
Interpolating and Downsampling RGBA Volume Data

Martin Kraus and Kai Bürger

September 18, 2008

Abstract

For about twenty years the standard color sampling
method for RGBA volume data has been the inter-
polation of opacity-weighted colors. In this work,
we discuss the underlying approximations and de-
rive an improved sampling method, which avoids
some of these approximations. With the help of
several examples and experiments we demonstrate
that our new technique is in fact preferable for di-
rect volume rendering of RGBA data. Moreover,
we show that the same improvement can be ap-
plied to downsampling filters. Finally, we propose
a procedure to design improved downsampling fil-
ters for the generation of pyramid RGBA volume
data such as mipmap volume textures.

1 Introduction

Interpolating and downsampling uniform volume
grids that specify color and opacity for each voxel
is of particular interest for hardware-based volume
rendering because many GPUs (graphics process-
ing units) and graphics APIs (application program-
ming interfaces) support this kind of volume data
by means of RGBA (red, green, blue, and alpha)
volume mipmap textures. However, a thorough un-
derstanding of interpolation and downsampling is
necessary to avoid aliasing artifacts and incorrect
renderings. While direct volume rendering with
RGBA volume textures has received less attention
in recent years, new hardware features and the
development of multi-resolution volume renderers
supporting multi-dimensional transfer functions is
likely to lead to new interest in this subject as dis-
cussed in Section 2.

In the past, hardware support for RGBA vol-
ume textures was usually restricted to a precision
of 8 bits per component, which imposed severe

limitations on the achievable image quality. In
fact, this limited precision of volume textures is
insufficient to store opacity-weighted colors [1, 10]
while it is well known that interpolation of opacity-
weighted colors is preferable in direct volume ren-
dering [2, 14]. Since modern GPUs offer support for
floating-point RGBA volume textures, one might
think that this issue has been resolved already.

As we will show in Section 3, however, floating-
point textures also allow us to remove another
important approximation that was considered in-
evitable for hardware-based volume rendering in
the past — namely the approximation of extinc-
tion coefficients by opacities. Thus, it is preferable
to perform the sampling of floating-point RGBA
volume textures in a rather different way than the
current state of the art suggests.

Our new sampling technique trivially affects the
downsampling of RGBA volume data. However,
in Section 4 we also propose a procedure based
on quasi-convolution pyramid blurring [4] to design
appropriate downsampling filters for specific sam-
pling filters; in particular, we determine appropri-
ate downsampling filters for trilinear interpolation
and triquadratic B-spline filtering [12]. First, how-
ever, we will discuss related work and the use of
RGBA volumes texture in general in the following
section.

2 Background and Related

Work

In the early 1990s, research in direct volume ren-
dering was focused on volume rendering techniques
that either rendered RGBA data [2, 3, 7, 8] or
applied transfer functions to voxel data before in-
terpolating the resulting RGBA data (i.e., pre-
classification volume rendering) [14]. During the

1

1990s, however, the interest in post-classification
volume rendering increased, i.e., in techniques that
apply transfer functions after the interpolation of
scalar data. In volume visualization, in particu-
lar, this allowed for faster changes of the trans-
fer functions, smaller data set sizes, and sharper
renderings of isosurfaces and similar structures.
Post-classification benefitted from the introduc-
tion of graphics hardware features such as the
OpenGL extensions for “paletted textures” and
“dependent textures” as well as the publication
of post-classification volume rendering algorithms
[11, 13]. Today, research in direct volume rendering
for volume visualization is in fact focused on post-
classification techniques for scalar volume data.

Multi-resolution techniques for level-of-detail
rendering of RGBA volume data had been re-
searched in the early 1990 [2, 7, 8], and many
of these approaches appeared to be applicable to
multi-resolution methods for post-classification vol-
ume rendering of scalar volume data. However, re-
searchers soon realized that the simplification of
scalar volume data in general, and the downsam-
pling of uniform, scalar volume grids in particular,
requires different downsampling filters than RGBA
volume data. Specifically, LaMar et al. [6] report
considerably improved results with subsampling in-
stead of linear filtering, while Kraus and Ertl [5]
suggested topology-guided downsampling to pre-
serve more of the topology of the scalar field in the
downsampling process. In fact, if the topology of
the scalar data field could be preserved perfectly,
then the rendering of the downsampled data will
include the same colors as a rendering of the origi-
nal data although the distribution of colors in space
may strongly differ. Moreover, a perfect preserva-
tion of the topology is not possible and its ben-
efits are only effective for one-dimensional trans-
fer functions while multi-dimensional transfer func-
tions can result in arbitrarily strong color differ-
ences.

