for rendering [RLIB99, Pom00, CGG∗03a, HDJ04, SW06].
To avoid visual artifacts like popping, either geomorphs

are used [FEKR90] or the maximum screen-space error is
restricted to one pixel [CGG∗03b]. To avoid inconsisten-
cies at tile boundaries, additional constraints can either be
incorporated into the error metric employed [RHSS98] or
can directly be enforced at boundary edges [Pom00]; or
boundaries can be patched using skirts, flanges, or zero-

area triangles [Ulr02, WMD∗04]. Partitioning the data into
larger chunks that can be cached in GPU memory to re-
duce CPU-GPU bandwidth requirements as well as the num-
ber of draw calls on the GPU has been investigated in
[Lev02, WMD∗04, SW06].

Losasso and Hoppe [LH04] even show that re-meshing
can entirely be avoided by using a set of nested regular grids
centered about the viewer. As the grid resolution decreases
with increasing distance to the viewer, approximately uni-
form screen-space resolution is achieved.

As scanned DEMs are typically much larger than the
main memory available on desktop computers, data lay-
out schemes on external storage devices [LP02, CGG∗03b,
CGG∗03a] in combination with visibility-based and spec-
ulative pre-fetching strategies as well as GPU occlusion
queries have been developed [CKS03]. Common to all these
approaches is the goal to reduce both the amount of data
to be transferred from disk and the number of seek opera-
tions to be performed. Ng et al. [NNT∗05] provided quan-
titative evidence that a circle-shaped pre-fetching region is
superior to a fan-shaped region, as it only requires slightly
more memory but does not considerably increase bandwidth
requirements, yet it allows fast changes of the viewing direc-
tion.

Along a different avenue of research, compression
schemes for DEMs have been proposed, for instance, based
on wavelet decomposition [GGS95, GMC∗06], space-filling
curves [Ger03], or tiled quadtrees [PD04]. Due to the
regular grid pyramid used in the geometric clipmap ap-
proach [LH04], this technique enables lossy compression
of digital height maps using standard image compression
schemes. Note that compression schemes based on space-
filling curves are similar in style to compression schemes for
general meshes [TG98, TR98], since they both exploit spa-
tial coherences along the specific traversal of the domain.
However, compression schemes for DEMs greatly benefit
from the more regular structure, and can thus achieve lower
bitrates for both topology and geometry. A promising ap-
proach was presented by Gobetti et al. [GMC∗06], who em-
ployed a near-lossless wavelet-based compression scheme.
Since this method requires regular connectivity inside each
batch, it only needs to encode the geometry, but not the
topology of each batch. On the other hand, regular trian-
gulations typically generate more triangles, and the use of
wavelets makes error control in the L∞ norm rather compli-
cated.

It should be noted that although the aforementioned ap-
proaches can achieve similar or even better compression

submitted to COMPUTER GRAPHICS Forum (10/2009).

4 C. Dick, J. Schneider & R. Westermann / Efficient Geometry Compression for GPU-Based Decoding in Realtime Terrain Rendering

rates than our method, CPU-based decoding of the com-
pressed data streams is inherent to all of them. As a con-
sequence, their throughput is limited by the computational
power and memory bandwidth of the CPU as well as the
bandwidth of the graphics bus.

4. Geometry Compression

Our geometry compression scheme works on restricted
quadtree meshes [VB87, Paj98]. Mesh construction and
compression is performed in a pre-processing step: Firstly,
we build a Gaussian pyramid of the entire DEM. Starting
with the original height field (associated with level number
0 in the pyramid), the coarser levels (associated with ascend-
ing level numbers) are successively computed by averaging
blocks of 2 × 2 samples. Thus, at each coarser level the num-
ber of samples is reduced by a factor of 2 in each dimension,
at the same time increasing the grid spacing by the same
factor. Secondly, starting from the finest level of the pyra-
mid, each level is tiled into square regions of M × M sam-
ples with one sample overlap to adjacent tiles. Tiling is per-
formed up to the level where the entire domain fits into a sin-
gle tile. In our current implementation a tile size of M = 513
is used. The tiles are finally organized as a quadtree, i.e.,
each tile covers exactly four tiles in the next finer level.

At each level ℓ, every tile is meshed separately with
respect to a world-space error tolerance εℓ. To obtain an
isotropic simplification of the height field, this tolerance is
equal to the level’s grid spacing δℓ, meaning that for a tile at
level ℓ a restricted quadtree mesh with a deviation (measured
in the L∞ norm) of up to εℓ := δℓ meters to the original ter-
rain model is built. Thus, at decreasing tile resolutions ever
increasing error tolerances are considered. In particular, be-
cause δℓ+1 = 2δℓ, it holds that εℓ = 2ℓε0.

To allow for a vertical tolerance that is smaller than δ0
(note that the vertical error of a DEM is typically smaller
than its spacing), we create additional levels by mesh-
ing level 0 with respect to world-space error tolerances
of δ0

2 , δ0
4 , For these levels, the tile size is reduced to

M+1
2 × M+1

2 , M+3
4 × M+3

4 , . . . samples per tile to preserve
the quadtree structure. This strategy generates a LOD hierar-
chy that represents the DEM with maximum accuracy, but,
because it adds additional levels, it reduces the overall com-
pression rate.

If a particular region of the terrain should be rendered at
a world-space error tolerance ε, the LOD ℓ to be used is de-
termined by

εℓ ≤ ε < εℓ+1, (1)

i.e., the coarsest LOD with a world-space error tolerance
of at most ε is selected. Since εℓ = 2ℓε0, it follows that
2ℓ ≤ ε

ε0
< 2ℓ+1, and thus

ℓ=

⌊

log2

(
ε

ε0

)⌋

.

Before a tile is finally meshed, the tile’s height values are
quantized. Using a uniform quantization at k bits, the quan-
tization error is at most εQ = 1

2
hmax−hmin

2k , where hmin and
hmax denote the tile’s minimum and maximum height value.
Thus, the number of bits k that is required to guarantee a
quantization error less or equal to εQ is computed as

k = max

{⌈

log2

(
hmax −hmin

2εQ

)⌉

,0

}

.

To not exceed the overall error tolerance εℓ of the tile’s
level ℓ, the quantization error tolerance εQ has to be within
the interval]0,εℓ]. In all of our experiments, choosing
εQ := 0.25εℓ gave very good results, both in terms of the
number of bits used to represent the height values and the
number of generated triangles.

Mesh construction then works as proposed in [DWS∗97].
Starting with an initial mesh consisting of four right angle
triangles sharing the vertex at the right angle (see Figure 3),
the mesh is successively refined by splitting triangles along
the edge formed by the vertex at the right angle and the mid-
point of the hypotenuse. To avoid T-vertices, splitting a tri-
angle requires to simultaneously split the triangle sharing the
hypotenuse. This split has to be recursively repeated until a
consistent triangulation is obtained, i.e., until the edge to be
split is the hypotenuse of both triangles or a boundary edge.

To build a tile’s mesh, we successively split triangles with
a deviation from the original height field that is larger than
the error tolerance εℓ, until the generated mesh is within the
error tolerance. To guarantee that the total error does not ex-
ceed εℓ, we compute the deviation of the mesh based on
quantized height values from the original height field be-

fore quantization. During mesh construction, a generalized
triangle strip representation is built for each mesh. This is
outlined in the following section.

4.1. Mesh Serialization

The compression scheme we propose for restricted quadtree
meshes is similar in spirit to the method presented in
[Ger03], but it avoids the depth-first traversal of the bintree
hierarchy and is specifically tailored to meet the demand for
GPU-based decoding. Our method builds a generalized tri-
angle strip, and it thus requires to store only one new ver-
tex per triangle. In the following we show that by using our
compression scheme a triangle can be represented by the bits
used to encode the height value of the new vertex and two
additional bits to encode the x/y-coordinates of this vertex.

To generate a generalized strip representation of the tri-
angle mesh, we construct a directed path that visits each tri-
angle exactly once and enters/leaves triangles only across
edges. As shown in Figure 2, triangles can then be classified
into six different cases depending on the edges across which
the path enters and leaves the triangle. The type (A, B, C) is
determined by the type of the entering and the leaving edge

submitted to COMPUTER GRAPHICS Forum (10/2009).

