
QUASI-CONVOLUTION PYRAMIDAL BLURRING

Martin Kraus
Computer Graphics and Visualization Group,

Technische Universität München, Boltzmannstr. 3, Garching, Germany

krausma@in.tum.de

Keywords: rendering, image processing, blurring, pyramid algorithm, GPU, real-time

Abstract: Efficient image blurring techniques based on the pyramid algorithm can be implemented on modern graph-

ics hardware; thus, image blurring with arbitrary blur width is possible in real time even for large images.

However, pyramidal blurring methods do not achieve the image quality provided by convolution filters; in

particular, the shape of the corresponding filter kernel varies locally, which potentially results in objectionable

rendering artifacts. In this work, a new analysis filter is designed that significantly reduces this variation for

a particular pyramidal blurring technique. Moreover, an efficient implementation for programmable graph-

ics hardware is presented. The proposed method is named “quasi-convolution pyramidal blurring” since the

resulting effect is very close to image blurring based on a convolution filter for many applications.

1 INTRODUCTION AND

RELATED WORK

As the programmability of graphics processing units

(GPUs) allows for the implementation of increasingly

complex image processing techniques, many effects

in real-time rendering are nowadays implemented

as post-processing effects. Examples include tone

mapping (Goodnight et al., 2003), glow (James and

O’Rorke, 2004), and depth-of-field rendering (De-

mers, 2004; Hammon, 2007; Kraus and Strengert,

2007a). Many of these real-time effects require ex-

tremely efficient image blurring; for example, depth-

of-field rendering is often based on multiple blurred

versions of a pinhole image. Thus, full-screen images

have to be blurred with potentially large blur filters

multiple times per frame at real-time frame rates.

Unfortunately, convolution filters cannot provide

the required performance for large blur filters and

the Fast Fourier Transformation (FFT) is not effi-

cient enough for large images. As shown by Burt

(Burt, 1981), the pyramid algorithm provides a bet-

ter complexity than the FFT for blurring; therefore,

many real-time depth-of-field rendering techniques

employ pyramid methods in one way or another. For

example, Demers (Demers, 2004) uses a mip map

(Williams, 1983) to generate multiple, downsampled,

i.e., pre-filtered, versions of a pinhole image. Ham-

mon (Hammon, 2007) computes only one downsam-

pled level to accelerate the blurring with filters of

medium size, while Kraus and Strengert (Kraus and

Strengert, 2007a) employ a full pyramid algorithm for

the blurring of sub-images, which are computed by a

decomposition of a pinhole image according to the

depth of its pixels.

The specific analysis filters and synthesis filters

for the pyramid algorithm are often determined by

trial-and-error, i.e., the filter size is increased at the

cost of memory bandwidth until a sufficient image

quality is achieved. A more thorough exploration

of appropriate filter designs and their efficient imple-

mentation on GPUs has been provided by Kraus and

Strengert (Kraus and Strengert, 2007b), which im-

proved the pyramidal blurring on GPUs presented by

Strengert et al. (Strengert et al., 2006). This improved

method is summarized in Section 2.

The first contribution of this work is a quantitative

analysis of the filters proposed by Kraus and Strengert

by means of response functions in Section 3, which

reveal strong local variations of the corresponding

blur filter due to the grid structure of the image pyra-

mid. This shortcoming can result in objectionable



rendering artifacts; for example, it causes pulsating

artifacts if a moving pixel (or a small group of con-

sistently moving pixels) of high contrast is blurred in

an animated sequence since the blur depends on the

pixel’s position within the image.

To overcome this deficiency of pyramidal blur-

ring, a new analysis filter is designed in Section 4,

which is the second contribution of this work. It re-

duces the variations of the corresponding blur filter

considerably—in particular the variation of its max-

imum amplitude. Thus, the pyramidal blurring pro-

posed in this work is significantly closer to blurring

by a convolution filter and is therefore called “quasi-

convolution pyramidal blurring.”