Another approach to the downsampling of scalar
volume data was proposed by Younesy et al. [15],
who suggested to compute data histograms in a
neighborhood of each downsampled voxel and ap-
proximate these data distributions by Gaussians
for a more efficient color computation. Unfortu-
nately, their results are apparently computed by a
pre-classification volume renderer with downsam-
pled scalar data: a rather uncommon combination

that is particularly prone to aliasing effects.

In summary, downsampling of scalar volume data
for post-classification volume rendering is consider-
ably more difficult and less well understood than
downsampling of RGBA volume data. In fact, it
is unclear how to achieve the same image quality;
in particular, for multi-dimensional transfer func-
tions. Thus, the best approach to compute multi-
resolution hierarchies of uniform volume grids (e.g.,
mipmap volume textures) for direct volume render-
ing with high image quality appears to be based on
pre-classification and downsampling of RGBA vol-
ume textures.

Moreover, some features of modern GPUs,
namely floating-point textures and the render-to-
texture functionality, provide ample hardware sup-
port for generating and processing RGBA volume
textures. Thus, real-time pre-classification of vol-
ume data and volume mipmap generation with
complex downsampling filters is possible on GPUs.

Apart from downsampling RGBA volume data,
this work is also concerned with interpolation of
RGBA volume data. Unfortunately, it is not quite
clear, who introduced opacity-weighted color in-
terpolation in volume rendering—Drebin et al. [3]
are among the first who have published this con-
cept. Our improvements in comparison to opacity-
weighted color interpolation are also based on pre-
vious work by Max [9] and Wittenbrink et al. [14]
and are discussed in the next section.

3 Interpolating RGBA Vol-

ume Data

3.1 Optical Model

We employ the optical model and notation de-
scribed by Max [9], which consists of an extinc-

tion coefficient τ(x) and an emitted color g(x)
def
=

C(x)τ(x) for any point x in space. For a ray

x(s)
def
= x0 + sd̂ starting with color I(0) at x(0) in

direction of the unit vector d̂, the integrated color
I(s) received at x(s) is:

I(s) = I(0) exp

(

−

∫ s

0

τ(x(s′))ds′

)

(1)

+

∫ s

0

C(x(s′))τ(x(s′))

2

× exp

(

−

∫ s

s′

τ(x(s′′))ds′′

)

ds′.

In order to discretize this integral, a short sam-
pling distance d is chosen, such that C(x) and τ(x)
can be considered constant. In this case, the inte-
gral can be solved exactly (see Equation 8 in [9]):

I(s) = I(s − d) exp (−τ(x(s))d) (2)

+ C(x(s)) (1 − exp (−τ(x(s))d)) .

Employing the opacity α(x(s)) for distance d

with
α(x(s))

def
= 1 − exp (−τ(x(s))d) , (3)

this equation reduces to the familiar compositing
equation for back-to-front blending:

I(s) = I(s − d)(1 − α(x(s))) (4)

+ C(x(s))α(x(s)).

Details of the implementation of back-to-front and
front-to-back blending are provided, for example,
by Wittenbrink et al. [14].

We note that many volume rendering tools don’t
allow to specify extinction coefficients τ ∈ [0,∞]
but opacities α ∈ [0, 1], in particular by means of
transfer functions. In these cases, a distance d is
chosen (sometimes implicitly), which allows to bi-
jectively map extinction coefficients to opacities ac-
cording to Equation 3. The inverse relation is:

τ =
− ln (1 − α)

d
. (5)

Furthermore, we consider an extension of the de-
scribed optical model to n materials (see, for ex-
ample, the work by Drebin et al. [3]) with constant
material colors Ci and extinction coefficients τi for
i = 1, . . . , n. Each point defines a set of percent-
ages pi(x), i = 1, . . . , n, which specify the amount
of material i at point x. For this multi-material
model, the emitted color at x is:

g(x) =

n
∑

i=1

pi(x)Ciτi (6)

and the total extinction coefficient is

τ(x) =

n
∑

i=1

pi(x)τi. (7)

3.2 Opacity-Based Sampling

If the color C(x) and the opacity α(x) at a point
x are obtained by interpolating colors and opaci-
ties specified at discrete voxel positions, then the
product C(x)α(x) is interpolated with the squared
interpolation functions. This can result in a form
of color bleeding as discussed in detail by Witten-
brink et al. [14]. Therefore, opacity-weighted col-

ors C̃
def
= Cα and opacities α for some distance

(which does not need to be the sampling distance)
are stored or computed per voxel and then inter-
polated for each sampling point as suggested, for
example, by Drebin et al. [3].

