Direct Volume Editing

Kai Burger, Jens Kriger, and Ridiger Westermann

Abstract—In this work we present basic methodology for interactive volume editing on GPUs, and we demonstrate the use of these
methods to achieve a number of different effects. We present fast techniques to modify the appearance and structure of volumetric
scalar fields given on Cartesian grids. Similar to 2D circular brushes as used in surface painting we present 3D spherical brushes
for intuitive coloring of particular structures in such fields. This paint metaphor is extended to allow the user to change the data
itself, and the use of this functionality for interactive structure isolation, hole filling, and artefact removal is demonstrated. Building
on previous work in the field we introduce high-resolution selection volumes, which can be seen as a resolution-based focus+context
metaphor. By utilizing such volumes we present a novel approach to interactive volume editing at sub-voxel accuracy. Finally, we
introduce a fast technique to paste textures onto iso-surfaces in a 3D scalar field. Since the texture resolution is independent of the
volume resolution, this technique allows structure-aligned textures containing appearance properties or textual information to be used

for volume augmentation and annotation.

Index Terms—Volume editing, GPU, painting, carving, annotations.

<+

1 INTRODUCTION

Interactive visual exploration of volumetric scalar fieldsrequired
in many different areas ranging from medicine and engingeto
physics and biology. To support the exploration task, vauender-
ing techniques have been developed to a high degree of soptitn
over the last decade. Today, direct volume rendering of slets as

methodology, if designed in a generic way without the resion to a

particular application, then has the potential to be usedriomber of

different scenarios. In particular, to support the edifingcess and to
avoid putting the burden completely on the user, optionaktraints

can be integrated into these methods.

large as 512 and beyond is possible at fully interactive rates on com-

modity desktop systems, and especially due to the rapichaéwments
in graphics hardware technology these capabilities argraaily in-
creasing.

1.1 Contribution

The primary focus of this paper is the development of fastfend-
ble methods for user-guided volume editing, such as capgrasing,

Volume rendering is a powerful means for visualizing 3D acal pasting, segmentation, and annotation. Our long-term igdal real-

fields, and especially if used in combination with semi-ansdtic

transfer functions and different rendering styles doedldatafor an

effective visual communication of complex structures ictstields
and relationships between them. In practical applicatibogever, to
improve the analysis process it is often desired to not asygler the
data but also to interactively edit this data. Examplesetbieinclude
the manual classification and segmentation of structunessegmoval
of structures to uncover regions of interest and thus taisamportant
parts of the data, or the coloring of parts to emphasize aakestruc-
tures and to give extra information about them. Such meshancan
help to effectively reveal and communicate the relevardrim@tion in
3D scalar fields and to create images that are easy to unadeestan
by a non-experienced user.

Today we see, that the core functionality that is requiredup-
port the aforementioned mechanisms is available on recaphgs
processing units (GPUSs). Specifically, it is now possiblalitectly
write into 3D textures on the GPU, and to efficiently applydbaper-
ations on the data stored in these textures, such as filteriggadient
computation. Thus, the time is ripe for opening a new arealianae
visualization, which is concerned with the developmentechniques
for interactive volume editing. One of the research chajgsnhere is
to develop novel algorithms that are tailored to the speGifitJ func-
tionality, and which can directly be incorporated into natetive vol-
ume rendering tools to enable immediate visual feedbacks ddre

e Kai Burger is with the Technische Universitat Miinchem13D,
E-mail: buergerk@in.tum.de.

e Jens Kriger is with Scientific Computing and Imaging |t
E-mail: jens@sci.utah.edu.

e Ridiger Westermann is with the Technische Universitandhén, tum.3D,
E-mail: westerma@in.tum.de.

Manuscript received 31 March 2008; accepted 1 August 2008tgul online
19 October 2008; mailed on 13 October 2008.