In addition to the two mentioned contributions, an

efficient GPU implementation of the new analysis fil-

ter is described in Section 5, while some experiments

demonstrating the benefits of the proposed method are

presented in Section 6.

2 PYRAMIDAL BLURRING

Image blurring with the pyramid algorithm was first

suggested by Burt (Burt, 1981). In the first part of the

method, called analysis, an image pyramid of down-

sampled or reduced image levels is computed by ap-

plying a (usually small) analysis filter mask and sub-

sampling the result by a factor of 2 in each dimension.

In the second part of the method, called synthesis,

one of the levels is chosen based on the specified blur

width. The coarse image of the chosen level is itera-

tively upsampled to the original dimensions by apply-

ing a synthesis filter. Figure 1 illustrates this method

for a one-dimensional image of 16 pixels.

analysis synthesis

Figure 1: Illustration of pyramidal blurring in 1D.

An efficient GPU implementation of this algo-

rithm was presented by Strengert et al. (Strengert

et al., 2006) for a 2× 2 box analysis filter and a syn-

thesis filter that corresponds to filtering the coarse im-

age by a biquadratic B-spline filter. The resulting

image quality can be improved by applying a 4× 4

box analysis filter or an analysis filter corresponding

to a biquadratic B-spline filter as suggested by Kraus

and Strengert (Kraus and Strengert, 2007b). While

this improvement often results in an acceptable image

quality when blurring static images, rendering arti-

facts become visible in animations since the proposed

pyramidal blur deviates significantly from blurring by

convolution filtering, i.e., the blur varies depending

on the image position.

In this work, the deviation from convolution filters

is quantitatively analyzed and a new analysis filter is

designed that allows for an efficient GPU implemen-

tation while minimizing the deviation from a convo-

lution filter. We employ the synthesis filter proposed

by Strengert et al. since biquadratic B-spline filter-

ing offers several interesting features such as compact

support, C1 continuity, similarity to a Gaussian distri-

bution function and therefore almost radial symme-

try, and the possibility of an efficient implementation

based on bilinear interpolation (Strengert et al., 2006).

3 QUANTITATIVE ANALYSIS OF

RESPONSE FUNCTIONS

In order to analyze the deviation of pyramidal blur-

ring from convolution filtering, we consider the con-

tinuous limit case of infinitely many downsampling

and upsampling steps; thus, the “pixels” of the input

image are infinitely small. Without loss of generality,

the size of a pixel of the coarsest image level, which is

used as input for the synthesis, is set to 1 and the sam-

pling positions of these pixels are positioned at integer

coordinates. We discuss only one-dimensional gray-

scale images since the extension to two-dimensional

color images is straightforward for separable filters

and linear color spaces.

The limit of infinitely small input pixels allows us

to define continuous response functions for a black

input image with a single, infinitely small intensity

peak at position p ∈ R in a coordinate system where

the pixels of the coarsest image level are at integer

coordinates. We distinguish between two kinds of re-

sponse functions: the first is denoted by ϕi(p) and

specifies the intensity of a pixel of the coarsest image

level at integer position i ∈ Z after downsampling the

input image with a peak at position p.

The second kind of response functions is denoted

by ψ(x, p) and specifies the intensity of the blurred

image (of infinitely high resolution) at position x ∈ R

for a peak at position p ∈ R. In this work, the blurred

image is always obtained by filtering the coarsest im-

age level by a quadratic B-spline. We denote the

quadratic B-spline function centered at i by ϕ
quad
i (x)

(see Equation 5 for its definition); thus, ψ(x, p) is

defined as the sum over all pixels of the product of

the response function for the i-th pixel ϕi(p) with the



-2 -1 0 1 2
x

0.2

0.4

0.6

0.8

1

j-1
rectHxL j0

rectHxL j+1
rectHxL

(a)

-2 -1 0 1 2
x

0.2

0.4

0.6

0.8

1

ΨrectHx,-1L ΨrectHx,0L ΨrectHx,+1L

(b)

-2 -1 0 1 2
y

0.2

0.4

0.6

0.8

1

Ψ
rect
HyL

ΨrectHy,0L
ΨrectHy+1�2,1�2L

(c)

Figure 2: Response functions for the 2-tap box analysis filter 1
2 (1 1).

