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Abstract

We address the problem of an efficient image-space reconstruction of adaptively
sampled scenes in the context of point-based and line-based graphics. The image-
space reconstruction offers an advantageous time complexity compared to surface
splatting techniques and, in fact, our improved GPU implementation performs sig-
nificantly better than splatting implementations for large point-based models. We
discuss the integration of elliptical Gaussian weights for enhanced image quality
and generalize the image-space reconstruction to line segments. Furthermore, we
present solutions for the efficient combination of points, lines, and polygons in a
single image.
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1 Introduction

Although there has been a steady increase of computer display resolutions for
about three decades, there is still a large gap between the resolution achieved
by today’s displays and the resolution provided by mass-market printers. Thus,
the resolution of desktop displays is likely to continue to grow as display
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technology progresses. This will inevitably result in important challenges in
hardware-accelerated graphics. In particular, Watson and Luebke [1] doubt
that the bandwidth between GPUs (graphics processing units) and displays
can grow at a sufficient pace without fundamental innovations in computer
graphics. To this end, they and Dayal et al. [2] suggested “adaptive frameless
rendering,” which samples a scene by ray tracing it with an adaptive resolution
in time and image space. The resulting set of samples is used for the image-
space reconstruction of a considerably larger set of pixels of a display buffer.

However, today’s GPUs are not designed to support real-time ray tracing; thus,
it is interesting to consider alternative approaches to the challenge of adaptive
sampling on GPUs. In particular, the adaptive sampling in image space can be
replaced by an adaptive sampling in object space as performed by point-based
renderers supporting dynamic level of detail [3–9]. Software-based image-space
reconstruction in this context has been suggested by Grossman and Dally
[10]. On the other hand, GPU-based reconstruction of point-based surfaces is
usually performed by splatting techniques [3,4,11–15] although this approach
provides a worse time complexity than image-space reconstruction [10]. In
fact, surface splatting can be considered an object-space reconstruction of
surfaces, which results in more pixel overdraw than image-space reconstruction
for complex, screen-filling scenes.

For several years the main obstacle to efficient GPU implementations of image-
space reconstruction techniques has been the efficient implementation of the
pyramid algorithm, or—more specifically—the immediate read access to pre-
viously computed pixels without transferring texture image data between the
GPU and the CPU. Although it was possible to avoid this problem as early as
2003, as shown by Krüger and Westermann [16], it took another three years
until the first GPU implementations of the complete pyramid algorithm were
published, for example by Strengert et al. [17].

Motivated by these publications, we designed a GPU implementation of an
image-space reconstruction for point-based surface rendering [18], which achieved
a better rendering performance than GPU-based splatting even without ex-
tensive optimizations. In Section 3 we discuss an improved algorithm, which
provides a better rendering quality by integrating elliptical Gaussian weights.
Moreover, we optimized our implementation for the latest GPU generation
and report results for the reconstruction of additional surface attributes in
Section 6.

While the efficient image-space reconstruction of point-based surfaces is an
important problem in itself, it is also part of a greater challenge. In fact,
rendering complex scenes with dynamic level of detail benefits from several
graphics primitives in addition to points. For example, (textured) triangles are
sometimes preferable due to the design of today’s GPUs [5–7], and lines are
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particular useful for many kinds of plants [19,8]. Therefore, we extended our
image-space reconstruction to lines—or more specifically, to “ribbons” and
“tubes”—as presented in Section 4. Furthermore, we discuss the integration
of polygons into our approach in Section 5.

With this work, we demonstrate the efficiency and utility of GPU-based image-
space reconstruction for various graphics primitives; in particular, points, lines,
and polygons. Moreover, we propose the combination of adaptive object-space
sampling with image-space reconstruction as a promising approach to real-
time rendering for very high display resolutions.

2 Related work

This section mentions only some selected publications related to point-rendering
techniques. More comprehensive surveys of point-based graphics have been
published by Kobbelt and Botsch [20] and Sainz et al. [21,22]. The recently
published book on point-based graphics edited by Gross and Pfister [23] in-
cludes also the latest research results in point-based graphics.

As published by Csuri et al. [24], points have been used to model and render
“soft” phenomena such as smoke since the 1970s. At the same time, points have
also been employed to render surfaces as published by Forrest [25]. Catmull
and Clark [26] have presented a subdivision scheme for B-spline patches, which
is suitable for rendering surfaces by subdividing them to sub-pixel points. This
concept was implemented in the form of “micropolygons” within the Reyes
architecture published by Cook et al. [27]. The first in-depth discussion of
points as graphics primitive was provided by Levoy and Whitted [28].

Surface interpolation by a pyramid algorithm was suggested by Burt [29] and
employed in an algorithm by Gortler et al. [30]. Here we will refer to this
method as “the pull-push algorithm” although the terms “pull-push” and
“push-pull” are also being used in many other contexts. The method was
adapted by Grossman and Dally [10] for an image-space reconstruction of
undersampled point-based surfaces, i.e., in the case of large gaps between
projected points. Since the pull-push algorithm is of complexity O (m) for a
viewport of m pixels [29,30] and the projection of n points to single pixels is
of complexity O (n), the complexity of the whole algorithm is O (n + m) [10].