C. Dick, J. Schneider & R. Westermann / Efficient Geometry Compression for GPU-Based Decoding in Realtime Terrain Rendering 5

(cathetus or hypotenuse). The winding (L, R) specifies the
path’s direction as either left or right winding.

AL

v1 v2

v3

AR

v1 v2

v3

Type A: From cathetus to cathetus

BL

v1 v2

v3

BR

v1 v2

v3

Type B: From cathetus to hypotenuse

CL

v1 v2

v3

CR

v1 v2

v3

Type C: From hypotenuse to cathetus

Figure 2: The six triangle cases are determined by the edges

across which the path enters and leaves the triangle as well

as the winding.

The path construction we perform is a variation of the
method proposed by Pajarola [Paj98]. The construction is
directly incorporated into the construction of the restricted
quadtree mesh. Starting with a mesh and a path as shown
in Figure 3, the replacement system shown in Figure 4 is
used to simultaneously build the path and the quadtree mesh.
By using Follow sets from formal language theory, it can
be shown easily that the replacement system is closed, i.e.,
the given rules are sufficient to construct every possible re-
stricted quadtree mesh. On the other hand, not all replace-
ment rules may have to be used.

AL

AL

AL

AL

S

Figure 3: The initial mesh that is successively subdivided

to generate a restricted quadtree mesh. S indicates the

start/end of the path that sequentially traverses all triangles

of the mesh.

The idea underlying our compression method is to build
the triangle strip using only triangle types, windings, and
height values. Given the two vertices of the entering edge
of a triangle, the third vertex of the triangle is uniquely de-
termined by the triangle type, the winding, and the height

AL

AL

CL

BL

CL

BL

AL

AR

CL

BL

CR

BR

AR

AR

CR

BR

CR

BR

BL

CL

CR

AL

AL

BR

BR

CR

CL

AR

AR

BL

Figure 4: The replacement system used to simultaneously

build the restricted quadtree mesh and the directed path

(red). Only the respective half of a replacement rule is ap-

plied if the diagonal lies on the border of the tile.

value of this vertex. The winding also determines the leav-
ing edge, so that the two vertices of the entering edge of the
next triangle are known and the construction process can be
repeated until all triangles have been visited.

The Follow sets also show that each triangle case can be
followed only by one of the two possible windings for every
triangle type, e.g., AL can only be followed by AL, BR or
CL, but not by AR, BL and CR (see the appendix for a full
table). Since the winding can be determined from the type
and winding of the preceding triangle and the type of the
current triangle, it is thus sufficient to store the type of a
triangle. The vertices of the entering edge and the winding
of the very first triangle have to be stored explicitly.

Instead of using one strip to encode the entire mesh, we
divide the strip into sub-strips of length n. Therefore, for ev-
ery nth +1 triangle along the path (i.e., for the 1st, (n+1)st,

(2n+ 1)st, . . . triangle) the vertices of its entering edge and
its winding are stored. In this way, the mesh can be decoded
in parallel, for instance on recent GPUs, by simultaneously
starting with the first and every nth+1 triangle. In the current
implementation, a sub-strip length of n = 16 is used.

4.2. Data Layout

The compressed geometry of each tile is stored in two parts.
The first part is a list of entries, one per sub-strip, each en-
coding the vertices of the entering edge and the winding of
the first triangle of the sub-strip. The second part is the list
of triangles traversed along the path, each specified by its tri-
angle type and the height value of the new vertex. We refer
to the first and second part as the “strip headers” and the
“strip data”, respectively.

In the following, vi
1 and vi

2 denote the left and the right
vertex of the entering edge of triangle i, counting i from 0.
vi

3 denotes the remaining vertex of triangle i. The upper in-
dex is omitted if it is obvious which triangle is meant. If the
winding of triangle i−1 is L, then vi

1 = vi−1
1 and vi

2 = vi−1
3 ,

submitted to COMPUTER GRAPHICS Forum (10/2009).

6 C. Dick, J. Schneider & R. Westermann / Efficient Geometry Compression for GPU-Based Decoding in Realtime Terrain Rendering

if its winding is R, then vi
1 = vi−1

3 and vi
2 = vi−1

2 . Further-

more, xi
j , yi

j , and hi
j denote the x/y-coordinates and the height

value of vertex vi
j , and t i denotes the type of triangle i.

By using this notation, the strip data entry specifying tri-
angle i consists of the triangle type t i and the height value
hi

3 of the new vertex. Since the vertices of the entering edge
of the very first triangle have to be stored explicitly, two ad-
ditional entries containing the height values h0

1 and h0
2 are

added to the beginning of the triangle list (their triangle type
field is unused). Therefore, the entry of triangle i is located
at index i+2, counting from 0. Figure 5 shows the layout of
the strip data. Triangle types are always stored in 2 bits (val-
ues of 0-2 encode the triangle types A-C, while 3 is used to
mark the end of the strip data), but the number of bits k used
to quantize the height values varies from tile to tile. Since
the strip entries are densely packed and no padding is used,
bit arithmetic is necessary to read a single entry.

k 2

k +2 bits

h
0
1

h
0
2

h
0
3 t

0

h
1
3 t

1

...

h
n−1
3 t

n−1

h
n

3 t
n

...

h
N−1
3 t

N−1

3

First

Sub-Strip

...

End Marker

Figure 5: Layout of the strip data. Each entry specifies a

triangle by its type and the height value of the new vertex.

Each strip header uses 32 bits to specify v1, v2, and the
winding of the first triangle of the respective sub-strip. Fig-
ure 6 shows the layout of a single strip header. Since v1 can
never lie on the border of a tile, which can be shown by in-
duction over the replacement system, and because the tile
size in our implementation is 513 × 513, the x/y-coordinates
of v1 can be stored using 9 bits each. The position of v2
is specified relative to v1 by storing the orientation and the
base 2 logarithm of their distance in the underlying 2D in-
teger lattice (measured in the ∥ ⋅ ∥∞ norm). The orientation
requires 3 bits (8 possible orientations S, SE, E, NE, N, NW,
W and SW), and because the distance can take the values
20,21, . . . ,28, its base 2 logarithm can be stored using 4 bits.

2 11 3 3 4 9 9

32 bits

x1y1

Logarithm of the distance of v2 from v1

Orientation of v2 to v1

Offset of the strip data entry containing h j

j

Winding

Figure 6: Layout of a single strip header. A strip header

specifies v1, v2 and the winding of the first triangle of a sub-

strip.

Due to the generalized strip representation of the triangle
mesh, each of v1 and v2 of the first triangle of the sub-strip
either corresponds to v3 of one of the previous triangles in
the strip or is equal to v1 or v2 of the very first triangle of
the entire strip. The height values of v1 and v2 are thus con-
tained in the data entries preceding the entry of the current
triangle. We avoid a replication of these height values in the
strip header by storing the (negative) offsets of the strip data
entries containing these values relative to the entry of the
current triangle i. In the following we show that these offsets
can be stored using 3+1 bits.

If the windings of the current triangle’s predecessors i−1,
i−2, . . . , i− (m−1) are L and the winding of triangle i−m

is R, then

v
i
1 = v

i−1
1 = ⋅ ⋅ ⋅= v

i−(m−1)
1 = v

i−m
3 and

v
i
2 = v

i−1
3 .

Accordingly, if the windings of triangles i − 1, i − 2, . . . ,
i− (m−1) are R and the winding of triangle i−m is L, then

v
i
1 = v

i−1
3 and

v
i
2 = v

i−1
2 = ⋅ ⋅ ⋅= v

i−(m−1)
2 = v

i−m
3 .

Since the angles in every triangle are at least 45∘, m is at
most 7, otherwise the triangles would overlap. One of the
offsets used to encode the height values is always 1, because
one of v1 or v2 has already been stored as v3 of the preceding
triangle. The other offset references one of the 7 preceding
triangles, but not the immediate predecessor. Since the very
first triangle stores 3 instead of 1 height value, an offset rang-
ing from 2 to 9 is required. We use 3 bits to store the offset
different from 1 (decreased by 2) and 1 bit to store the index
(1 or 2) of the respective vertex.

Finally, 1 bit is necessary to store the winding (L or R)
of the first triangle of the sub-strip. The remaining 2 bits of
the strip header are unused in the current implementation. In
Figure 7 the compression of a restricted quadtree mesh using
our approach is exemplified.

submitted to COMPUTER GRAPHICS Forum (10/2009).