-2 -1 0 1 2
x

0.1

0.2

0.3

0.4

0.5

0.6
j-1

trap
HxL j0

trap
HxL j+1

trap
HxL

(a)

-2 -1 0 1 2
x

0.1

0.2

0.3

0.4

0.5

0.6
ΨtrapHx,-1L ΨtrapHx,0L ΨtrapHx,+1L

(b)

-2 -1 0 1 2
y

0.1

0.2

0.3

0.4

0.5

0.6

Ψ
trap
HyL

ΨtrapHy,0L

ΨtrapHy+1�2,1�2L

(c)

Figure 3: Response functions for the 4-tap box analysis filter 1
4 (1 1 1 1).

quadratic B-spline ϕ
quad
i (x).

ψ(x, p) = ∑
i

ϕi(p)ϕ
quad
i (x) (1)

With the help of these definitions we compute

ϕi(p) and ψ(x, p) for three analysis filters discussed

by Kraus and Strengert (Kraus and Strengert, 2007b).

The analysis filter mask for the 2-tap box filter is
1
2
(1 1); thus, the corresponding response function for

the i-th pixel of the coarsest image level is a simple

rectangle function denoted by ϕrect
i (p) and depicted

in Figure 2a.

ϕrect
i (p) =

{

1 if i− 1
2

< p < i+ 1
2

0 otherwise
(2)

The corresponding response function ψrect(x, p) for

the blurred image is a quadratic B-spline centered at

the integer coordinate closest to the peak position p.

ψrect(x, p) = ϕ
quad

bp+ 1
2c

(x) (3)

This function is illustrated in Figure 2b.

In the case of the 4-tap box analysis filter with the

filter mask 1
4
(1 1 1 1), the shape of the response func-

tion for the i-th pixel is a trapezoid as illustrated in

Figure 3a; therefore, the response function is denoted

by ϕ
trap
i (p).

ϕ
trap
i (p) =















1
2
(p− i+ 3

2
) if i− 3

2
< p < i− 1

2
1
2

if i− 1
2
≤ p ≤ i+ 1

2
1
2
(i+ 3

2
− p) if i+ 1

2
< p < i+ 3

2
0 otherwise

(4)

The corresponding response function for the blurred

image is denoted by ψtrap(x, p) and illustrated in Fig-

ure 3b for integer values of p. It should be noted that

non-integer values of p result in different shapes as

illustrated in Figure 3c for p = 1/2.

For the 4-tap analysis filter mask 1
8
(1 3 31), the

response function for the i-th pixel is a quadratic B-

spline, which is denoted by ϕ
quad
i and illustrated in

Figure 4a.

ϕ
quad
i (p)=



















1
2

(

p− i+ 3
2

)2
if i− 3

2
< p < i− 1

2
3
4
− (p− i)2

if i− 1
2
≤ p ≤ i+ 1

2
1
2

(

i+ 3
2
− p

)2
if i+ 1

2
< p < i+ 3

2
0 otherwise

(5)

Correspondingly, the response function for the

blurred image is denoted by ψquad(x, p). An illustra-

tion for integer values of p is given in Figure 4b.

In order to compare the response functions

ψ(x, p), which depend on x and p, with convolution

filters that only depend on the difference y
def
= x− p,

we define an averaged response function ψ̄(y) by in-

tegration over p.

ψ̄(y) =
∫ 1

0
dp ψ(y+ p, p) (6)

The corresponding functions ψ̄rect(y), ψ̄trap(y), and

ψ̄quad(y) are illustrated in Figures 2c, 3c, and 4c.