While Grossman and Dally separated the detection and filling of gaps, Popescu
et al. [31] described a hardware-architecture that implements a more elabo-
rate separation of visibility and reconstruction for image-based rendering. For
point-based rendering, Pfister et al. [3] employed the pull-push algorithm to
fill holes between splats instead of one-pixel projections of points.
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Fig. 1. Data flow in the proposed point-based surface rendering technique.

Subsequent research avoided these holes by splatting as suggested by Rusinkiewicz
and Levoy [4]. This work presented a multiresolution point hierarchy support-
ing dynamic level of detail and was followed by several publications that inte-
grated points and triangles in a single multiresolution hierarchy, for example,
Chen and Nguyen [5], Cohen et al. [6], and Coconu and Hege [7]. Analogously,
points and lines were integrated in one hierarchy by Deussen et al. [8].

Regarding the shape of splats, EWA (elliptical weighted average) splats as
published by Zwicker et al. [32] are of particular interest. Hardware-accelerated
EWA splatting was published by Ren et al. [11] and Guennebaud and Paulin
[33]. Improvements of EWA splatting include perspective accurate splatting
by Zwicker et al. [14], deferred splatting by Guennebaud et al. [9], and deferred
Phong splatting by Botsch et al. [34]. Further improvements of this GPU-based
approach were presented, for example, by Botsch et al. [15] and Guennebaud
et al. [35].

Most of these techniques consist of a visibility pass to compute a depth map, an
attribute pass to blend colors, normals, and other attributes, a normalization
pass to finalize the interpolation of attributes, and a deferred shading pass.
While this approach achieves a high rendering performance even for high-
quality images, the efficiency of this GPU-based method is not optimal since
the two object-order passes, namely the visibility pass and the attribute pass,
have to process all displayed points, i.e., the time complexity of both passes
is O (n × ā) for n splats, each covering on average ā pixels. Moreover, the two
object-order passes result in a rather large constant for the dependency on n.
On the other hand, the worst-case time complexity of the normalization pass
and also of the shading pass (assuming local shading operations) is O (m)
for a viewport consisting of m pixels, i.e., it is independent of the number of
projected splats. Thus, the total complexity of most splatting algorithms is
O (n × ā + m).

Apart from these multipass splatting methods, several alternative point-rendering
techniques have been presented; in particular, a “single-pass” splatting tech-
nique [36,37], dedicated splatting hardware [38], and ray tracing of points [39–
41]. The “single-pass” splatting technique proposed by Zhang and Pajarola
[36,37] has to compute groups of non-overlapping splats (in object space) and
is therefore less suitable for large, dynamic point sets. While the dedicated
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hardware published by Weyrich et al. [38] achieves promising performance re-
sults, the prototypical hardware cannot provide the rendering performance of
splatting techniques implemented on today’s GPUs. Ray tracing of points was
first published by Schaufler and Jensen [39] and led to work by Adamson and
Alexa [40], and Wald and Seidel [41]. The approach is particularly advanta-
geous for many global illumination effects and for rendering of very large point
models, which do not fit into graphics memory.

In spite of its linear complexity, there are not many hardware-accelerated im-
plementations of the pull-push algorithm [30] because it requires a logarithmic
number of switches of the render target. These switches have been a major
bottleneck in the past; therefore, Lefebvre et al. [42] tried to avoid them in
their approximation of the pull-push algorithm at the cost of a worse time
complexity and reduced interpolation quality. However, a GPU-based imple-
mentation of the pull-push algorithm by means of the OpenGL extension for
framebuffer objects performs extremely efficient as demonstrated by Strengert
et al. [17]. This resulted in our application of a GPU-based pull-push inter-
polation to point-based rendering [18]. An improved variant of this method is
presented in Section 3. Independently, Schnabel et al. [43] published a related
rendering method using circular splats for compressed point clouds.

While points have been established as first-class graphics primitives, line seg-
ments (or “lines” for short) are less commonly employed. Line-based surface
rendering was suggested by Wong et al. [44]; however, the lack of hardware
support for wide, anti-aliased line segments is likely to impede its success.
On the other hand, hardware-supported line-based rendering has been suc-
cessfully employed by Deussen et al. [8] for the rendering of thin structures
such as blades of grass or branches of trees as well as stream ribbons and thin
stream lines in flow visualization by Zöckler et al. [45] and Mallo et al. [46].
A considerably improved image quality can be achieved by the use of proxy
geometry instead of line strips as demonstrated by Stoll et al. [47] for quad
strips and Merhof et al. [48] for triangle strips.

3 Point rendering using image reconstruction

Figure 1 presents an overview of our point-based surface rendering technique,
which was recently published [18]. The input data of our algorithm consists
of an unordered set of three-dimensional points with attributes, which are
projected to the viewport. However, in contrast to splatting techniques, only
one single pixel is rasterized for each point. Details about the projection are
discussed in Section 3.1. After projecting the points, a continuous surface is
reconstructed from the resulting scattered pixels by means of a pull-push in-
terpolation as discussed in Sections 3.2 and 3.3. Based on the resulting contin-
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uous pixel data, the deferred shading of the surface is computed as described
in Section 3.4.