The preference for opacity-weighted colors can
be justified in a multi-material optical model. We
employ the approximations

α(x) = 1 − exp (−τ(x)d) (8)

= 1 − exp

(

−

n
∑

i=1

pi(x)τid

)

(9)

≈

n
∑

i=1

pi(x) (1 − exp(−τid)) (10)

=

n
∑

i=1

pi(x)αi (11)

and

C̃(x)
def
= g(x)d (12)

=

n
∑

i=1

pi(x)Ciτid (13)

≈

n
∑

i=1

pi(x)Ciαi (14)

=

n
∑

i=1

pi(x)C̃i (15)

with C̃i
def
= Ciαi. These approximations are valid

for small τid, i = 1, . . . , n. Thus, α(x) and C̃(x)
are linear combinations of the pi(x) with material
constants C̃i and αi. Therefore, instead of storing a
potentially large set of percentages pi, i = 1, . . . , n
for each voxel and interpolating between these per-
centages to compute α(x) and C̃(x), we can also
just store one opacity α and one opacity-weighted
color C̃ for each voxel and interpolate between this
voxel data directly, which is exactly what the inter-
polation of opacity-weighted colors suggests even

3

without explicitly specifying materials and mate-
rial percentages pi.

After interpolating opacities and opacity-
weighted colors, a so-called opacity correction is
necessary if opacities are stored for a different
distance d′ than the actual sampling distance d,
for example, because the sampling distance d is
chosen adaptively.

We will refer to the resulting procedure as
opacity-based sampling, which consists of the fol-
lowing steps:

1. interpolation of the opacity-weighted color C̃ ′

and the opacity α′ for distance d′ at the sam-
pling position,

2. opacity correction for the actual sampling dis-
tance d instead of d′:

α = 1 − (1 − α′)d/d′

(16)

3. opacity correction of the opacity-weighted
color:

C̃ = C̃ ′
α

α′
. (17)

The resulting opacity α and opacity-weighted color
C̃ is then composited as required by Equation 4.

3.3 Extinction-Based Sampling

While the interpolation of opacity-weighted colors
is generally accepted in volume rendering, it is only
an approximation to the preferable interpolation
of extinction coefficients τ and extinction-weighted

colors C̃(τ) def
= Cτ .

Analogously to opacity-weighted colors, the
weighting with extinction coefficients can be ex-
plained in the multi-material model. We have
(without any approximations):

τ(x) =

n
∑

i=1

pi(x)τi (18)

and

C̃(τ)(x)
def
= g(x) (19)

=

n
∑

i=1

pi(x)Ciτi (20)

=

n
∑

i=1

pi(x)C̃
(τ)
i . (21)

Thus, τ(x) and C̃(τ)(x) are linear combinations of
the percentages pi(x) with constants C̃(τ) and τi,
i = 1, . . . , n. Therefore, we can interpolate voxel
attributes τ and C̃(τ) instead of percentages pi,
i = 1, . . . , n. In contrast to oppacity-based sam-
pling, no approximations are necessary to derive
this result.

We will refer to the interpolation of extinc-
tion coefficients and extinction-weighted colors as
extinction-based sampling, which consists of these
steps:

1. interpolation of the extinction-weighted color
C̃(τ) and the extinction coefficient τ at the
sampling position,

2. computation of α for the sampling distance d:

α = 1 − exp(−τd), (22)

3. computation of the opacity-weighted color C̃:

C̃ = C̃(τ) α

τ
. (23)

Again, the resulting opacity α and opacity-
weighted color C̃ are composited according to
Equation 4.