With the help of ψ̄(y) the deviation of a particu-

lar pyramidal blurring method from convolution blur-

ring can be quantified by computing the root mean



-2 -1 0 1 2
x

0.2

0.4

0.6

0.8 j-1
quad
HxL j0

quad
HxL j+1

quad
HxL

(a)

-2 -1 0 1 2
x

0.2

0.4

0.6

0.8

ΨquadHx,-1LΨquadHx,0LΨquadHx,+1L

(b)

-2 -1 0 1 2
y

0.2

0.4

0.6

0.8

Ψ
quad
HyL

ΨquadHy,0L

ΨquadHy+1�2,1�2L

(c)

Figure 4: Response functions for the quadratic analysis filter 1
8 (1 3 31).

-2 -1 0 1 2
x

0.1

0.2

0.3

0.4

0.5

0.6

0.7
j-1

quasi
HxLj0

quasi
HxLj+1

quasi
HxL

(a)

-2 -1 0 1 2
x

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ΨquasiHx,-1L

ΨquasiHx,0L

ΨquasiHx,+1L

(b)

-2 -1 0 1 2
y

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ψ
quasi
HyL

ΨquasiHy,0L

ΨquasiHy+1�2,1�2L

(c)

Figure 5: Response functions for the proposed quasi-convolution analysis filter 1/64 (13 19 19 13).

square deviation (RMSD), denoted by ε, between the

response function ψ(x, p) and ψ̄(x− p).

ε =

√

∫ 1

0
dp

∫ +∞

−∞
dx (ψ(x, p)− ψ̄(x− p))2

(7)

Additionally, we consider the RMSD between ψ(p, p)
and ψ̄(0), denoted by ε0, since a variation of the max-

imum amplitude of a blur filter is more easily per-

ceived than a variation at other positions and all aver-

aged response functions ψ̄(y) considered in this work

achieve their maxium for y = 0.

ε0 =

√

∫ 1

0
dp (ψ(p, p)− ψ̄(0))2

(8)

Actual values of ε and ε0 for ψrect(x, p), ψtrap(x, p),
and ψquad(x, p) are given in Table 1. Due to the

strong deviation of ψrect(x, p) from a convolution fil-

ter, it is rather unsuited for pyramidal blurring as al-

ready observed by Kraus and Strengert. Interestingly,

ψquad(x, p) provides no improvement compared to

ψtrap(x, p) although ϕ
quad
i (p) is C1 continuous while

ϕ
trap
i (p) is only C0 continuous.

4 QUASI-CONVOLUTION

PYRAMIDAL BLURRING

In order to design a pyramidal blurring method that

produces a blur that is visually similar to convolution

Table 1: RMS deviation ε of response functions from an
averaged filter and the RMSD ε0 at the center of the filter.

analysis response

mask function ε ε0

1
2
(0 1 10) ψrect(x, p) 0.2658 0.0745

1
4
(1 1 11) ψtrap(x, p) 0.0376 0.0186

1
8
(1 3 31) ψquad(x, p) 0.0510 0.0327

1
64

(13 19 1913) ψquasi(x, p) 0.0276 0.0027

filtering, we try to minimize ε and ε0 defined in Equa-

tions 7 and 8 under several constraints; in particular,

we will employ the synthesis filter corresponding to

quadratic B-spline filtering. Moreover, we consider

only symmetric 4-tap analysis filter masks; i.e., filter

masks of the form (a (1/2−a) (1/2−a) a).

By numeric methods we determined the mini-

mum of ε under these constraints for a approxi-

mately equal to 13/64; i.e., for the analysis filter mask

1/64 (13 19 19 13). The minimum of ε0 is achieved

for a slightly larger value of a; however, the potential

improvement is less than 5%; thus, we will neglect

it in this work. We call the corresponding blurring

method “quasi-convolution pyramidal blurring” since

this analysis filter reduces ε and ε0 significantly as

shown in Table 1. Of particular interest is the strong

decrease of ε0, which is almost an order of magnitude

smaller than for previously suggested pyramidal blur-

ring methods.