3.1 Projection of points to single pixels

Points are projected to the viewport by a standard model-view matrix. In
addition to viewport clipping, we also employ backface culling based on the
local surface normal vector specified for each point. Apart from this normal
vector, the only additional attribute required by our algorithm is a radius
that specifies the extent of the point’s influence. This radius corresponds to the
splat size of splatting techniques and can be computed from the local sampling
spacing. Since we are only concerned with point rendering in this work, we
will not discuss the acquisition of points, their normal vectors, nor sampling
spacings; instead we refer the reader to the literature on these problems [20,23].
For the same reason, hierarchical point representations and dynamic level-of-
detail selection are not discussed in this work while they could be integrated
in the point projection of our method.

Further point attributes are, for example, color and texture coordinates. For
each point at most one pixel is rasterized; thus, the point’s attributes are writ-
ten to at most one pixel of the framebuffer. Since a depth buffer is employed
for depth culling, each pixel stores the attributes of at most one point. Note
that the point’s attributes will usually consist of more than four components;
thus, a hardware-based implementation requires support for sufficiently many
multiple rendering targets.

Since at most one pixel is rasterized for each point, pixel overdraw is dramat-
ically reduced in comparison to splatting techniques. In fact, this advantage
was already noted by Grossman and Dally [10]. Another advantage of our ap-
proach is the limitation to one object-order pass, i.e., all points are processed
only once. The requirement of two object-order passes, i.e., a visibility pass
in addition to the attribute pass, is a major disadvantage of most hardware-
accelerated splatting approaches as noted by Zhang and Pajarola [36,37] and
Weyrich et al. [38].

3.2 Pull-push interpolation: pull phase

The pull-push algorithm consists of a pull phase and a subsequent push phase
[30]. The former phase computes coarser levels of an image pyramid of the
viewport image by reducing the pixel dimensions by a factor of two in each
step. The push phase of our method employs this image pyramid to fill ar-
bitrarily large gaps, i.e., to interpolate missing pixels and also to overwrite
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Fig. 2. Interpolation of pixel attributes in the pull phase.

pixels that are occluded by a surface as discussed in the next section.

In the pull phase, pyramid levels are computed in bottom-up order based on
the viewport image containing projections of points. The attributes of a pixel
of a coarser level are determined by averaging the corresponding four pixels
of the finer pyramid level as illustrated in Figure 2. However, only pixels that
specify valid data are included in the average. Whether a pixel is valid or not,
is indicated by a binary flag per pixel. On the finest level, only the one-pixel
projections of points are marked to specify valid data while all other pixels
are marked invalid. When averaging four invalid pixels to compute a pixel of
a coarser pyramid level, the new pixel is also marked invalid and is left to be
computed during the push phase.

We limit the region of influence of each pixel by elliptical box-filters. If the
center of a new pixel is outside a pixel’s ellipse, the pixel is marked invalid
for this new pixel. In our original algorithm [18], we employed these ellipses
only in the push phase for inside/outside tests to limit the influence of points.
In our improved variant, however, we have included this test also in the pull
phase.

Each pixel’s ellipse is computed by an orthogonal projection of a circle onto the
view plane. The circle’s orientation in object space is determined by the pixel’s
normal vector while its radius is set to the radius mentioned in Section 3.1.
Thus, the ellipse’s major axis is aligned perpendicularly to the 2D projection
of the normal vector and its length is twice the radius; furthermore, the minor
axis is parallel to the normal vector and its magnitude is the length of the
major axis multiplied by the normal’s z coordinate. While the center of an
ellipse in the finest pyramid level is just the pixel’s center, an additional 2D
displacement vector is computed for each pixel to specify the ellipse’s center
in coarser pyramid levels. This vector is similar to the sample offset proposed
by Popescu et al. [31].
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After eliminating invalid pixels, a preliminary depth test is performed to also
eliminate occluded pixels. To this end, each one-pixel projection is associated
with a depth interval. The minimum depth of this interval is determined by the
projected point’s z coordinate while the maximum depth is computed by the
minimum depth plus the radius of the point. A pixel is only used for averaging
if its depth interval intersects the depth interval of the frontmost pixel, i.e.,
the pixel with the smallest minimum depth coordinate among the valid pixels,
which potentially contribute to the average as depicted in Figure 2. Note that
even though occluded pixels are removed from the interpolation of pixels of
coarser levels, they are still present in the finer level. However, occluded pixels
are recomputed in the following push phase as discussed in the next section.

In general, the attributes of a new pixel of a coarser level are determined by
averaging the valid, “unoccluded” pixels. However, the minimum and maxi-
mum depth values of a new pixel are set to the smallest and largest depth
values of all contributing pixels, respectively. This guarantees that the depth
interval of the new coarser pixel contains all intervals of the averaged pixels
from the finer level.