C. Dick, J. Schneider & R. Westermann / Efficient Geometry Compression for GPU-Based Decoding in Realtime Terrain Rendering 7

v0
1

v0
2

CL

v0
3

v1
1

v1
2

CR

v1
3

v2
1

v2
2

AL

v2
3

v3
1

v3
2

CL
v3

3

v4
1

v4
2

BL

v4
3CL

v5
3AR

v6
3

AR

v7
3

CR

v8
3

AL v9
3

CL
v10

3

BL

v11
3

BRv12
3

BL

v13
3AL

v14
3

BR

v15
3

BL

v16
3

AL

v17
3

S

0 128 256 384 448 512 x

0

128

192

256

384

512

y Strip Data

H
ei

g
h
t

T
ri

an
g
le

T
y
p
e

h0
1

h0
2

h0
3 C

h1
3 C

h2
3 A

h3
3 C

h4
3 B

h5
3 C

h6
3 A

h7
3 A

h8
3 C

h9
3 A

h10
3 C

h11
3 B

h12
3 B

h13
3 B

h14
3 A

h15
3 B

h16
3 B

h17
3 A

3

Strip Headers

W
in

d
in

g

j O
ff

se
t

o
f

h
j

O
ri

en
ta

ti
o
n

L
o
g
.

D
is

ta
n
ce

y 1 x 1

L 1 2 SW 8 256 256

L 1 3 E 7 384 384

R 2 3 S 7 128 384

R 1 4 NE 6 192 448

L 2 2 N 8 256 256

h0
1

h0
2

h4
1

h4
2

h8
2

h8
1

h12
1

h12
2

h16
2

h16
1

Figure 7: The compression of a restricted quadtree mesh

using our compression scheme is illustrated. To demonstrate

the construction of the strip headers, a sub-strip length of

n = 4 (instead of n = 16) is used in this example.

5. GPU-Based Geometry Decoding

Geometry decoding is performed entirely on the GPU using
geometry shaders as well as bit and integer arithmetic. In
Direct3D 10 capable graphics hardware the geometry shader
stage is placed directly after the vertex shader stage. In con-
trast to the vertex shader, the geometry shader takes as in-
put an entire graphics primitive (e.g., a point or a triangle)
and outputs zero to multiple new primitives. The geometry
shader appends the new primitives to one or multiple output
streams, which can be written back into graphics memory
by using the stream output stage directly located after the
geometry shader stage.

In the following, we present two implementations for de-
coding the geometry on the GPU, both returning an identical
triangle list representation of the mesh. In the first imple-
mentation, the triangles of each sub-strip are generated in a
single rendering pass using the geometry shader. In the sec-
ond implementation, these triangles are created iteratively in
multiple rendering passes using the fragment shader and a
“ping-pong” technique, and they are then copied to the des-
tination vertex buffer using the geometry shader. While the
first implementation is straightforward, it results in consid-
erably slower performance on current GPUs due to perfor-
mance limitations imposed by the geometry shader stage.

5.1. Geometry Shader Implementation

In this section we show how the geometry can be decoded
entirely on the GPU in a single rendering pass using the ge-
ometry shader. Once a tile is selected for decoding, the cor-
responding strip headers and the strip data are first loaded
into a vertex buffer and a shader resource buffer, respec-
tively. These buffers are reused for every tile. Then, a draw
call is issued to render a point list as large as the number of
strip headers, with the ith strip header in the vertex buffer
and a unique vertex id being associated as attributes to the
ith point. The id is automatically generated on the GPU and
enumerates the points starting from 0. In this way, strip head-
ers along with ids are fed into the graphics pipeline and are
passed through the vertex shader stage into the geometry
shader stage.

Using bit arithmetic, the geometry shader first decodes ev-
ery incoming strip header to determine v1 and v2 of the first
triangle of the respective sub-strip. The strip header specifies
the x/y-coordinates of v1 and v2, as well as the offsets of the
strip data entries containing their height values. The index of
the strip data entries is computed from the associated id. If i

denotes the strip id and ∆ denotes the offset of the strip data
entry containing v1’s or respectively v2’s height value, then
the index is 2+ n ⋅ i−∆. To fetch the respective strip data
entries, the number of bits used to quantize the height values
of the tile is required (since the entries are densely packed
and need to be extracted using bit arithmetic). This number
is issued as a constant buffer variable.

submitted to COMPUTER GRAPHICS Forum (10/2009).

8 C. Dick, J. Schneider & R. Westermann / Efficient Geometry Compression for GPU-Based Decoding in Realtime Terrain Rendering

The geometry shader now starts building the sub-strip suc-
cessively. To construct a triangle, the respective strip data
entry containing the triangle type and the height value of v3
is fetched from the strip data buffer. The strip data entry is
located at index 2 + n ⋅ i + j, where j denotes the number
of the current triangle within the sub-strip, counting from
0. In case of the first triangle, the winding is fetched from
the strip header, otherwise it is determined from the triangle
case of the previous triangle and the type of the current tri-
angle. To do so, a GPU constant buffer storing the triangle
case depending on these parameters serves as look-up table.
Knowing v1 and v2 of the current triangle, as well as the tri-
angle case, the x/y-coordinates of v3 can be computed. By
considering the winding of the current triangle, v1 and v2
of the next triangle are determined as described in Section
4.2. Finally, by using the stream output stage, the three ver-
tices of the constructed triangle are written to a vertex buffer.
Similar to [SW06], each vertex is encoded into 32 bits—10
bits for each of the x- and y-coordinate, and 12 bits for the
height value—and is decoded on-the-fly during rendering in
the vertex shader.

Note that by using a maximum of 12 bits for quantization
and choosing a quantization error tolerance of εQ := 0.25εℓ
(see Section 4), the maximum height difference within each
tile may be up to 2048εℓ, with εℓ denoting the world-space
error tolerance of the respective level. Since in our imple-
mentation the tile extent is 512εℓ, the maximum height dif-
ference can be up to 4 times larger than the tile extent. This
corresponds to an average slope of arctan(4) ≈ 76∘ across
the tile, which we did not encounter in any of our data sets.

Figure 8: Illustration of the skirts that are rendered around

the border of each tile to hide cracks between adjacent tiles.

Inherent to the the tile-based approach we use is the
problem of cracks between adjacent tiles. Since each tile is
meshed separately, T-vertices at tile boundaries can occur.
Furthermore, because the height values in different tiles are
quantized using different numbers of bits, at tile boundaries
the same terrain sample might be encoded at a slightly differ-
ent position. To avoid cracks we render skirts [Ulr02] around
the border of each tile as depicted in Figure 8. The creation
of these skirts is directly incorporated into the geometry de-
coding stage, by creating two additional triangles for each

triangle having a border edge. To encode the height of the
bottom vertices of the skirts in the packed 32 bit vertex for-
mat, we store the original height values and use a special
mark to indicate that a height value has to be reduced by the
height of the skirts during decoding.

5.2. Fragment Shader Implementation

In the second implementation, we use the fragment shader to
successively create the triangles of each sub-strip in multiple
rendering passes. In the jth rendering pass, the jth triangle
of each sub-strip is generated. Since every triangle is depen-
dent on the preceding triangle in the sub-strip, the result of
each pass is needed as input to the next pass. This is imple-
mented by using a “ping-pong” technique, which means that
generated triangles are written into two textures that are al-
ternately used as input and output. After all triangles have
been constructed, they are finally copied to the destination
vertex buffer using the geometry shader.

We use a four component unsigned integer texture for-
mat with 32 bits per component (R32G32B32A32) to store
one triangle per texel. Using the packed 32 bit vertex for-
mat described in the previous section, the triangle’s vertices
fit into the RGB components. The remaining component is
used to store the triangle case, which is needed to determine
the winding of the next triangle in the sub-strip.

The mapping between texels and triangles is illustrated in
figure 9, with ∆i

j denoting triangle j of sub-strip i. In the sec-
ond column, parallel decoding of multiple tiles is illustrated.
This is done by associating with each tile a set of columns
of the used textures. Each texture is divided into n

2 blocks,
where the sub-strip length n is required to be even. In the
current implementation, each block has a width and height
of w = 4096 and h = 8 texels, respectively.

Decoding of a tile’s geometry starts with loading the strip
headers and the strip data into two shader resource buffers.
Then, n ping-pong passes are performed to iteratively gen-
erate all triangles. In pass j, triangle j of each sub-strip is

created. These triangles are written into block
⌊

j
2

⌋

of tex-

ture j mod 2. The number of bits used to quantize the height
values is issued as a vertex attribute, and it is thus available
in the fragment shader.