For information on obtaining reprints of this article, plsa send
e-mailto:tvcg@computer.org.

ize a volume processing tool exhibiting similar functiatyaio current
image processing tools, which allow the user to interalstiperform
a multitude of image adjustments and enhancements. Tovacimie
teractivity, all of the algorithms proposed in this work remtirely on
the GPU, and they have been integrated into a GPU-based golum
ray-caster to provide immediate visual feedback. We intcedsome
novel ways to leverage advanced GPU functionality like getom
shaders and the possibility to directly render into 3D teeduand we
effectively exploit computational and bandwidth capaston recent
GPUs. Therefore, all of the editing operations demongdrdieugh-
out this paper were executed at frame rates of 100 fps an@hidyn
combination with novel mechanisms to perform these opmratat
sub-voxel accuracy, a framework for visibility-guidederdctive vol-
ume editing is presented.

Some of the editing techniques we introduce can effectivelysed
for volume illustration, where the basic goal is to enhareegercep-
tion of structures in the data and the relationships betwweem by
emphasizing important features. In particular, we extérgdvwtork on
direct volume illustration by Bruckner and Groller [5], timat we pro-
vide an alternative way to annotate structures in a volunte skt and
show the use of high-resolution selection volumes for soxeledit-
ing effects. Even though our techniques are not restriciemiume
illustration, this particular application demonstrates high potential
of using these techniques as basic methodology.

Our paper makes the following specific contributions:

e We present an efficient GPU realization of the volume paintin
method proposed by Bruckner and Groller [5], and we demon-
strate the use of this method for interactive volume cotpas
well as structure elimination and enhancement. This metrasd
used in Figures la and 1b, respectively, to color an is@sarf
to erase parts of it and to add additional structures to it.

e We extend on the idea of selection volumes and present a vol-
ume editing technique that is independent of the volume-reso
lution. It edits on a high-resolution selection volume arah,c
therefore, be used to apply editing effects at sub-voxaliaoy.

Pisiform Lunate

Scaphoid
Capitate

Trapezoid

(2)

Fig. 1. We present basic methodology for interactive volume editing, such as coloring, carving, enhancement, and annotation at sub-voxel accuracy.

Figure 1c shows an example, where the upper text was paintdtbws to adapt the objects shape to a given curve skeletas,pne-

on an iso-surface in the original volume, whereas the loexr t
was painted on an iso-surface in an upsampled sub-volume.

parametrization. By using such particles, 2D textures aan
mapped onto an iso-surface. This allows generating ariopgat
that are aligned with an iso-surface, and which can effelgtiv
be used to give additional information about areal strgstwis-
ible in the current view. Figure 1a shows a classified isdaser
which is enhanced by surface-aligned annotations.

Building on the concept of surface particles, we presenpeha
aligned “see-through” textures to generate windowed cayaw

on iso-surfaces in 3D scalar fields. By using such textures, o

clusions can effectively be reduced and important intepaais

sented in [6].

Especially if used in combination with focus+context teiciues
to combine multiple aspects of the data into a single visweahe

We introducesurface particlesto compute a local iso-surface (35 13 2 22 3], illustrative volume rendering has beeavshto be

ery effective in communicating the essential informatioicomplex
volumetric data sets. An interactive system providing dow of au-
tomatic illustration methods as well as focus+context raa@ms to
enable selective exploration of volume data was present8duzkner
et al. [5]. In particular, they introduced screen-spacgrad annota-
tions to add extra information about particular structunes selection
volumes to locally modulate the appearance of a volume. Qukw
builds on these mechanisms and extends them towards a nr@mge
use for volume illustration.

Finally it should be mentioned, that there is also ongoirgpaech

of a volume can be exposed. This method was used in Figure quythe user interfaces used to directly interact with voluimeata sets
to interactively generate a cutaway view of the piggy barta dain virtual environments, including aspects of 3D hapticungevices

set.

The remainder of this paper is organized as follows. In 8acti

2 we review previous work that is related to ours. The spewuifie
ume coloring technique we use in this paper, as well as itsieifi
realization on recent GPUSs, is presented in Section 3. @e8tB is
dedicated to the use of this technique for structure remanel en-
hancement. In Section 4 we present high-resolution seleetlumes
and demonstrate their use for sub-voxel accurate volunimgdBec-
tion 5.1 introduces structure-aligned textures for vollangmentation
and annotation. We conclude the paper with a discussioreadkian-
tages and limitations of our work, and we present some idedature
work.