Before averaging displacement vectors the difference vector from the corre-
sponding pixel center to the center of the coarser pixel is added; the arrows
in Figure 2b depict these vectors. This process guarantees that the coarser
pixel maintains a reference to the exact position of the ellipse. An example of
the evolution of the displacement vector during the pull phase is illustrated
in Figure 3a. When a pixel of a coarser level is computed by averaging more
than one valid pixel, the new normal vector, radius, and displacement vector
define an ellipse that approximates two or more ellipses from the finer level
(see Figure 3b).

3.3 Pull-push interpolation: push phase

After the image pyramid has been built in bottom-up order in the pull phase,
the push phase works in top-down order, i.e., from coarser to finer levels.
In this push phase, only the attributes of invalid and “occluded” pixels are
(re)computed. Here, a valid pixel is considered “occluded” if its minimum
depth value is outside the depth interval of the corresponding pixel in the
next coarser pyramid level. The attributes of four pixels of a coarser pyramid
level are used to interpolate the attributes of a pixel of a finer level. Analo-
gously to the pull phase, only pixels with valid attributes are included in the
interpolation. If all four pixels are invalid, the new pixel is also invalid.

The interpolation scheme has to limit the influence of points according to the
mentioned ellipses. To this end, our original algorithm [18] employed elliptical
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(a) (b)

Fig. 3. (a) Displacement vector (thick arrow) for pixel p3 computed after three steps
of the pull phase. Pixel p0 is the original projected sample at the center of the ellipse,
p1 is the center of the pixel at level 1, etc. The dotted lines represent the difference
vectors summed at each iteration. (b) The attributes computed for pixel p0 define
a new ellipse (continuous line), with center at c0, by averaging two coarser level
ellipses (dotted lines) with centers at c1 and c2.

(a) (b)

Fig. 4. Comparison between our image-space reconstruction (a) without and (b) with
Gaussian weights.

box-filters. In order to achieve a smoother interpolation, we replaced these
elliptical box-filters by elliptical Gaussian kernels with finite support. This
results in a weighted average of up to four pixels, which is then normalized
by the sum of all weights. Figure 4 illustrates the difference between the pull-
push interpolation without (Figure 4a) and with elliptical Gaussian weights
(Figure 4b).

The push phase only recomputes invalid and occluded pixels; thus, the at-
tributes of all other pixels are just copied from the image pyramid computed
in the pull phase.
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(a) (b)

Fig. 5. Comparison between (a) non-deferred shading, and (b) deferred shading in
our method.

(a) (b)

Fig. 6. Deferred shading with (a) constant material colors and (b) per-vertex diffuse
colors.

3.4 Deferred shading

Once the push phase has been performed for all levels of the image pyramid,
the finest level contains interpolated attributes for all pixels that are deter-
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(a) (b) (c)

Fig. 7. Ping-pong rendering between two image buffers: (a) bottom-up pull phase,
(b) copy phase, (c) top-down push phase.

mined to be within the silhouette of a reconstructed surface. For these pixels,
Phong shading can be computed since the normal vectors have also been inter-
polated. Figure 5 compares non-deferred shading (in this case by a software
splatting technique) in Figure 5a with the deferred shading by our method
depicted in Figure 5b, which features sharper specular highlights.

Further per-point attributes such as texture coordinates or material colors
can be included in the shading computation. Figure 6a depicts a point-based
model with constant material colors, while Figure 6b shows the same model
with interpolated per-point diffuse reflectivity colors.

3.5 Ping-pong implementation on GPUs

Since our GPU implementation avoids simultaneous read and write access to
image buffers, a ping-pong scheme between two image buffers is employed.
Figure 7a illustrates this scheme for the pull phase while Figure 7c depicts the
push phase. As the latter requires simultaneous read access to two levels of
the pyramid, a third phase has to be included that copies the image data to
complete the pyramid image in both buffers as illustrated in Figure 7b.

3.6 Discussion

There are some limitations of our approach to point-based surfaces rendering,
which are discussed in this section. First of all, our method is not well suited
for semi-transparent surfaces. In fact it is unclear how to robustly compute
multiple depth layers using our approach. Since multiple depth layers are
not available, edge anti-aliasing by alpha blending is impossible. Due to this
limitation, the projection of points is performed without sub-pixel accuracy.

While the weighting of attributes by Gaussian kernels in the push phase of
our method (see Section 3.3) improves the smooth interpolation of attributes,

11



(a) (b)

Fig. 8. (a) Representation of a ribbon by a polyline consisting of five vertices with
normals and radii. (b) Illustration of the rasterization of a one-pixel-wide polyline
corresponding to the centerline of a ribbon. Normals and radii are interpolated for
each pixel covered by the polyline.

the smoothness of silhouettes is mainly determined by the finite elliptical
support of these kernels. Thus, the image quality of silhouettes rendered by our
approach is comparable to renderings obtained with non-anti-aliased, elliptical
splats.