Writing a triangle into the respective texel is performed in
the fragment shader. First, the index i of the sub-strip con-
taining this triangle is computed as i = h ⋅u+v, where u and
v are the texel’s coordinates within the block. Then, v1 and
v2 are determined. In pass 0, which builds the first triangle of
each sub-strip, the respective strip header needs to be fetched
from the strip headers buffer at index i. The strip header is
decoded to obtain the x/y-coordinates of v1 and v2, as well
as the offsets of the strip data entries containing their height
values. These entries are fetched from the strip data buffer
at indices 2+ n ⋅ i−∆, where ∆ denotes the respective off-
set. In all other passes j = 1, . . . ,n− 1, the vertices v1 and

submitted to COMPUTER GRAPHICS Forum (10/2009).

C. Dick, J. Schneider & R. Westermann / Efficient Geometry Compression for GPU-Based Decoding in Realtime Terrain Rendering 9

Texture 0

Texture 1

w

h

Tile 0 Tile 1 · · ·

Block

0

1

.

.

.

n

2
− 1

0

1

.

.

.

n

2
− 1

∆
0

0

∆
1

0
.
.
.

∆
h−1

0

∆
h

0

∆
h+1

0
.
.
.

· · ·

∆
0

2

∆
1

2
.
.
.

∆
h−1

2

∆
h

2

∆
h+1

2
.
.
.

· · ·

.

.

.

∆
0

n−2

∆
1

n−2
.
.
.

∆
h−1

n−2

∆
h

n−2

∆
h+1

n−2
.
.
.

· · ·

∆
0

1

∆
1

1
.
.
.

∆
h−1

1

∆
h

1

∆
h+1

1
.
.
.

· · ·

∆
0

3

∆
1

3
.
.
.

∆
h−1

3

∆
h

3

∆
h+1

3
.
.
.

· · ·

.

.

.

∆
0

n−1

∆
1

n−1
.
.
.

∆
h−1

n−1

∆
h

n−1

∆
h+1

n−1
.
.
.

· · ·

∆
0

0

∆
1

0
.
.
.

∆
h−1

0

· · ·

∆
0

2

∆
1

2
.
.
.

∆
h−1

2

· · ·

.

.

.

∆
0

n−2

∆
1

n−2
.
.
.

∆
h−1

n−2

· · ·

∆
0

1

∆
1

1
.
.
.

∆
h−1

1

· · ·

∆
0

3

∆
1

3
.
.
.

∆
h−1

3

· · ·

.

.

.

∆
0

n−1

∆
1

n−1
.
.
.

∆
h−1

n−1

· · ·

Pass 0

1

3

n− 1

· · ·

2

4

n− 2

· · ·

Figure 9: This illustration shows the mapping between tex-

els and triangles used in the fragment shader implementa-

tion. Based on a “ping-pong” technique, the triangles of

each sub-strip are created iteratively in multiple rendering

passes and are stored in two textures, which are alternately

used as input and output.

v2 are determined from the previous triangle in the sub-strip
as described in Section 4.2. This triangle has been generated
in pass j− 1, and it is thus stored in texture (j− 1) mod 2,
which is bound to the pipeline as a shader resource. The co-
ordinates of the respective texel to be fetched are computed

as
(

u,h ⋅
⌊

j−1
2

⌋

+ v
)

.

After v1 and v2 are known, v3 is computed in the same
way as in the geometry shader implementation, with the tri-
angle’s strip data entry being located at index 2+n ⋅ i+ j. The
fragment shader finally outputs the vertices of the triangle
along with the triangle case as a four component unsigned
integer vector.

After n ping-pong passes, all triangles have been created.
In an additional (n + 1)st rendering pass, we copy the de-
coded geometry into the destination vertex buffer, which al-
lows for a highly efficient rendering of the triangle list as
proposed in the next section. In this pass we also create the
skirts used to hide the cracks between adjacent tiles.

The copy pass starts by rendering a point list as large as
⌈

N
2

⌉
, with N denoting the number of triangles in the entire

strip. The only attribute being associated to the points is the
vertex id, which is implemented in Direct3D 10 by setting
the input layout to NULL and adding the SV_VERTEXID

semantic to the vertex shader input declaration. With each
point two triangles are copied.

The triangles are read from the textures in the vertex
shader. If m denotes the vertex id, then triangles 2m and
2m + 1 of the entire strip are read. These are triangles

(2m) mod n and (2m+1) mod n of sub-strip
⌊

2 m
n

⌋

, and are

thus stored in texel (
⌊

i
h

⌋
,h ⋅ j

2 + i mod h) of texture 0 and

1, with i :=
⌊

2 m
n

⌋

and j := (2m) mod n. The vertex shader

passes the two triangles to the geometry shader, which fi-
nally writes the triangles to the vertex buffer. In the destina-
tion vertex buffer the triangles are stored in the same order
as they occur along the triangle strip. It can thus be exploited
in the rendering pass that every triangle shares two vertices
with its immediate predecessor in the strip.

6. Rendering

After geometry decoding, the quadtree mesh of a tile is avail-
able as a triangle list, with every vertex being encoded into
32 bits—10 bits for each of the x- and y-coordinate, and 12
bits for the height value. We render this list as an indexed tri-
angle list, i.e., the 32 bit values are interpreted by the GPU
as indices. Vertex attributes are not specified. In the vertex
shader, the respective index value, and thus the encoded ver-
tex, is accessed with the SV_VERTEXID semantic, and it is
decoded using bit arithmetic.

By using indexed drawing, the GPU’s vertex cache is uti-
lized and caches the vertex shader output for the last few
rendered indices. Especially in the current scenario, where
each triangle shares two vertices with its predecessor, this
cache is very effective. In particular, the vertex shader needs
to be invoked only once for each triangle, resulting in al-
most twice the triangle throughput compared to rendering a
non-indexed triangle list. On current graphics hardware, we
achieve a rendering throughput of about 300 million trian-
gles per second by using indexed drawing, compared to a
throughput of about 170 million triangles per second using
non-indexed drawing.

7. System Integration

In this section we outline the integration of the proposed
geometry compression scheme into a terrain rendering sys-
tem including LOD determination as well as CPU and GPU
memory paging. In an off-line pre-processing step, the regu-
lar height map is encoded into a pyramidal data structure as
described in Section 4. A photo texture, if available, is pro-
cessed in the same way, except that the texture is compressed
using the S3TC scheme. Each tile thus consists of a triangle
mesh and a texture. The tiles are organized as a quadtree,
which we refer to as the tile tree.

In each frame, the set of tiles used to render the terrain
at the current view is determined. This is done by selecting

submitted to COMPUTER GRAPHICS Forum (10/2009).

10 C. Dick, J. Schneider & R. Westermann / Efficient Geometry Compression for GPU-Based Decoding in Realtime Terrain Rendering

tiles as coarse as possible, yet resulting in a screen-space
error below a given error threshold τ. This error is measured
in pixels. To determine these tiles, we use the screen-space
error metric proposed by Cohen [Coh98], which is based on
the theorem on intersecting lines. To not exceed τ, the world
space error tolerance ε(P) at a point P with depth Pz to the
camera is computed as

ε(P) =
2
h
⋅ tan

(
θ

2

)

⋅ τ

︸ ︷︷ ︸

=:α

⋅Pz, (2)

where h denotes the height of the view port in pixels and θ

the vertical field of view. Since this metric is strictly mono-
tonic and increasing with depth, it only has to be evaluated
at the point P′ of the tile’s bounding box with the least depth
to the camera. According to Equation 1, a tile at level ℓ is
used for rendering, iff εℓ ≤ ε(P′) < εℓ+1. Then, the tile has
a screen-space error of at most τ over its entire domain.

The set of tiles used to render the terrain changes with the
movements of the viewer, i.e., a tile is replaced by its chil-
dren if it has become too coarse, and vice versa. The geomet-
ric difference between a tile and its children at consecutive
levels ℓ and ℓ−1 is limited by εℓ+ εℓ−1 =

3
2 εℓ (considering

that εℓ = 2εℓ−1), which results in a screen-space difference
of up to 3

2 τ. Consequently, to avoid visible level changes τ is

set to 2
3 instead of 1 pixel.