It is an interesting feature of the analysis filter

mask for quasi-convolution pyramidal blurring that it

can be constructed by a linear combination of the 4-

tap box filter and the analysis filter mask for quadratic

B-splines:

1

64
(13 19 19 13) =

5

8
×

1

4
(1 1 1 1)+

3

8
×

1

8
(1 3 3 1).

(9)

Therefore, the response function ψquasi(x, p) can be

computed as the same linear combination of the cor-

responding response functions due to the linearity of

the pyramid method:

ψquasi(x, p) =
5

8
×ψtrap(x, p)+

3

8
×ψquad(x, p). (10)

The response functions ϕ
quasi
i (x) and ψquasi(x, p) are

illustrated in Figures 5a and 5b while ψ̄quasi(y) is de-

picted in Figure 5c. In comparison to Figures 3c and

4c, a strong reduction of the deviation of ψquasi(y,0)
and ψquasi(y+1/2,1/2) from ψ̄quasi(y) is obvious.

It should be noted that our results depend on sev-

eral constraints, in particular the width of the analysis

filter and the particular synthesis filter, which were

both chosen to allow for an efficient GPU implemen-

tation as discussed in the next section. Wider anal-

ysis and synthesis filters are likely to allow for even

smaller values of ε and ε0, however, at higher compu-

tational costs at run time.

5 GPU IMPLEMENTATION

Sigg and Hadwiger (Sigg and Hadwiger, 2005)

have proposed an efficient way of exploiting GPU-

supported bilinear interpolation for cubic B-spline fil-

tering. We can employ an analogous technique to

compute the analysis filter mask 1/64 (13 19 19 13)
by two linear interpolations. To this end the posi-

tion of the first linear filtered texture lookup has to be

placed between the first and second pixels at distances

in the ratio 19:13 and the second lookup between the

third and fourth at distances in the ratio 13:19. The

mean of the two texture lookups is the correctly fil-

tered result in the one-dimensional case.

For two-dimensional images, the analysis filter

mask for quasi-convolution blurring is constructed by

a tensor product of the one-dimensional filter mask:

1

4096







169 247 247 169

247 361 361 247

247 361 361 247

169 247 247 169






(11)

In this case, four bilinear texture lookups are neces-

sary. Similarly to the one-dimensional case, the posi-

19 :13

Figure 6: Illustration of the positions (crosses) of four bilin-
ear texture lookups for the quasi-convolution analysis filter.
The centers of texels of the finer level are indicated by grey
dots, while the black dot indicates the center of the pro-
cessed texel of the coarser image level.

Table 2: Timings for blurring a 1024 × 1024 4 × 16-bit
RGBA image on a GeForce 7900 GTX.

pyramid analysis filter

levels 2×2 box 4×4 box quasi-conv.

1 0.40 ms 0.57 ms 0.85 ms

2 0.65 ms 0.82 ms 1.27 ms

3 0.72 ms 0.89 ms 1.39 ms

4 0.76 ms 0.92 ms 1.44 ms

5 0.77 ms 0.94 ms 1.47 ms

6 0.78 ms 0.95 ms 1.49 ms

7 0.80 ms 0.96 ms 1.51 ms

tions are placed at distances in the ratio 19:13 in hor-

izontal and vertical direction, where the pixels closer

to the center of the filter mask are also closer to the

positions of the texture lookups. These positions (ac-

cording to the OpenGL conventions for texture coor-

dinates) are illustrated in Figure 6. The filtered result

is computed by the mean of the four texture lookups.

For comparison, we also discuss implementations

of the 2× 2 box analysis filter, the 4× 4 box analy-

sis filter, and the biquadratic analysis filter. The 2×2

box filter mask can be implemented very efficiently

by a single bilinear texture lookup positioned equidis-

tantly between the centers of the four relevant texels.