2 RELATED WORK

The idea to emphasize certain aspects of 3D data by usingyetiff
rendering styles in the drawing of a single image of the datt the
core of non-photorealistic rendering techniques [9]. ka tbntext of
volume visualization this approach has been shown veryulsefc-

centuate particular features in the data and thus to accolaedaster
and better understanding of complex structures and théaeships
between them. Over the last decade, a number of differenalbed

volume illustration techniques have been proposed, manyhi¢h

have been integrated into GPU-based volume renderingrsygste
achieve interactive user-control.

Interrante et al. [16, 15] used curvature-directed strakesdense
sets of integral curves to convey surface shape. A genehaneoil-
lustration rendering pipeline to enhance important feggand regions
was proposed by Ebert and Rheingans [8]. Viola et al. [36yeatgd
importance driven volume rendering to highlight intenegtstructures
in volume data based on user-selected object importancierit
rendering styles including point stippling [27, 24], tem@lodomain
enhancement [28], 2D texture synthesis on cross-sectibasvolu-
metric model [29], and volumetric halos to improve depthcpetion
of 3D structures [4] have been used to enhance the expressy®f
volume visualizations. A new approach that uses the shatieeaib-
ject to be illustrated to control its rendering styles, anich also

as well as haptic rendering techniques. Even though these@sare
important in the design of a volume editing tool, they areauutressed
in our current work. Instead, we abstract from the input ceviused
and rather focus on the editing operations triggered by ge uia
these devices. Due to this reason we will not attempt to vethe vast
body of literature related to these issues, however, in41.3D, 32]
some devices and interaction models are discussed and rsefy u
references on these subjects are given.

3 VoLuMmE COLORING

The specification of appearance properties of volume dayaisally

performed via color transfer functions. Based on the selniingk by

Kindlemann and Durkin [17] on the design of feature-spedifns-
fer functions that can be derived automatically from a dédagifica-
tion using first and higher-order statistics, such appreadtave now
been developed to a high degree of sophistication. Nevesgheauto-
mated classification of volumes remains a challenging &@stt,semi-
automatic techniques which allow the user to interactiyplide the
classification process often result in a more accuratermssgt of ap-
pearance properties. Examples thereof include the usdedjselec-
tion of seed voxels to initialize automated region-growi2@] or more
sophisticated segmentation algorithms like the randonkevd10],

the dual-domain approach of Kniss et al. [19, 18], or the rimach
learning approach by Tzeng et al. [34], where a transfertfonds it-

eratively refined from user-defined segmentations in 2Dmelslices.

To support semi-automatic classification and segmentatid3D
volume data we now describe an interactive technique foeloal-
oring. This technique works in the 3D domain, and it thusvedlahe
user to consider the 3D shape of the structures to be colereglhas
the spatial relationships between them. Figure 2 demdastthe ap-
plication of this approach for the classification of a humknlls The
proposed technique has been integrated into a GPU-basadeoby-
caster, enabling the user to obtain immediate visual fegdhlout the
result of the issued operations. Later in the text we show tecover-
come the restriction of volume coloring to the initial volamesolution
by exploiting selection volumes for sub-voxel coloring.

3.1 3D Texture Painting

Initially, a 3D scalar field of sizéx, Ty, Tz is loaded into a 3D texture—

the source texture—on the GPU. Scalar values are mappetbtacal
opacity via a selected transfer function. If the user onlytsdo paint
on an iso-surface in the scalar field, a one component 3D reexsu

used instead of a RGBA texture. Coloring always works on afi-ad

tional 3D texture—the color texture—on the GPU, into whilh tiser
paints with the selected color. In iso-surface coloring thkture is ini-
tialized with a constant material color, otherwise it igiadized with
the source color values. Working on such a copy allows forezigp
paint mode in which the paint operation resets the color Ipyicg re-
spective values from the source texture. In iso-surfacetipgj, colors
are reset by zeroing.