To compute the world-space height of the skirts needed
to hide T-vertices and quantization artifacts, we observe that
adjacent tiles can differ by at most ⌊log2 ((M−1)α+2)⌋
levels, with M denoting the tile size in samples and α being
defined in Equation 2 (for a derivation please refer to the ap-
pendix). The geometric difference on the shared border of a
tile at level ℓ and an adjacent tile at level ℓ+ ∆ℓ, ∆ℓ ∈ ℤ,

is limited by εℓ + εℓ+∆ℓ =
(

2∆ℓ+1
)

εℓ. Since for typical

camera settings the LOD difference is at most 1, for a tile
at level ℓ skirts of height 3εℓ are required. In screen-space,
the height of the skirts is limited by 2τ, which is 4

3 pixels
in our implementation. By using skirts to fill the cracks be-
tween adjacent tiles, visual artifacts along tile borders can be
avoided entirely.

7.1. Disk Access

To reduce the number of disk seek operations, 4 × 4 tiles
in each level are packed together and stored as a single data
block on disk. We refer to these groups as pages, and these
pages are always loaded into main memory as a whole. The
set of pages inherits the tree structure from the tile tree, as
depicted in Figure 10. This data structure, which we refer to
as the page tree, is stored on disk. During runtime, the page
tree is dynamically loaded into main memory, as required
due to the movements of the viewer. The tile tree is built
and destroyed simultaneously with the page tree, i.e., when
a page is added to or removed from the page tree, the tiles

contained in this page are added to or removed from the tile
tree. Note that the tiles only store pointers to the respective
data blocks in the page tree, so that the data is not stored
twice in main memory.

Both trees are built top-down and destroyed bottom-up.
To further reduce the number of disk seek operations, each
page is accompanied by the information that is required to
access its children, i.e., the position of each child page in the
data file, its size and bounding box.

Figure 10: Illustration of the tile tree (left) and the corre-

sponding page tree (right), which is generated by grouping

4 × 4 tiles of each level into pages.

To be able to hide disk access latencies, we have real-
ized a software scheme to pre-fetch pages that might be
required in upcoming frames. We employ a sphere-shaped
pre-fetching region, i.e., the region that is tried to be loaded
ahead of time. The advantage of a sphere-shaped region is
that it supports arbitrary rotations. As has been shown by Ng
et al. [NNT∗05], although the use of a sphere-shaped region
increases the memory requirement by a factor of two, when
moving along the line of sight the amount of data to be read
from disk is only marginally increased (see Figure 11).

At each level in the data hierarchy we use a pre-fetching
region with different radius. To determine the extent of this
region for a particular LOD, we exploit the fact that the LOD
metric we use behaves linearly with the z-coordinate in cam-
era space. Consequently, we can directly compute the radius
of the pre-fetching region at a certain level such that the re-
gion contains all points in the view frustum at this LOD.

Page loads are handled asynchronously by a separate IO-
thread that works independently of the rendering thread. In
every frame, those pages are determined whose bounding
boxes have just entered or left the pre-fetching region due to
the movement of the viewer. For all entering pages a request

submitted to COMPUTER GRAPHICS Forum (10/2009).

C. Dick, J. Schneider & R. Westermann / Efficient Geometry Compression for GPU-Based Decoding in Realtime Terrain Rendering 11

P1 P2

Figure 11: Illustration of the amount of data that has to be

fetched from disk when moving from P1 to P2 along the line

of sight using differently shaped pre-fetching regions. For the

cone shape, the data in the blue area has to be loaded. For

the sphere shape, the data in the red area has to be loaded

in addition.

is created and added to a request queue. Exiting pages are re-
moved from this queue. The IO-thread processes the queue
in a particular order and loads the requested pages. The pro-
cessing order is determined by giving pages at a coarser
LOD a higher priority, and by preferring of all pages at the
same LOD those in the center of the field of view. In this
way, the visual importance of rendered tiles is taken into ac-
count. Exiting pages are not disposed immediately, but they
are stored in an LRU page cache of limited size.

7.2. CPU-GPU Streaming

In every frame, the tile tree currently available in main mem-
ory is traversed in preorder, and the tiles to be rendered are
determined by view frustum culling and LOD computation.
To exploit frame-to-frame coherence only tiles not already
residing in graphics memory are uploaded to the GPU. For
each of these tiles, we first build a mipmap pyramid by gath-
ering the mipmap levels from the tile hierarchy on-the-fly.
This mipmap pyramid as well as the tile’s compressed ge-
ometry is then uploaded to the GPU, where the geometry is
decoded instantaneously (using the fragment shader based
implementation described in Section 5.2).

To avoid time-consuming creation and disposal of re-
sources in graphics memory, we create a resource pool once
at the beginning and reuse these resources over and over
again. While the texture size is constant for all tiles, the size
of the decoded geometry can vary significantly between dif-
ferent tiles. To flexibly provide vertex buffers of appropriate
sizes, we create vertex buffers of the maximum required size
and use a buddy system [Knu97] to manage allocation of
individual blocks within these buffers.

8. Results and Analysis

To validate our approach, we have integrated the geometry
compression method into a terrain rendering engine. The
renderer streams compressed data from a LOD hierarchy
with a page tree. Optionally, orthographic aerial photogra-
phy can be supplied as DXT1-compressed texture tiles. To

measure performance, we run several benchmarks on a stan-
dard PC with an Intel Core2Duo E6600 processor, 3 GB
of RAM, an NVIDIA GeForce 8800GTX with 768 MB of
video memory, and, unless noted otherwise, a single Sam-
sung 500 GB hard disk. For all tests, the far plane was set
to 600 km and the screen-space error tolerance was set to 2

3
pixels.

8.1. Data Sets & Pre-Processing

Two different DEMs were used. Our first data set is a DEM
of the entire USA at a resolution of 10 m × 10 m obtained
from the U.S. Geological Survey [USG] and corresponds to
a 637 K × 281 K uniform grid. In a pre-processing step we
synthesized a texture storing 1 texel per 10 m × 10 m. The
size of the input data is about 333 GB for the geometry (at
16 bits per sample) and 500 GB for the synthetic texture.
After meshing and geometry compression using a world-
space error tolerance of 5 m (2.5 m) at the finest level, 3.9 GB
(10.5 GB) are required to store the geometry. This results in
an overall compression rate of 85:1 (32:1) compared to the
DEM size. This data set compresses exceptionally well due
to large planar water surfaces. Our compression scheme al-
locates 11.0 bits (11.5 bits) per triangle on average, of which
2 bits are used to encode the topology (i.e., the triangle type)
and an average of 2 bits per triangle are occupied by the strip
header. The remaining 7.0 bits (7.5 bits) encode the height
value. When compared to the packed 32 bit vertex format de-
scribed in Section 5.1 that allocates 96 bits per triangle, we
achieve a compression ratio of 8.7:1 (8.4:1). The S3TC com-
pressed photo texture requires 111 GB, including mipmaps.

Our second data set is a DEM of the State of Utah at a res-
olution of 5 m × 5 m, accompanied by an orthographic photo
texture at a resolution of 1 texel per 1 m × 1 m. This amounts
to a total of 92 K × 120 K samples for the geometry, and
460 K × 600 K samples for the texture, resulting in 20.6 GB
and 772 GB to store geometry and texture, respectively. The
data was provided by the State of Utah through the Utah GIS
Portal [Sta]. After pre-processing using a world-space error
tolerance of 2.5 m (1.25 m) at the finest level, the geometry
was reduced to 1.6 GB (4.2 GB), resulting in a compression
rate of about 13:1 (5:1) compared to the DEM size. Our com-
pression scheme allocates 12.0 bits (12.3 bits) per triangle on
average. Again, 4 bits are occupied by topology and amor-
tized strip header. The compression ratio when compared to
96 bits per triangle is 8.0:1 (7.8:1). The photo texture was
compressed to 171 GB, including mipmaps.

Pre-processing of the geometry typically takes less than
30 minutes for a heightfield of the size of the Utah data set
(11 G samples) on a single core PC. For the texture, pre-
processing is typically dominated by DXT1 encoding times.
Using a multi-threaded wrapper of the publicly available,
highly optimized Squish library [Bro], compressing a tex-
ture of the size of the Utah data set (270 G samples) using

submitted to COMPUTER GRAPHICS Forum (10/2009).