The most efficient way to implement the 4×4 box fil-

ter mask is a two-pass method with only two bilinear

texture lookups (Kraus and Strengert, 2007b). For the

biquadratic analysis filter, a variant of the presented

implementation of the quasi-convolution analysis fil-

ter with adapted positions appears to provide the best

performance. Thus, the biquadratic analysis filter and

the quasi-convolution analysis filter achieve the same

performance.

Measured timings for these implementations are

summarized in Table 2 for blurring a 1024×1024 im-



Figure 7: Pyramidal blurring of an antialiased line with the
2×2 box analysis filter.

Figure 8: Pyramidal blurring of an antialiased line with the
4×4 box analysis filter.

age. The number of pyramid levels determines the

width of the blur; it corresponds to the number of per-

formed analysis steps, which is equal to the number

of synthesis steps. The employed synthesis filter cor-

responds to biquadratic B-spline filtering and can be

implemented with only one bilinear lookup (Strengert

et al., 2006).

6 RESULTS

Figures 7 to 10 illustrate the pyramidal blurring of an

antialiased line by two pyramid levels. Analogously

to Figure 1, the two downsampling steps of the anal-

ysis are depicted on the left-hand-side (bottom up)

while the two upsampling steps of the synthesis are

shown on the right-hand-side (top down). Thus, the

blurred result is shown in the lower, right image of

Figure 9: Pyramidal blurring of an antialiased line with the
biquadratic analysis filter.

Figure 10: Pyramidal blurring of an antialiased line with the
quasi-convolution analysis filter.

each figure. Linear intensity scaling was employed

to enhance the images; however, the same scaling of

intensities was employed in corresponding images of

Figures 7, 8, 9, and 10.

Blurring with the 2× 2 box analysis filter in Fig-

ure 7 results in strong staircasing artifacts in the lower,

right image. The biquadratic analysis filter employed

in Figure 9 also results in a clearly visible oscillation

of the blurred line’s intensity. Similar oscillations also

occur in animations, where they are often more objec-

tionable since their position is aligned with the pyra-

midal grid, i.e, they often result in fixed-pattern dis-

tortions of the processed images.

The 4 × 4 box filter employed in Figure 8 and

the quasi-convolution filter used in Figure 10 produce

significantly better results than the biquadratic anal-

ysis filter. Unfortunately, the employed linear inten-

sity scaling cannot reveal the differences between Fig-



(a) (b) (c) (d)

Figure 11: Detail of a Manga image (http://commons.wikimedia.org/wiki/Image:Manga.png) blurred with (a) the 2× 2 box
analysis filter, (b) the 4×4 box analysis filter, (c) the biquadratic analysis filter, and (d) the quasi-convolution analysis filter.

(a) (b) (c) (d)

Figure 12: Detail of the 512×512 Lenna image blurred with (a) the 2×2 box analysis filter, (b) the 4×4 box analysis filter,
(c) the biquadratic analysis filter, and (d) the quasi-convolution analysis filter.

Figure 13: Contrast-enhanced blurred images for the 4× 4
box filter (left) and the quasi-convolution filter (right).

Figure 14: Convolution filtering corresponding to the aver-
age quasi-convolution blur depicted in Figure 10. The right
image has been contrast-enhanced in the same way as the
images in Figure 13.

ures 8 and 10. Therefore, additional nonlinear con-

trast enhancement was employed in Figure 13 to com-

pare the resulting images of the blurred line. The

left image in Figure 13 reveals an oscillation of in-

tensity for the 4× 4 box filter, while the line blurred

with quasi-convolution in the right image of Figure 13

shows almost no such oscillation for the same im-

age enhancement settings. Although nonlinear im-

age enhancement is necessary to show these differ-

ences, their relevance should not be underestimated

since several image post-processing techniques (e.g.,

for tone mapping) use blurred intermediate images in

nonlinear computations; thus, even small-scale arti-

facts can become objectionable.