4 Line rendering using image reconstruction

In this section we extend the point rendering approach discussed in Section 3
to include the efficient rendering of line strips. More specifically, we distin-
guish between the rendering of ribbons, i.e., “flat line strips,” and tubes, i.e.,
“cylindrical line strips.” Ribbons and tubes differ not only in the employed
illumination method but also in the way the local line width is computed as
discussed in Sections 4.1 and 4.2. We also demonstrate applications of ribbons
and tubes in plant rendering in Section 4.3 and discuss the efficiency of the
proposed image-space reconstruction in comparison to previously published
line rendering approaches in Section 4.4.

4.1 Ribbons

This section covers the reconstruction of “flat” ribbons of varying width and
curvature as depicted in Figure 8a. For maximum efficiency, the image-space
reconstruction of ribbons should be combined with the reconstruction of point-
based surfaces discussed in Section 3. In other words, the pull-push interpola-
tion should not only reconstruct smooth surfaces from scattered pixels but at
the same time ribbons of finite width.

To this end, we represent each ribbon by a polyline that approximates the
ribbon’s centerline as depicted in Figure 8a. Each vertex of this polyline is
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Fig. 9. Magnified rasterization of a twisted ribbon. The polyline consists of four
vertices with per-vertex normals and radii as discussed in more detail in Section 4.3.

attributed with the local normal vector of the ribbon’s surface and half its
width. These attributes are interpolated for each fragment by the rasterization
of the line strip as illustrated in Figure 8b. For best performance, hardware-
supported line rasterization should be employed if possible. The minimum line
width that guarantees a continuous set of pixels can be chosen for the raster-
ization since the pull-push interpolation will expand the rasterized polyline
to the ribbon’s width—just as single pixels are expanded to cover the area
of larger splats as discussed in Section 3. Note that the rasterized line is not
isotropically expanded; the width of the reconstructed ribbon rather depends
on the local normal vector. This is most notable in the case of twisted ribbons
as depicted in Figure 9.

Since each fragment that is generated by the rasterization of the line strip is
rendered in a similar way as the points in Section 3, our method corresponds
to modelling ribbons by as many splats as pixels are covered by the projection
of the ribbon’s centerline. However, only the vertices of a potentially coarse
polyline have to be projected by the GPU. Moreover, the linear connectivity
allows us to simplify line strips with very basic techniques; for example, a ge-
ometry shader could drop any number of inner vertices of a polyline depending
on a specified level of detail.

There are also some minor differences between the reconstruction of surfaces
and the reconstruction of ribbons. In contrast to the point-based rendering of
surfaces, the line-based rendering of ribbons must not employ any kind of back
face culling and has to compute correct lighting for front faces and back faces
since usually both are visible. To allow the pull-push interpolation (and also
the deferred shading) to distinguish between surfaces and ribbons, all pixels
of all pyramid levels are attributed with an identifier specifying whether a
pixel belongs to a surface, a ribbon, or a tube. The latter kind of line strips is
discussed in the next section.
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(a) (b)

Fig. 10. (a) Representation of a tube by a polyline. Each vertex is attributed with
the tangent vector and the tube’s radius. (b) Illustration of the rasterization of a
tube’s polyline. Tangent vectors and radii are interpolated linearly between vertices.

4.2 Tubes

The second kind of line primitives considered in this work are tubes, i.e.,
bended cylinders of varying width and curvature as illustrated in Figure 10a.
Tubes require not only a different shading than the ribbons discussed in the
previous section but they are also handled differently by the image-space re-
construction.

In analogy to ribbons, we represent a tube by a polyline that approximates
the tube’s centerline. Each vertex of this polyline is attributed with half the
diameter of the tube and—in contrast to ribbons and surface points—the local
tangent vector as illustrated in Figure 10a. Analogously to the case of ribbons,
the polyline of a tube is rasterized as a one-pixel-wide line and the per-vertex
attributes, i.e., radius and tangent vector, are linearly interpolated between
vertices as illustrated in Figure 10b. In order to save memory, the tangent
vector can be stored instead of the normal vector of ribbons and surfaces.

In contrast to ribbons and point-based surfaces, the pull-push interpolation for
pixels covered by tubes always employs the normalized vector to the camera
center as the surface normal vector. This is illustrated in Figure 10 by disks
that are parallel to the view plane. Note that flat disks aligned in this way
approximate the width of the projected tube very well in Figure 10a. This
approach allows us to employ almost the same pull-push interpolation for
surfaces, ribbons, and tubes since only the normal vectors are determined dif-
ferently. Moreover, the pull-push interpolation can reconstruct all three primi-
tives at the same time with minimal overhead compared to the reconstruction
of only one kind of primitive.

The deferred shading of tubes can use any of the well-known methods for
the illumination of lines [45,46,49,50]. The most basic approach for the diffuse
illumination of a line by a single light source determines a surface normal n for
diffuse lighting by the projection of the light vector l to the plane orthogonal
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Fig. 11. Illumination of tubes: computation of a surface normal n for diffuse lighting
of a line by projecting the light vector l to the plane orthogonal to the tangent vector
t.