The 3D color texture is rendered using texture-based voltaye
casting [23], i.e., by sampling the texture along the raysigit and
by blending color and opacity contributions according te selected
blend equation. In iso-surface rendering, sampling isqueréd in
the source texture. Once the iso-surface is hit along ahmaysurface
normal at this position is fetched from a pre-computed ndbnmzap
and a local lighting model is evaluated. In this model, thiercat the
sample position in the color texture is used as materialrcolo

Fig. 2. An iso-surface in the visible human head data set is shown.
The surface was colored to emphasize the anatomy of the human skull.
Surface-aligned annotations, described in Section 5, were added.

Upon initialization, the user starts painting the volumehwa vir-
tual brush. To position the brush in 3D space we either useplsi
mouse-based interface or a six degree-of-freedom inpute&eive. a

The brush shapé is set such that a spherical color falloff with
increasing distance to the brush center point is simulated:

_ 07
G‘{FUPC—PD

Here,OP is one of a number of operations like REPLACE, ADD, or
BLEND, which can be selected to modulate the initial voluroirg
Pc is the position of the center point, Cotois the brush color, and
mis the support of a user-defined falloff functién which is used to
simulate smooth color fading.

When using a volume brush to color a volume data set, the oblor
every voxel contained in the brush volume has to be updatsatdiog
to the selected color modulation function. In principles tolor up-
date can be performed on the CPU, requiring the modulatédreeto
be reloaded onto the GPU. Even if it is possible to only repthose
parts of the GPU texture that were affected by the colorirgragion,
this strategy still results in significant bandwidth reguirents due to
frequent data uploads to the GPU in the course of paintingoveo-
come this limitation, we propose a novel technique that emtgely
on the GPU and minimizes CPU-GPU data transfer.

if [Pc—P| >m
else

@)

3.2 GPU Implementation

To efficiently update 3D texture elements that are affected bolor-
ing operation, we exploit novel features of current Dir€t®0 class
graphics hardware. Specifically, we use the geometry shadeeate
geometry on the GPU, we employ new functionality to updaitesl
of a 3D texture directly on the GPU, and we utilize instancenbder
calls to reduce the number of calls that have to be issued tierap-
plication program. In Figure 3 an overview of the pipelinéupefor
rendering into a 3D texture is shown.

Drawlnstanced(1, n_z, 0,0);

—

2 l n_z-1|

Fig. 3. lllustration of the pipeline setup for painting into a 3D texture
on the GPU. A single vertex is issued by the application program, and
it is duplicated by the input assembler. In the geometry shader, every
point is amplified to one quadrilateral, which in turn is sent to the ras-
terizer. The rasterizer uses slice IDs to route generated fragments into
corresponding 3D texture slices. In the pixel shader the fragments are
colored with respect to the selected modulation function.

PHANToM Desktop Device Premium 1 from Sensable TeChnOk)gie Before the painting process is Started’ the user Se|ecmﬁc

This also allows us to give haptic feedback to the user, fstaince,
if painting is on an iso-surface and force feedback indgdbat the
brush touches the surface. To detect a contact betweenaxswahd
the brush we simply test the brush center point for beingasesprox-
imity to the surface, i.e. by sampling the volume at this paind test-
ing whether the value is closer to the iso-value than a gigkardnce.
If this is the case, force feedback along the inverse gradieection
at this point is issued.

In our work we use a sphere-like volume brush for paintingicivh
means that voxels closer to the brush center point than teetsd
sphere radius are painted with the current paint color. Toipugate
the color of a voxel at positioR, indicated by Colgs, we use the paint
equation proposed in [33, 12]:

Colorp = lerp(Colorc OP Colorp, Colorp, G), (2)

brush parameters including the cutoff radimsused in Equation 2.
From this radius the extend of the brush bounding box in [tedlre
coordinate space is computed, yielding the sizex ny x n, of the
sub-volume that is affected by the coloring operation. €hesues
are computed on the CPU and sent to the GPU as constant shader
variables. To compute the position of the brush center intlocal
texture coordinates in the range [0,1], we either use thedooate
returned by the 3D input device, or, if painting is on an isoface,
it can also be determined from the fragments depth under thesen
Ccursor.