3.4 Comparison

In general, opacity-based and extinction-based
sampling of voxel data compute different results
because α(x) is a non-linear function of τ(x)d′,
and therefore the interpolation of opacities and
opacity-weighted colors is an approximation, which
is only appropriate for small products τ(x)d′ as can
be shown by a Taylor expansion of α(τ(x)d′) for
τ(x)d′

≈ 0:

α(τ(x)d′) = τ(x)d′ + O
(

(τ(x)d′)2
)

. (24)

It is important to note that opacity-based sam-
pling not only suffers from discretization errors be-
cause of a finite sampling distance d but also from
the mapping of voxel data τ(x) to α(x) for a finite
distance d′. The correct result is obtained only in
the limit of d → 0 and d′

→ 0. For d′
→ 0, how-

ever, voxel opacities and opacity-weighted colors
will exponentially approach 0, which can result in
severe numerical problems. Extinction-based sam-
pling, on the other hand, allows us to perform the

4

same computations without the need to deal with
infinitely small quantities.

One advantage of opacity-weighted colors is their
limited data range [0, 1]. However, a fixed-point
precision of 8 bits is usually insufficient for opacity-
weighted colors [1, 10]; thus, at least 16 bit numbers
have to be used for many applications. However,
16 bit floating-point numbers require no additional
memory; therefore, the limited data range required
by opacity-weighted colors appears to be less im-
portant in actual implementations.

3.5 Example

While many researchers are aware of the approx-
imation implied by opacity-based sampling, it is
usually not considered problematic. In fact, Wit-
tenbrink et al. [14] present an example, where
opacity-weighted color interpolation results in an
integrated color, which is independent of the sam-
pling positions. In particular, the sampling posi-
tions may be identical to the voxel positions; thus,
the employed approximation does not affect the re-
sult in Wittenbrink et al.’s example.

There are, however, also examples that
clearly demonstrate the benefits of interpo-
lating extinction-weighted colors instead of
opacity-weighted colors. One of these examples is
illustrated in Figure 1: A ray traverses a uniform
grid towards the camera on the left-hand side.
Sampling positions are depicted by crosses and
parameterized by the uniform sampling distance d

and the projected distance r relative to a vertex
of the grid. All distances are measured in units of
the distance between the grid’s vertices; in other
words: the distance between two neighboring
vertices of the grid is 1. Sampling is performed by
bilinear interpolation of the vertex attributes; i.e.,
either opacities and opacity-weighted colors for
opacity-based sampling, or extinction coefficients
and extinction-weighted colors for extinction-based
sampling. The filled dots represent vertices with
color C = 1, extinction coefficient τ = τmax,
the corresponding extinction-weighted color
C̃(τ) = τmax, opacity for the distance d′ = d:
α = 1 − exp (−τmaxd

′), and opacity-weighted
color C̃ = α. The circles represent vertices with
color C = 0, extinction coefficient τ = 0, the
corresponding extinction-weighted color C̃(τ) = 0,
opacity α = 0, and opacity-weighted color C̃ = 0.

d

r

Τ = 0,
C = 0

Τ = 0,
C = 0

Τ = 0,
C = 0

Τ = 0,
C = 0

Τ = Τmax ,
C = 1

Τ = Τmax ,
C = 1

Τ = 0,
C = 0

Τ = 0,
C = 0

Τ = 0,
C = 0

Τ = 0,
C = 0

Figure 1: Exemplary ray integration in a two-
dimensional grid (see main text for details).

Figure 4a shows four plots of the resulting in-
tegrated opacity αray of the ray for opacity-based
sampling for values τmax = 1, 2, 4, and 8 in depen-
dency of d = d′ and r while Figure 4b shows the
results for extinction-based sampling. Note that
all deviations from a constant height are devia-
tions due to sampling errors. Obviously, extinction-
based sampling shows significantly less discretiza-
tion errors, in particular for 0.5 < d < 1, which is
a typical range of sampling distances for real-time
and interactive volume rendering.

The choice of the distance d′ to compute the vox-
els’ opacities is crucial: a smaller value of d′ im-
proves the results for the same value of τmax. How-
ever, the same problems will then appear for corre-
spondingly larger values of τmax. Moreover, smaller
values of d′ will result in exponentially smaller voxel
opacities, which are likely to result in numerical
problems. In our example, we set d′ = d, which
is a typical choice for uniform sampling because it
avoids the need to perform any opacity correction.
Choosing a larger distance d′ > d results in consid-
erably stronger deviations and will not converge to
the correct result for d′ = const and d → 0 since the
correct, integrated opacity will be underestimated
due to the non-linear mapping between extinction
coefficients and voxel opacities. On the other hand,
the whole issue of choosing an appropriate value of
d′ is resolved by extinction-based sampling, which
does not employ any distance except the sampling
distance d.