12 C. Dick, J. Schneider & R. Westermann / Efficient Geometry Compression for GPU-Based Decoding in Realtime Terrain Rendering

the iterative cluster-fit algorithm takes around 3 days on a
quad-core system.

For the following tests, world-space error tolerances of
2.5 m and 1.25 m at the finest level were used for the USA
and the Utah data set, respectively.

8.2. Geometry Decoding

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100 120 140 160 180
 0

 100

 200

 300

 400

 500

G
eo

m
et

ry
 R

at
e

Time (s)

compressed geometry (M∆/s)
uncompressed geometry (M∆/s)

 0

 20

 40

 60

 80

 100

 120

 0

 20

 40

 60

 80

 100

 120

H
D

D
 T

ra
ns

fe
r

R
at

e

Utah - Geometry only
compressed geometry (MB/s)

uncompressed geometry (MB/s)

Figure 12: Recorded flight over Utah, resolved at a spac-

ing of 5 m without texture. Top: HDD transfer rate in MB/s.

Bottom: Geometry rate in million triangles per second. The

camera velocity was set to constant 14,000 km/h.

To measure the impact of our geometry compression
scheme we used the Utah data set without texture. To avoid
the hard disk becoming the limiting factor, we used a striped
RAID 0 delivering a sustained rate of about 200 MB/s. Thus
all data necessary to keep the screen-space error below 2

3
pixels on a 2560× 1600 view port was being loaded dur-
ing a flight at a constant camera velocity of 14,000 km/h.
As can be seen in the upper diagram of Figure 12, in re-
gions with high data densities the amount of data required to
maintain the screen-space error tolerance can increase sig-
nificantly. Here, the red curve corresponds to rendering from
uncompressed geometry, i.e., from the 96 bits per triangle
format, while the green curve employs our data compres-
sion scheme followed by GPU-based decoding. The thinner
curves show actual measurement data, while the bold curves
show the general trend. Note that due to our pre-fetching
scheme the inability to deliver a single peak of the thinner
curves does not automatically incur a lack of detail. In con-
trast, if we were not able to deliver 100 MB/s sustained rate
at time index 150 s, a clearly visible lack of detail would oc-
cur. Current hard disks are capable of delivering sustained
rates of around 90-100 MB/s (due to the novel perpendicu-
lar recording technology), with 50-60 MB/s still being the
standard. Hence, sustained rates of more than 60 MB/s cur-
rently imply novel hardware or RAIDs. The compressed ge-
ometry, however, can be fully streamed at rates of as low
as about 15-18 MB/s, meaning that even notebooks are able
to deliver full visual quality. Note that this situation is even
exacerbated in case of textured terrain.

The lower diagram in Figure 12 shows the triangle ren-
dering throughput for both compressed and uncompressed

geometry. As can be seen, they coincide almost perfectly at
a sustained rate of about 300 million triangles per second.
Note that this number includes the triangles used to render
skirts, which amount to about 5% of the total number of tri-
angles rendered. Since in both cases (compressed and un-
compressed) the same amount of geometry has to be ren-
dered, we conclude that the GPU-based decoding comes vir-
tually for free in practical systems exploiting frame-to-frame
coherence.

We also measured the data throughput from main mem-
ory to video memory. For this test, we compare the upload
of uncompressed data with the upload and decoding of com-
pressed data. For comparison reasons, we measure all com-
pressed data by its uncompressed size (in packed 32 bit ver-
tex format). For uncompressed data, we achieve a through-
put of about 1.5 GB/s, while uploading and decoding on the
GPU achieves over 2.5 GB/s. Furthermore, compressed data
can be decoded at about 400 MB/s on the CPU, while the
GPU is able to decode more than 2.5 GB/s. Note that in this
benchmark we are currently limited by the GPU-based de-
coder, and we expect the throughput of compressed data to
increase even further with future hardware.

8.3. Video Memory Consumption

 0
 32
 64
 96

 128
 160
 192
 224

 0 10 20 30 40 50 60 70 80 90
 0
 32
 64
 96
 128
 160
 192
 224

M
em

or
y

U
sa

ge

Time (s)

USA - Video Memory Usage
geometry (MB)

texture (MB)
total (MB)

 0
 32
 64
 96

 128
 160
 192
 224

 0 20 40 60 80 100 120 140 160 180
 0
 32
 64
 96
 128
 160
 192
 224

M
em

or
y

U
sa

ge

Time (s)

Utah - Video Memory Usage
geometry (MB)

texture (MB)
total (MB)

Figure 13: Video memory usage for the Utah and USA data

sets. Both data sets were rendered to a 2560 × 1600 view

port at a screen-space error tolerance of 2
3 pixels.

In Figure 13 we illustrate the amount of video memory
occupied by our method during flights over each of the two
data sets. Again, measurements of the memory occupied by
geometry refer to the packed 32 bit vertex format, and the
texture is stored in DXT1 format. As can be seen in Fig-
ure 13, the memory usage for the Utah data set is always
below 160 MB, even though the view port was 2560 × 1600
pixels. For the USA data set, video memory usage is always
below 128 MB. The difference in video memory usage stems
from the fact that the USA data set has not enough resolution
for the relatively low altitude of the flight. For the Utah data
set we observed no lack in resolution, i.e., the LOD rendered
was always sufficient to guarantee the prescribed pixel tol-
erance. Consequently, the measurements for Utah provide a

submitted to COMPUTER GRAPHICS Forum (10/2009).

C. Dick, J. Schneider & R. Westermann / Efficient Geometry Compression for GPU-Based Decoding in Realtime Terrain Rendering 13

good estimate of the typical video memory usage of our sys-
tem.

8.4. Textured Terrain

 0
 60

 100
 150
 200
 250
 300
 350
 400
 450

 0 20 40 60 80 100 120 140 160 180
 0
 60
 100
 150
 200
 250
 300
 350
 400
 450

F
ra

m
e

R
at

e

Time (s)

1280x1024 (fps)
1920x1080 (fps)
2560x1600 (fps)

 0

 100

 200

 300

 400

 500

 0

 100

 200

 300

 400

 500

G
eo

m
et

ry
 R

at
e

Utah - Geometry and Texture
1280x1024 (M∆/s)
1920x1080 (M∆/s)
2560x1600 (M∆/s)

Figure 14: Recorded flight over Utah demonstrating the ef-

fect of various display resolutions. The diagrams show tri-

angle throughput and frame rate over time.

 0
 60

 100
 150
 200
 250
 300
 350
 400
 450

 0 10 20 30 40 50 60 70 80 90
 0
 60
 100
 150
 200
 250
 300
 350
 400
 450

F
ra

m
e

R
at

e

Time (s)

1280x1024 (fps)
1920x1080 (fps)
2560x1600 (fps)

 0

 100

 200

 300

 400

 500

 0

 100

 200

 300

 400

 500

G
eo

m
et

ry
 R

at
e

USA - Geometry and Texture
1280x1024 (M∆/s)
1920x1080 (M∆/s)
2560x1600 (M∆/s)

Figure 15: Recorded flight over the USA demonstrating the

effect of various display resolutions. The diagrams show tri-

angle throughput and frame rate over time.

Finally, we demonstrate the frame rate that can typically
be achieved for textured terrain in dependence of view port
resolution. In both Figure 14 and Figure 15, red corre-
sponds to a resolution of 1280 × 1024 (1.25 megapixels),
green corresponds to 1920 × 1080 (full HDTV resolution
at 2 megapixels), and blue corresponds to 2560 × 1600 (4
megapixels). In all cases the sustained triangle throughput
is about 300 million triangles per second, indicating that we
are strictly limited by the GPU’s triangle throughput. The
frame rates stay well above 60 fps almost everywhere at the
highest resolution of 2560 × 1600. Also, the achieved frame
rates scale better than inversely linear in the amount of pixels
rendered, i.e., doubling the amount of pixels to be rendered
does not automatically cut the frame rate in half. Consid-
ering that the triangle rate is almost constant, this indicates
that our LOD scheme scales the amount of triangles slightly
sub-linear in the size of the view port. The peak amount of
triangles per frame is about 5.3 million triangles at the end
of the Utah flyover and is caused by the highly detailed, non-
planar landscape.