(a) (b)

Fig. 12. (a) Illustration of a leaf represented by four triangles and six vertices and
the corresponding line-based model, i.e., a ribbon consisting of four vertices. (b)
Illustration of a branch represented by triangles and the corresponding tube model
consisting of only five vertices, which are attributed with radii and tangent vectors.

to the tangent vector t of the line as illustrated in Figure 11. Since the light
vector is constant for directional lights (or can be computed from the position
of a point light source and the three-dimensional fragment position), only the
tangent vector is necessary to evaluate an approximative illumination of tubes.
It should be emphasized that this approximation is only appropriate for thin
projections of tubes; alternatives for higher levels of detail are discussed in
Section 4.4.

4.3 Examples: leaves and branches

We illustrate the use of ribbons and tubes by demonstrating the conversion of
a polygon model to a line-based model. In particular, we decided to employ
the well-known model of an apple tree by Deussen and collaborators, which
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has appeared in several publications [8,19,51], including the front cover of the
pbrt book [51]. Specifically, we employed the triangle model that was published
on the CD accompanying the pbrt book. This model uses 200 496 triangles
and 451 215 vertices to represent the leaves of the tree, while the bark is
represented by a mesh consisting of 351 184 triangles and 371 583 vertices.

We converted the two triangle meshes separately since their structure is rather
different. Each leaf of this particular model consists of four triangles and six
vertices as illustrated in Figure 12a. We converted each leaf into a ribbon
consisting of four vertices, where the end points are copies of two of the original
vertices and the inner two points were determined by the averages of the two
remaining pairs of original vertices. Normals were computed correspondingly
while the radius of the end points was set to a value close to zero and the
radii of the inner two vertices were determined by half the distance between
the corresponding original vertices as depicted in Figure 12a. In this way we
generated 150 372 ribbon segments and 200 496 vertices.

The bark of the triangle model represents a large tubular system of branches
and was therefore converted to a set of tubes. The triangle mesh of each branch
consists of a row of rings of (usually three) vertices, which are connected by
elongated triangles. An illustration with rings of five vertices is depicted in
Figure 12b. Due to this structure, we first heuristically determined clusters
of vertices that are likely to form one of the rings of a branch. Each of these
clusters corresponds to a vertex of our line-based model with a position that
was determined by averaging the positions of all vertices in the corresponding
cluster. Any pair of new vertices was connected by a tube segment if the
corresponding pair of clusters was connected by an edge in the triangle model.
The radius of each vertex was determined by the maximum distance of any of
the original vertices of the cluster to the new vertex while the tangent direction
was determined by the averaged direction of the attached tube segments. In
this way we converted most of the bark to 63 887 segments and 69 604 vertices.

However, we did not convert the triangles representing the trunk. Instead we
kept the 227 triangles and 681 vertices forming the bark of the thick trunk
which is not well approximated by a thin tube. In fact, the illumination method
for lines is not appropriate for the trunk unless the size of the projected model
is very small. We could also convert the trunk to a point-based surface, but
keeping the small triangulated surface offers an example for a hybrid model
consisting of triangles and line segments. The implications of this combination
are discussed in more detail in Section 5.

Figure 13 presents renderings of the original triangle mesh in Figure 13a and
our line-based model consisting of ribbons, tubes, and some triangles rep-
resenting the trunk in Figure 13b. With the computer system specified in
Section 6 we achieve 31 frames per second for the rendering of the line-based
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(a) (b)

Fig. 13. Comparison between (a) the original triangle model and (b) our rendering
of a line-based model.

(a) (b)

Fig. 14. (a) Detail of the triangle-based rendering in Figure 13a. (b) Detail of the
line-based rendering in Figure 13(b).

model while rendering the original triangle model achieved 28 frames per sec-
ond.

In summary, the conversion of the triangle model of an apple tree to a line-
based representation consisting of ribbons and tubes is rather straightforward
in this particular case. Considering that the original triangle mesh provides
only a coarse approximation to real leaves and branches, our line-based model
is sufficiently accurate for the leaves and thin branches while it requires only
about one third of the vertices.

Thus, line-based models appear to offer an attractive alternative to polygon-
based models for low level-of-detail representations; in particular since we
expect that the conversion of procedural plant models poses even less problems
than the conversion of polygon models. Moreover, the simplification of line-
based models is straightforward; thus, hierarchies of coarser approximations
can be more easily computed than for polygon-based models, as discussed by
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Deussen et al. [8].

4.4 Discussion

Image-space reconstruction for line-based rendering offers some important ad-
vantages in comparison to published line-based rendering approaches, which
we discuss in more detail in this section. Specifically, we compare our method
with the rendering of triangle meshes, line strips, and proxy geometry.

Representing thin structures, such as hair, fur, grass, twigs, etc., by trian-
gle meshes requires more vertices than a line-based model of similar qual-
ity; moreover, rendering simplified versions is considerably more difficult for
triangle models than for line-based models. Even though modern GPUs are
designed to achieve their optimal performance for triangles, line rendering is
also well supported, i.e., rendering the longest edge of a triangle is usually
not slower than rendering the triangle. On the other hand, the rasterization
of lines requires fewer fragments and the rendering of line-based models tends
to project fewer vertices. Therefore, our method can provide an advantageous
performance for large, screen-filling scenes since the pull-push interpolation
imposes only a constant overhead. One important limitation of our approach
to line-based rendering is the lack of anti-aliasing; thus, lines rendered by our
method are at least one pixel wide. Therefore, thin structures will appear
thicker if compared with the corresponding triangle rendering. This can be
observed in the magnified detail of the triangle-based rendering depicted in
Figure 14a in comparison to the line-based rendering in Figure 14b.