3.6 Experiments

To conclude this section, we show several direct
volume renderings of synthetic data sets. Figures 5
and 6 depict an axis-aligned, one-voxel-wide wall of

5

opaque voxels in an otherwise transparent volume.
Opacity-based sampling in Figure 5 shows the first
sampling artifacts for d = d′

≈ 0.6 while the first
rendering artifacts of extinction-based sampling in
Figure 6 appear for d = d′

≈ 1.6.
In Figure 7, a set of scattered, opaque voxels is

rendered. The rendering with opacity-based sam-
pling in Figure 7a shows stronger diamond-shaped
interpolation artifacts and a greater variation of the
intensity of the projected voxels in comparison to
extinction-based sampling in Figure 7b. The vari-
ation of the projected intensity depending on the
viewing parameters is particularly noticeable in an-
imations.

4 Downsampling RGBA Vol-

ume Data

After discussing interpolation in RGBA volume
grids, this section is concerned with downsampling
RGBA volume grids. While interpolation is crucial
for the maxification of texture data, downsampling
is just as important for the minification case. Thus,
both topics have to be addressed for mipmap tex-
turing with RGBA volume data.

4.1 Opacity-Based vs. Extinction-

Based Downsampling

Analogously to the case of interpolation, filtering
of RGBA volume data should be performed on ex-
tinction coefficients and extinction-weighted colors
instead of opacity and opacity-weighted colors. The
difference is illustrated by Figures 2 and 3. In Fig-
ure 2, 2 × 2 × 2 = 8 voxels are downsampled to
one coarser voxel by averaging voxel data. Four of
the finer voxels are almost opaque with the extinc-
tion coefficient τ = 4 and four are transparent with
τ = 0. The average extinction coefficient is τ ′ = 2
and this is the downsampled value for the coarser
voxel. (For d′ = 2 this corresponds to an opacity of
exp(−2×2) = 0.98.) The result is plausible because
the combined transparency through an opaque and
a transparent voxel equals the transparency of the
coarser voxel:

exp (−τd) × exp (−0d) = exp (−τ ′d′) ; (25)

thus, the opacity of the coarser voxel is the same as
the opacity of an axis-aligned orthogonal projection

d Τ = 4
Τ = 0

extinction-based
downsampling

d¢ = 2d
Τ
¢
= 2

U Α
¢
» 0.98

Figure 2: Downsampling by averaging the extinc-
tion coefficients of 8 voxels.

of the 8 finer voxels, and it is also the same as the
opacity of one of the finer voxels. In general, any
opaque structures of the data set are “blurred” in
the downsampling process, but their total opacity
is not reduced; for example, a thin surface will be-
come thicker by the downsampling, but rays inter-
secting the surface will experience approximately
the same opacity in spite of the downsampling.

The situation is different if opacities are down-
sampled as illustrated in Figure 3. τ = 4 corre-
sponds to α ≈ 0.98 for d = 1, while τ = 0 corre-
sponds to α = 0. Thus, the average opacity of the
8 voxels is 0.49. If the larger size of the coarser
voxel is taken into account by means of an opac-
ity correction (see Section 3), the resulting opacity
of the coarser voxel is α′

≈ 0.74, which is signif-
icantly less than the corresponding opacity com-
puted by downsampling extinction coefficients. In
fact, downsampling opacities will in general result
in a loss of opacity in the downsampling process.

Thus, RGBA volume data should not be down-
sampled by filtering opacities and opacity-weighted
colors but extinction coefficients and extinction-
weighted colors although the former approach is
usually employed [2, 7, 8].

4.2 Filter Design for Downsampling

While there are many approaches to the design of
pyramid filters, there are no clear recommendations
for the design of appropriate downsampling filters
for mipmap RGBA texture generation. Thus, the
2× 2× 2 box filter is often employed although it is
known to generate results of inferior quality under
many circumstances.