These benchmarks prove our method to be of significant
practical value, since we can deliver high sustained frame

rates as well as high geometry rates for very high view
port resolutions. At the same time, disk traffic is minimized,
which is a crucial feature when dealing with data sets that
are several hundreds of gigabytes in size. Last but not least,
the small footprint in video memory allows our algorithm to
be integrated into more complex GIS systems that increase
memory requirements due to additional data to be visual-
ized.

9. Conclusion & Future Work

In this paper, we have presented a geometry compression
scheme for restricted quadtree meshes and have demon-
strated the use of this scheme in terrain rendering. The pro-
posed scheme offers good compression rates as well as pre-
cise error control, and it allows the compressed data to be
efficiently decoded on the GPU. In this way, bandwidth re-
quirements in terrain rendering can be reduced significantly,
both with respect to data transfer from disk to main mem-
ory and from main memory to GPU memory. In contrast
to previous approaches like geometry clipmaps our method
achieves lower compression rates, but we can guarantee a
very small error tolerance using significantly fewer triangles.

Due to the smaller memory footprint of compressed
DEMs, significantly more geometry can be cached in main
memory. By using the GPU for geometry decoding, upload-
ing and decoding of the compressed data is still about a fac-
tor of two faster than uploading uncompressed data from this
memory. GPU decoding itself is about a factor of 6 faster
than CPU decoding. By using the GPU for decoding, the
CPU is free for other tasks like pre-fetching and data man-
agement. We validated these statements by integrating the
compression and decoding schemes into a terrain rendering
system, and we showed that high visual quality on high res-
olution displays is possible at interactive frame rates.

In the future, we will investigate on-the-fly decoding of
compressed DEMs on the GPU to avoid multi-pass render-
ing and storing decoded DEMs in GPU memory. One addi-
tional future avenue of research is the design of prediction
strategies to incrementally encode the height values along
the path through the quadtree mesh, and thus to further re-
duce the amount of bits required to store these values.

References

[ASU86] AHO A., SETHI R., ULLMAN J.: Compilers: Princi-

ples, Techniques, and Tools. Addison-Wesley, 1986.

[Blo00] BLOW J.: Terrain rendering at high levels of detail. In
Proc. Game Developer’s Conference (2000).

[Bro] BROWN S.: Squish – DXT Compression Library.
http://www.sjbrown.co.uk/?code=squish.

[CGG∗03a] CIGNONI P., GANOVELLI F., GOBBETTI E., MAR-
TON F., PONCHIO F., SCOPIGNO R.: BDAM – batched dy-
namic adaptive meshes for high performance terrain visualiza-
tion. Computer Graphics Forum 22, 3 (2003), 505–514.

submitted to COMPUTER GRAPHICS Forum (10/2009).

14 C. Dick, J. Schneider & R. Westermann / Efficient Geometry Compression for GPU-Based Decoding in Realtime Terrain Rendering

[CGG∗03b] CIGNONI P., GANOVELLI F., GOBBETTI E., MAR-
TON F., PONCHIO F., SCOPIGNO R.: Planet-sized batched dy-
namic adaptive meshes (P-BDAM). In Proc. IEEE Visualization

(2003), pp. 147–154.

[CKS03] CORRÊA W. T., KLOSOWSKI J. T., SILVA C. T.:
Visibility-based prefetching for interactive out-of-core rendering.
In Proc. IEEE Symposium on Parallel and Large-Data Visualiza-

tion and Graphics (2003), pp. 1–8.

[Coh98] COHEN J. D.: Appearance-Preserving Simplification of

Polygonal Models. PhD thesis, University of North Carolina at
Chapel Hill, 1998.

[DWS∗97] DUCHAINEAU M., WOLINSKY M., SIGETI D. E.,
MILLER M. C., ALDRICH C., MINEEV-WEINSTEIN M. B.:
ROAMing terrain: Real-time optimally adapting meshes. In
Proc. IEEE Visualization (1997), pp. 81–88.

[FEKR90] FERGUSON R. L., ECONOMY R., KELLY W. A.,
RAMOS P. P.: Continuous terrain level of detail for visual simu-
lation. In Proc. IMAGE V (1990), pp. 144–151.

[FL79] FOWLER R. J., LITTLE J. J.: Automatic extraction of ir-
regular network digital terrain models. In Proc. ACM SIGGRAPH

(1979), pp. 199–207.

[Ger03] GERSTNER T.: Multiresolution visualization and com-
pression of global topographic data. GeoInformatica 7, 1 (2003),
7–32.

[GGS95] GROSS M. H., GATTI R., STAADT O.: Fast multires-
olution surface meshing. In Proc. IEEE Visualization (1995),
pp. 135–142.

[GH95] GARLAND M., HECKBERT P. S.: Fast Polygonal Ap-

proximation of Terrains and Height Fields. Tech. Rep. CMU-
CS-95-181, Carnegie Mellon University, 1995.

[GMC∗06] GOBBETTI E., MARTON F., CIGNONI P.,
DI BENEDETTO M., GANOVELLI F.: C-BDAM – com-
pressed batched dynamic adaptive meshes for terrain rendering.
Computer Graphics Forum 25, 3 (2006), 333–342.

[HDJ04] HWA L. M., DUCHAINEAU M. A., JOY K. I.: Adap-
tive 4-8 texture hierarchies. In Proc. IEEE Visualization (2004),
pp. 219–226.

[Hop98] HOPPE H.: Smooth view-dependent level-of-detail con-
trol and its application to terrain rendering. In Proc. IEEE Visu-

alization (1998), pp. 35–42.

[KLR∗95] KOLLER D., LINDSTROM P., RIBARSKY W.,
HODGES L. F., FAUST N., TURNER G.: Virtual GIS: A real-time
3D geographic information system. In Proc. IEEE Visualization

(1995), pp. 94–100.

[Knu97] KNUTH D. E.: Fundamental Algorithms, 3 ed., vol. 1 of
The Art of Computer Programming. Addison-Wesley, 1997.

[Lev02] LEVENBERG J.: Fast view-dependent level-of-detail ren-
dering using cached geometry. In Proc. IEEE Visualization

(2002), pp. 259–265.

[LH04] LOSASSO F., HOPPE H.: Geometry clipmaps: Terrain
rendering using nested regular grids. In Proc. ACM SIGGRAPH

(2004), pp. 769–776.

[LKR∗96] LINDSTROM P., KOLLER D., RIBARSKY W.,
HODGES L. F., FAUST N., TURNER G. A.: Real-time, con-
tinuous level of detail rendering of height fields. In Proc. ACM

SIGGRAPH (1996), pp. 109–118.

[LP01] LINDSTROM P., PASCUCCI V.: Visualization of large ter-
rains made easy. In Proc. IEEE Visualization (2001), pp. 363–
370.

[LP02] LINDSTROM P., PASCUCCI V.: Terrain simplification
simplified: A general framework for view-dependent out-of-core
visualization. IEEE TVCG 8, 3 (2002), 239–254.

[NNT∗05] NG C.-M., NGUYEN C.-T., TRAN D.-N., TAN T.-
S., YEOW S.-W.: Analyzing pre-fetching in large-scale visual
simulation. In Proc. Computer Graphics International (2005),
pp. 100–107.

[Paj98] PAJAROLA R.: Large scale terrain visualization using the
restricted quadtree triangulation. In Proc. IEEE Visualization

(1998), pp. 19–26.

[PD04] PLATINGS M., DAY A. M.: Compression of large-scale
terrain data for real-time visualization using a tiled quad tree.
Computer Graphics Forum 23, 4 (2004), 741–759.

[PFL78] PEUCKER T. K., FOWLER R. J., LITTLE J. J.: The
triangulated irregular network. In Proc. ASP-ACSM Symposium

on DTM’s (1978).

[PG07] PAJAROLA R., GOBBETTI E.: Survey on semi-regular
multiresolution models for interactive terrain rendering. The Vi-

sual Computer 23, 8 (2007), 583–605.

[Pom00] POMERANZ A. A.: ROAM Using Surface Triangle Clus-

ters (RUSTiC). Master’s thesis, Center for Image Processing and
Integrated Computing, University of California, Davis, 2000.

[RHSS98] RÖTTGER S., HEIDRICH W., SLUSALLEK P., SEIDEL

H.-P.: Real-time generation of continuous levels of detail for
height fields. In Proc. WSCG (1998), pp. 315–322.

[RLIB99] REDDY M., LECLERC Y., IVERSON L., BLETTER N.:
TerraVision II: Visualizing massive terrain databases in VRML.
IEEE Computer Graphics and Applications 19, 2 (1999), 30–38.