Deussen et al. [8] employ hardware-supported rendering of line strips for low
level-of-detail representations of plant models. Since this approach is restricted
to a uniform line width, it is only useful for very coarse projections of models.
Moreover, rasterization with a uniform line width corresponds to the rendering
of tubes as discussed in Section 4.2, which would require a line illumination
model. However, Deussen et al. employ the per-vertex normals directly, which
is only appropriate for ribbons. These, however, cannot be rasterized with a
uniform line width. Thus, the fixed line width required by many graphics APIs
severely limits the use of line strips for line-based rendering. In comparison to
the rasterization of line strips, our pull-push interpolation imposes a constant
overhead; therefore, it cannot achieve the same performance.

Tubes of finite radius can be efficiently rendered by employing proxy geome-
try, e.g., quad strips, in combination with per-fragment computations of ray-
cylinder intersections as suggested by Stoll et al. [47], or a combination of tri-
angle strips and point sprites as suggested by Merhof et al. [48]. While these
approaches achieve a considerably higher image quality than our method, their
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Fig. 15. Combined rendering of a point-based model (Dragon) and a triangle-based
model (Buddha).

performance is—according to Stoll et al.—an order of magnitude worse than
the rendering of shaded line strips, while our method imposes only a constant
overhead. Merhof et al. reported a decrease in performance by a factor of 3.6
from illuminated line strips to their method for a particular scene. The pro-
grammable generation of geometry streams offered by recent GPUs is likely
to improve the performance of these approaches, however, the number of ver-
tices of the proxy geometry that have to be processed is not reduced and the
fragment stage is also not affected; thus, the potential improvements are lim-
ited and the methods are likely to always perform significantly worse than the
rendering of line strips.

Overall, the proposed image-space reconstruction of lines provides very high
rendering performance for lines of finite width, in particular for large scenes
and/or if the constant overhead imposed by the pull-push interpolation is
amortized by the combined rendering with point-based surfaces as described
in the next section. However, the limited image quality achieved by our method
restricts it to thin lines or coarse renderings with low level of detail; thus, it
is best suited to render coarse representations of line-based models within
real-time renderers using dynamic level of detail.
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5 Combining points, lines, and polygons

It is unlikely that one kind of graphics primitive is optimal for all elements of a
scene; moreover, rendering approaches with dynamic level of detail may choose
different representations of the same object using different kinds of primitives
depending of the required level of detail. Thus, the combined rendering of
polygon meshes, point-based surfaces, and line-based models in a single frame
is an important scenario, which is discussed in the next section. Apart from
the combined rendering of representations based on different primitives, these
primitives can also be combined to represent a single object by a hybrid surface
model as discussed in Section 5.2.

5.1 Combined rendering of different primitives

While the image-space reconstruction of line-based models proposed in Sec-
tion 4 was designed to support the integration of points and lines in the same
pull-push interpolation, the combination with polygons poses additional chal-
lenges. One solution would be to compute one RGBA image with depth data
for polygon-based graphics and a second image for point-based and line-based
graphics. The resulting images can then be combined according to their depth
and alpha channels. While this approach offers some advantages for semitrans-
parent objects, it requires additional memory and pixel processing.

Therefore, we propose an alternative approach, which integrates the rendering
of polygons in the image-space reconstruction of surfaces and lines. To this
end, polygons are rasterized into one frame buffer together with the single-pixel
projections of points and the one-pixel-wide polylines of ribbons and tubes.
However, the pixels covered by polygons are assigned a radius close to zero;
thus, they are not expanded in the pull-push interpolation. This approach
imposes no overhead on our system since the performance of the pull-push
interpolation is not affected by the content of the frame buffer. An example is
depicted in Figure 15.

5.2 Hybrid surface models

As described in the previous section, the fragments of polygons can be con-
sidered points with a very small radius of influence in order to integrate them
smoothly in the pull-push interpolation. This concept can also be applied to
construct models with a smooth spatial transition between a polygon-based
part of a surface and a point-based part. To this end, the vertices of the bound-
ary edges between the two parts have to be attributed with radii that are large
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(a) (b) (c)

Fig. 16. A hybrid surface model: (a) The blue half consists of triangles, the remaining
model is point-based. (b) Rendering of a detail and (c) illustration of the underlying
primitives.