To compare quasi-convolution blurring with ac-

tual convolution filtering, Figure 14 shows the two-

dimensional convolution of the image of an an-

tialiased line with the averaged filter ψ̄quasi of quasi-

convolution blurring.

Figures 11 and 12 show details of actual images,

which were blurred by the presented methods. While

the staircasing artifacts generated by the 2 × 2 box

analysis filter are clearly visible in Figures 11a and

12a, the artifacts generated by the quadratic analy-

sis filter in Figures 11c and 12c are less obvious.

Applying the 4 × 4 box analysis filter or the quasi-

convolution filter results in even less artifacts, which

are usually not perceivable in static images such as

Figures 11b, 11d, 12b, and 12d. However, they are

more easily perceived if the blurred image is trans-

lated with respect to the pyramidal grid in an anima-

tion.



This comparison approves the results of our quan-

titative analysis in Section 3; in particular, the bi-

quadratic analysis filter appears to provide no advan-

tages in comparison to the 4×4 box filter or the quasi-

convolution filter. The improved image quality pro-

vided by the quasi-convolution filter compared to the

4× 4 box filter appears to be less relevant unless the

differences are amplified by non-linear effects; for ex-

ample, by tone mapping techniques for high-dynamic

range images.

7 CONCLUSION AND FUTURE

WORK

This work introduces quasi-convolution pyramidal

blurring; in particular, a new analysis filter is pro-

posed and quantitatively compared to existing filters.

This comparison shows that the proposed filter signif-

icantly reduces deviations of pyramidal blurring from

the corresponding convolution filter. Furthermore, an

efficient implementation on GPUs has been demon-

strated. The proposed pyramidal blurring method can

be employed in several image post-processing effects

in real-time rendering to improve the performance,

image quality, and/or permissible blur widths. There-

fore, more and better cinematographic effects can be

implemented by means of real-time rendering.

In the future, the quantitative analysis should

be extended to other synthesis filters, in particular

C2-continuous cubic B-splines, which might allow

for even smaller deviations from convolution filters.

Moreover, a generalization of the proposed pyramidal

blurring technique to approximate arbitrary convolu-

tion filters would allow us to automatically replace

convolution filters in existing image processing tech-

niques.

REFERENCES

Burt, P. J. (1981). Fast Filter Transforms for Image Pro-
cessing. Computer Graphics and Image Processing,
16:20–51.

Demers, J. (2004). Depth of Field: A Survey of Techniques.
In Fernando, R., editor, GPU Gems, pages 375–390.

Goodnight, N., Wang, R., Woolley, C., and Humphreys, G.
(2003). Interactive Time-Dependent Tone Mapping
Using Programmable Graphics Hardware. In Pro-
ceedings Rendering Techniques 2003, pages 26–37.

Hammon, E. (2007). Practical Post-Process Depth of Field.
In Nguyen, H., editor, GPU Gems 3, pages 583–605.

James, G. and O’Rorke, J. (2004). Real-Time Glow. In
Fernando, R., editor, GPU Gems.

Kraus, M. and Strengert, M. (2007a). Depth-of-Field Ren-
dering by Pyramidal Image Processing. Computer
Graphics Forum (Conference Issue), 26(3):645–654.

Kraus, M. and Strengert, M. (2007b). Pyramid Filters Based
on Bilinear Interpolation. In Proceedings GRAPP
2007 (Volume GM/R), pages 21–28.

Sigg, C. and Hadwiger, M. (2005). Fast Third-Order Tex-
ture Filtering. In Pharr, M., editor, GPU Gems 2,
pages 313–329.

Strengert, M., Kraus, M., and Ertl, T. (2006). Pyramid
Methods in GPU-Based Image Processing. In Pro-
ceedings Vision, Modeling, and Visualization 2006,
pages 169–176.

Williams, L. (1983). Pyramidal Parametrics. In Proceed-
ings ACM SIGGRAPH ’83, pages 1–11.