[S3] S3 INCORPORATED: Fixed-rate block-based image com-
pression with inferred pixel values. US Patent 6658146.

[SN95] SUTER M., NÜESCH D.: Automated generation of visual
simulation databases using remote sensing and GIS. In Proc.

IEEE Visualization (1995), pp. 86–93.

[Sta] STATE OF UTAH: Utah GIS Portal. http://gis.utah.gov.

[SW06] SCHNEIDER J., WESTERMANN R.: GPU-friendly high-
quality terrain rendering. Journal of WSCG 14, 1-3 (2006), 49–
56.

[TG98] TOUMA C., GOTSMAN C.: Triangle mesh compression.
In Proc. Graphics Interface (1998), pp. 26–34.

[TR98] TAUBIN G., ROSSIGNAC J.: Geometric compression
through topological surgery. ACM TOG 17, 2 (1998), 84–115.

[Ulr02] ULRICH T.: Rendering massive terrains using chunked
level of detail control. ACM SIGGRAPH Course “Super-size it!
Scaling up to Massive Virtual Worlds”, 2002.

[USG] USGS: U.S. Geological Survey. http://www.usgs.gov.

[VB87] VON HERZEN B., BARR A. H.: Accurate triangulations
of deformed, intersecting surfaces. In Proc. ACM SIGGRAPH

(1987), pp. 103–110.

[WMD∗04] WAHL R., MASSING M., DEGENER P., GUTHE M.,
KLEIN R.: Scalable compression and rendering of textured ter-
rain data. Journal of WSCG 12, 1-3 (2004), 521–528.

submitted to COMPUTER GRAPHICS Forum (10/2009).

C. Dick, J. Schneider & R. Westermann / Efficient Geometry Compression for GPU-Based Decoding in Realtime Terrain Rendering 15

Figure 16: View over Salt Lake City rendered on a 1920 × 1080 view port at a screen-space error of below one pixel. The data

set comprises the entire State of Utah at a spacing of 5 m and 1 m for geometry and texture, respectively.

Figure 17: View over Puget Sound rendered on a 1920 × 1080 view port at a screen-space error of below one pixel. The data

set comprises the entire USA at a spacing of 10 m for both geometry and texture.

submitted to COMPUTER GRAPHICS Forum (10/2009).

16 C. Dick, J. Schneider & R. Westermann / Efficient Geometry Compression for GPU-Based Decoding in Realtime Terrain Rendering

APPENDIX

Height of Skirts

In this section we will derive the formula describing the minimum
height of flanges that guarantees visually crack-free renderings.

A single tile at level ℓ consists of M × M height samples with
a spacing equal to the level’s world-space error tolerance εℓ, so that
the tile extent is (M−1)εℓ (see Section 4). Note that in the following
we consider only the horizontal extent of a tile. Further we use the
error metric described in Section 7, with ε(z) = α ⋅ z, where α is
only dependent on camera and view port parameters as well as the
screen-space error tolerance. A tile at level ℓ is chosen for rendering,
iff

εℓ ≤ ε(z′) < εℓ+1.

Here, z′ is the the minimum depth of all bounding box points of the
tile with respect to the camera.

As observed before, εℓ = 2ℓε0. Obviously, the depth range
[zℓ, zℓ+1[in which level ℓ is used starts at zℓ with ε(zℓ) = α ⋅ zℓ = εℓ.
Thus, zℓ = 1

α
εℓ. The range ends at zℓ+1, for which analogously

zℓ+1 = 1
α

εℓ+1 = 1
α

2εℓ = 2 zℓ. Hence, the total length of the depth
range in which level ℓ is to be applied is exactly zℓ.

Assume we have two adjacent tiles at levels ℓ and ℓ + ∆ℓ,
∆ℓ ∈ ℕ0, with minimum depths z′ and z′′. Since z′ and z′′ lie within
the depth ranges [zℓ, zℓ+1[and [zℓ+∆ℓ, zℓ+∆ℓ+1[, respectively, it is

∣z′− z′′∣ ≥ zℓ+1 + ⋅ ⋅ ⋅+ zℓ+∆ℓ−1 =
∆ℓ−1

∑
i=1

2izℓ

≥ (2∆ℓ−2) zℓ

(3)

(considering that the length of the depth range [zk, zk+1[is zk).

Since adjacent tiles intersect on an edge, it is

∣z′− z′′∣ ≤ (M−1)εℓ. (4)

Equation 3 and 4 yield
(

2∆ℓ−2
)

zℓ ≤ (M −1)εℓ

⇔
(

2∆ℓ−2
) 1

α
≤ M −1

⇔ ∆ℓ≤ log2 ((M−1)α+2) ,

and thus the level difference between adjacent tiles is limited by
L := ⌊log2 ((M−1)α+2)⌋.

Hence, the maximum geometric difference on the border between
a tile at level ℓ and an adjacent tile is at most

εℓ+ εℓ+L =
(
2L +1

)
εℓ.

We extrude skirts exactly by this amount downwards in our system.
Whenever camera parameters such as field of view or view port di-
mensions are changed, L is re-evaluated.

Replacement System

In this section we will show for the replacement system used for
geometry compression that the winding of each triangle can be de-
termined from the type and winding of the previous triangle in the
strip and the type of the current triangle.

Table 1: System of inequalities and result of the fixpoint iter-

ation for First (top) and Follow (bottom) sets. ε denotes the

empty word.

System of inequalities Result

First(AL) ⊇ {AL}∪ First(CL) {AL,CL}

First(AR) ⊇ {AR}∪ First(CR) {AR,CR}

First(BL) ⊇ {BL}∪ First(CR) {AR,BL ,CR}

First(BR) ⊇ {BR}∪ First(CL) {AL,BR ,CL}

First(CL) ⊇ {CL}∪ First(AL) {AL,CL}

First(CR) ⊇ {CR}∪ First(AR) {AR,CR}

System of inequalities Result

Follow(AL) ⊇ {AL, ε}∪ Follow(BL)∪ First(BR) {AL ,BR ,CL, ε}

Follow(AR) ⊇ Follow(BR)∪ First(BL) {AR ,BL ,CR}

Follow(BL) ⊇ Follow(AL)∪ Follow(CR) {AL ,BR ,CL, ε}

Follow(BR) ⊇ Follow(AR)∪ Follow(CL) {AR ,BL ,CR}

Follow(CL) ⊇ First(BL)∪ First(AR) {AR ,BL ,CR}

Follow(CR) ⊇ First(BR)∪ First(AL) {AL ,BR ,CL}

In our proof, we use concepts of formal language theory, i.e.,
grammars as well as First and Follow sets. Formally, a grammar G

consists of three finite sets V , Σ, P, and a so-called starting symbol

S ∈ V . V contains variables, Σ is the alphabet containing the termi-

nals or symbols used to form words ω ∈ Σ∗, and P contains replace-
ment rules called productions. For a more thorough introduction to
these concepts, we refer to [ASU86].

For sake of simplicity, we will slightly adapt the definition of
First and Follow sets to operate on a replacement system that does
not distinguish between variables and terminals. In this way, unnec-
essary productions are avoided.

Let Σ := {AL,AR,BL,BR,CL,CR}. Further, let P be defined as
follows (see Section 4.1).

P := { AL → CLBL, AR → CRBR,

BL → CRAL, BR → CLAR,

CL → ALBR, CR → ARBL }

Then, beginning with S := ALALALAL, the word corresponding
to the triangle strip built during meshing is obtained by successively
applying productions.

The First and Follow sets are defined as

First(a) := {b ∈ Σ : ∃ω ∈ Σ∗ : a →∗ bω} ,

Follow(a) := {b ∈ Σ : ∃ω1,ω2 ∈ Σ∗ : S →∗ ω1abω2} .

Here, →∗ denotes successive application of zero or more of the
productions. Thus, First(a) contains all symbols with which words
can begin that were derived from a ∈ Σ. Follow(a) contains all sym-
bols that can succeed a in a word. These sets are computed by solv-
ing a system of inequalities using a fixpoint iteration scheme (see
Table 1).

The key observation is that no follow set contains AL and AR, BL

and BR, or CL and CR. Thus, the winding does not need to be stored
explicitly, except for the first triangle. For all successive triangles it
can be inferred.

submitted to COMPUTER GRAPHICS Forum (10/2009).