Table 1
Models and rendering performance. Each total rendering time per frame is followed
in parentheses by the time for the point projection and the time for the pull-push
interpolation (all rendering times are in milliseconds).

without color buffer with color buffer

model # points fps time per frame fps time per frame

Armadillo 173 K 89 11 ms (1.2 ms, 8.5 ms) 46 22 ms (1.5 ms, 18 ms)

Dragon 437 K 78 13 ms (2.2 ms, 8.9 ms) 44 23 ms (2.9 ms, 18 ms)

Happy Buddha 544 K 76 13 ms (2.6 ms, 8.8 ms) 42 24 ms (3.4 ms, 18 ms)

Asian Dragon 3610 K 36 28 ms (18 ms, 8.3 ms) 23 45 ms (25 ms, 17 ms)

Thai Statue 5000 K 29 35 ms (25 ms, 8.2 ms) 18 55 ms (34 ms, 18 ms)

enough to let the rasterized pixels of the boundary edges blend smoothly with
the single-pixel projections of the point-based continuation of the surface.
Figure 16 illustrates a hybrid surface model consisting of points and triangles.
This kind of combination occurs frequently when multiresolution hierarchies
based on points and triangles [5–7] are employed.

If backface culling is deactivated and two-sided lighting is provided, ribbons
can be combined analogously with points and polygons to form continuous
surfaces. Tubes, however, pose additional problems since neither the different
illumination models of lines and surfaces allow for a smooth transition nor is
a smooth interpolation between tangent and normal vectors trivial.
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(a) (b) (c) (d)

Fig. 17. Renderings with our method of the (a) Armadillo, (b) Happy Buddha, (c)
Asian Dragon and (d) Thai Statue.

(a) (b)

Fig. 18. Renderings of details of the (a) Asian Dragon and (b) Thai Statue.

6 Results

We tested our algorithm on a GeForce 8800 GTS with 640 MB memory con-
nected via PCI Express 16× to a Linux computer with an Intel Core Duo 6600
CPU (2.4 GHz), 2 GB RAM, and installed NVIDIA driver, version 169.04. The
models were preprocessed to compute a normal vector and a radius of influ-
ence of each point. At runtime, all point attributes were transferred to the
GPU by means of OpenGL vertex buffer objects. Image data was processed in
an OpenGL framebuffer object with 16-bit floating-point RGBA image buffers
and a 32-bit depth buffer with a viewport size of 1024×1024 pixels. All vertex
and fragment shaders were implemented in the OpenGL shading language.

Rendering times for several point-based models are summarized in Table 1;
exemplary renderings of these models are depicted in Figures 4, 17, and 18.
The fourth column of Table 1 presents rendering times in milliseconds without
interpolation of a surface color while the sixth column presents times including
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(a) (b)

Fig. 19. Rendering of 10 trees based on (a) the original triangle model and (b) our
line-based model.

the interpolation of a surface color. Apart from the total time per frame, we
have also included two times in parentheses: the time required for the projec-
tion of points as described in Section 3.1 and for the pull-push interpolation
discussed in Sections 3.2 and 3.3. As expected, these two operations require
most of the rendering time while other operations, e.g., the deferred shading,
are almost negligible.

Our measurements demonstrate that the rendering time for small models is
dominated by the pull-push interpolation; i.e., by the viewport resolution as
demonstrated in our previous work [18]. On the other hand, the rendering time
for large models is dominated by the projection of points and therefore by the
number of points. For large models without interpolation of surface color, our
implementation renders the equivalent to about 130 M splats per second—
including surface reconstruction and deferred shading. If the interpolation of
surface colors is included, the rendering performance is reduced to about 90 M
splats per second.

Our previous implementation using a GeForce 7800 GTX achieved the equiv-
alent to between 50 M and 60 M splats per second. For comparison, Zhang and
Pajarola [36] reported a performance of up to 24.9 M splats per second and
Guennebaud et al. [35] reported 37.5 M splats per second—both for the same
viewport size on the same GPU.

Our implementation rendered the line-based model of a single tree in Fig-
ure 13b at 31 frames per second, i.e., only slightly faster than the standard
triangle rendering in Figure 13a, which achieves 28 frames per second. How-
ever, the pull-push interpolation of our approach is independent of the model
size; thus, this part of the algorithm performs just as fast for the set of ten
trees depicted in Figure 19b, which achieves a performance of 15 frames per
second. The triangle rendering in Figure 19a, on the other hand, performs
considerably slower at 9 frames per second.
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7 Conclusion

While point-based and line-based graphics allow us to choose a dynamic level
of detail for an efficient, adaptive sampling in object space, the reconstruction
and shading of a scene should be performed in image space to achieve a better
time complexity for large models. In this work, we have demonstrated an ef-
ficient GPU implementation of an image-space reconstruction for point-based
and line-based graphics, which can be combined with polygonal graphics.

In general, our approach does not provide the performance of techniques based
on textured polygons for very low detail representations, e.g., billboards, nor
does it provide the image quality of high-resolution polygon models with (pro-
cedural) textures. However, it provides a good compromise between image
quality and rendering performance for a large range of levels of detail. More-
over, it uses point-based and line-based models, which are particularly well
suited for rendering with dynamic level of detail. Therefore, we consider our
method to be a valuable complement to previously published rendering tech-
niques and hope that it will help to address the challenges posed by increasing
display resolutions in the future.
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