Here we propose to employ the procedure de-
scribed by Kraus [4] to design appropriate down-

6

d Α » 0.98
Α = 0

opacity-based
downsampling

d¢ = 2d
Α
¢
»0.74

Figure 3: Downsampling by averaging the opacities
of 8 voxels and performing opacity correction for
the coarser voxel.

sampling filters depending on the employed volume
sampling; for example, hardware-supported trilin-
ear interpolation or B-spline filtering as suggested
by Sigg and Hadwiger [12]. Apart from being sym-
metric, an appropriate downsampling filter should
have a small support to avoid excessive blurring.
Furthermore, the result of sampling the downsam-
pled data should be as close as possible to blurring
with a convolution filter since all deviations from
this kind of blur tend to reveal the coarse resolu-
tion of the downsampled grid.

This task, however, is very close to the problem
addressed by Kraus [4], namely the design of an
appropriate downsampling filter for a given upsam-
pling filter under the constraint that the resulting
pyramid algorithm is as close as possible to blurring
by a convolution filter. In particular, he discusses
the case of an upsampling filter that is equivalent
to quadratic B-spline filtering. Restricting the set
of candidates for the downsampling filter to sym-
metric, 4-tap filters and analyzing the deviations of
the resulting pyramid blur from a convolution filter
by means of two root-mean-square errors (ε for the
whole filter and ε0 for the center), he determines an
approximation to the best filter in one dimension:
1
64 (13 19 19 13) and corresponding tensor products
in higher dimensions.

We propose to employ the three-dimensional ten-
sor version of this downsampling filter for mipmap
generation if the volume data is sampled by tri-
quadratic B-spline filtering [12]. To determine an
appropriate downsampling filter for the more com-
mon case of trilinear volume interpolation, we re-
placed the pyramid upsampling of Kraus’ proce-
dure by a triangle filter and determined the sym-
metric, 4-tap downsampling filter that minimizes

ε and ε0. While the two errors achieve their min-
ima for different filters, the best compromise ap-
pears to be the 4-tap box filter with ε = 0.057
and ε0 = 0.0093. For comparison, the 2-tap box
filter results in considerably stronger deviations
from a convolution filter, which are characterized
by ε = 0.34 and ε0 = 0.14. On the other hand,
the best downsampling filter for quadratic B-spline
sampling achieves ε = 0.0276 and ε0 = 0.0027.

It should be noted that this procedure is not well
suited to design downsampling filters for scalar data
as discussed in Section 2.

5 Conclusions

This work demonstrates that extinction coefficients
and extinction-weighted colors are more appropri-
ate for interpolation and downsampling of RGBA
volume data than opacity and opacity-weighted col-
ors. Since modern GPUs support floating-point
RGBA volume textures, the former should be pre-
ferred even for hardware-based implementations.
Moreover, we propose a procedure to design ap-
propriate downsampling filters for RGBA volume
grids in dependency of the employed volume sam-
pling and present results for trilinear interpolation
and triquadratic B-spline filtering

We are confident that our contributions help to
improve the image quality achieved by direct vol-
ume rendering of RGBA data. Rendering of RGBA
volume data itself is likely to gain more interest
in the near future due to several trends in volume
rendering, e.g., multi-resolution volume data and
multi-dimensional transfer functions, as well as new
GPU features such as floating-point textures and
texture render targets.

References

[1] I. Bitter, N. Neophytou, K. Mueller, and A. E.
Kaufman. Squeeze: Numerical-precision-
optimized volume rendering. In Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS
Conference on Graphics Hardware, pages 25–
34, 2004.

[2] J. Danskin and P. Hanrahan. Fast algorithms
for volume ray tracing. In Proceedings of

7

the 1992 Workshop on Volume Visualization,
pages 91–98, 1992.

[3] R. A. Drebin, L. Carpenter, and P. Hanra-
han. Volume rendering. In Proceedings of SIG-
GRAPH ’88, pages 65–74, 1988.

[4] M. Kraus. Quasi-convolution pyramidal blur-
ring. In Proceedings GRAPP 2008, pages 155–
162, 2008.

[5] M. Kraus and T. Ertl. Topology-guided down-
sampling. In K. Mueller and A. Kaufmann,
editors, Volume Graphics 2001, Springer Com-
puter Science, pages 223–234. Springer Verlag,
Wien, New York, 2001.

[6] E. LaMar, B. Hamann, and K. I. Joy. Mul-
tiresolution techniques for interactive texture-
based volume visualization. In Proceedings of
IEEE Visualization ’99, pages 355–361, 1999.

[7] D. Laur and P. Hanrahan. Hierarchical splat-
ting: A progressive refinement algorithm for
volume rendering. In Proceedings of SIG-
GRAPH ’91, pages 285–288, 1991.

[8] M. Levoy and R. Whitaker. Gaze-directed
volume rendering. ACM Computer Graphics
(Proceedings 1990 Symposium on Interactive
3D Graphics), 24(2):217–223, 1990.

[9] N. Max. Optical models for direct volume ren-
dering. IEEE Transactions on Visualization
and Computer Graphics, 1(2):99–108, 1995.

[10] M. Meißner, J. Huang, D. Bartz, K. Mueller,
and R. Crawfis. A practical evaluation of pop-
ular volume rendering algorithms. In Proceed-
ings of the 2000 Symposium on Volume Visu-
alization, pages 81–90, 2000.

[11] K. Mueller, T. Möller, and R. Crawfis. Splat-
ting without the blur. In Proceedings of IEEE
Visualization ’99, pages 363–370, 1999.

[12] C. Sigg and M. Hadwiger. Fast third-order
texture filtering. In M. Pharr, editor, GPU
Gems 2, pages 313–329. Addison Wesley, 2005.

[13] C. M. Stein, B. G. Becker, and N. L. Max.
Sorting and hardware assisted rendering for
volume visualization. In A. Kaufman and
W. Krueger, editors, Proceedings of the 1994

Symposium on Volume Visualization, pages
83–89. ACM Press, 1994.

[14] C. M. Wittenbrink, T. Malzbender, and M. E.
Goss. Opacity-weighted color interpolation
for volume sampling. In Proceedings of the
1998 IEEE Symposium on Volume Visualiza-
tion, pages 135–142, 1998.

[15] H. Younesy, T. Möller, and H. Carr. Improv-
ing the quality of multi-resolution volume ren-
dering. In Proceedings Eurographics/IEEE-
VGTC Symposium on Visualization, pages
251–258, 2006.

8

Τmax = 1 0
0.2

0.4
0.6

0.8
1

r

0.2
0.4

0.6
0.8

1

d¢

0.5
0.6
0.7
0.8
0.9
1

Α ray

0.5
0.6
0.7

Τmax = 1 0
0.2

0.4
0.6

0.8
1

r

0.2
0.4

0.6
0.8

1

d¢

0.5
0.6
0.7
0.8
0.9
1

Α ray

0.5
0.6
0.7

Τmax = 2 0
0.2

0.4
0.6

0.8
1

r

0.2
0.4

0.6
0.8

1

d¢

0.5
0.6
0.7
0.8
0.9
1

Α ray

0.5
0.6
0.7

Τmax = 2 0
0.2

0.4
0.6

0.8
1

r

0.2
0.4

0.6
0.8

1

d¢

0.5
0.6
0.7
0.8
0.9
1

Α ray

0.5
0.6
0.7

Τmax = 4 0
0.2

0.4
0.6

0.8
1

r

0.2
0.4

0.6
0.8

1

d¢

0.5
0.6
0.7
0.8
0.9
1

Α ray

0.5
0.6
0.7

Τmax = 4 0
0.2

0.4
0.6

0.8
1

r

0.2
0.4

0.6
0.8

1

d¢

0.5
0.6
0.7
0.8
0.9
1

Α ray

0.5
0.6
0.7

Τmax = 8 0
0.2

0.4
0.6

0.8
1

r

0.2
0.4

0.6
0.8

1

d¢

0.5
0.6
0.7
0.8
0.9
1

Α ray

0.5
0.6
0.7

(a)

Τmax = 8 0
0.2

0.4
0.6

0.8
1

r

0.2
0.4

0.6
0.8

1

d¢

0.5
0.6
0.7
0.8
0.9
1

Α ray

0.5
0.6
0.7

(b)

Figure 4: Ray integration results for the total opacity αray in dependency of the parameters r and d = d′,
which are illustrated in Figure 1, (a) for opacity-based sampling and (b) for extinction-based sampling.

9

d = d′ = 0.7 d = d′ = 1.7 d = d′ = 2.2

Figure 5: Opacity-based sampling of a one-voxel-thick wall of opaque voxels.

d = d′ = 0.7 d = d′ = 1.7 d = d′ = 2.2

Figure 6: Extinction-based sampling of the same data set as in Figure 5.

(a) (b)

Figure 7: Direct volume rendering with (a) opacity-based sampling and (b) extinction-based sampling.

10