The application program then renders into a viewport of $jz@,.
A single vertex—with a coordinate equal Boscaled byTy, Ty, T—
is sent to the GPU, where it is rendered as instanced geomitry
instance counh,. This causes the GPU to generate a stream;of
vertices, all of which carry the positidd and aninstance IDrunning

from 0 ton, — 1. These vertices are passed through the vertex shader

to the geometry shader, which, for each incoming vertexyapaa
quadrilateral centered &, R, and coveringi x ny pixels. The ID of
the 3D texture slice into which this quadrilateral is to bedered is
computed as

n
SID=P,— 2 +1ID,

k ®

wherellD is the instance ID of every vertex. This slice ID is used

by the rasterizer to direct the fragment into the correspand-slice
of the 3D texture. In the pixel shader, for every fragmentlistance
to the brush center is computed and Equations 1 and 2 areagsdlu
Updated color values are then written into the respectivatipo of
the 3D color texture slice, and the updated texture can inmatey be
used in the rendering pass.

3.3 Structure Removal and Enhancement

The method proposed in the previous section can efficierglyded
to paint color into a volume. Moreover, it provides a meanster-

actively erase parts from the volume and to add new structioré.

Erasing is performed by painting voxels with zero opachyst mak-
ing structures completely transparent. Even though theregapera-
tion is conceptually simple, it does provide a very powerfidans to
interactively create cutaway views. In particular it canused when
traditional volume cutaway techniques have difficultieg, evhen oc-
cluded and occluding structures are close together and sienitar

material properties. Figure 4 shows such a case and a cutdemay
that was generated by our method. Without using a data segtiten
or a highly detailed clip geometry that can accurately sstpastruc-
tures from each other, in such scenarios the automatedajmmeof a
cutaway view remains a challenging task.

Fig. 4. Parts of bone iso-surface in a MRI data set were removed man-
ually to reveal interior brain structures.

In the current implementation, new structures can only laedd
to iso-surfaces in the scalar field, i.e., if iso-surfacedeging is per-
formed. This operation is realized by a slight change of theranod-
ulation function. Instead of replacing or modulating théoce stored
in the 3D color texture, a density offset is painted into tberse vol-
ume. By adding offsets of different strength and differeme sand
shape, a number of editing effects can be achieved (seeeFyur

When erasing or adding iso-surface structures, surfaceaisr
have to be updated accordingly. This is accomplished by djnin
all voxels in the pre-computed normal map that are containetie
brush volume, b) re-computing the normals using centréifices
in the source volume, and c) writing updated normals intanidrenal

Fig. 5. Interactive volume editing was used to manually remove struc-
tures from an iso-surface and to add structures to it.

4 SELECTION VOLUMES

The volume coloring method as described so far restricta¢baracy
of the coloring process to the resolution of the given voluat set.
This allows one to assign voxel properties on a per-voxdsbbat the
method is not capable of assigning such properties at sxé-eccu-
racy. On the other hand, in particular if color painting iediso man-
ually segment objects in the data, sub-voxel accuracy isired) to
determine correct segment boundaries. Similar to sutfased seg-
mentation methods, where the mesh is not constrained tm liexel
boundaries, our goal is to provide a much higher spatialluésa in
regions where the user expects voxel-based classificatifanl t

For this purpose we use selection volumes as introduced by
Groller [5], who stated, that “A selection volume specifeepartic-
ular structure of interest in a corresponding data volurmstores real
values in the range [0,1] where zero means not selected ancheans
fully selected.”. A selection volume has the same spat&dltgion as
the original volume and its voxel values are used to modireténitial
data values. To make selection volumes applicable for dageesn-
tation, we extend them in several ways: Firstly, in additiorextent
and position the user can select the resolution of the sefeeblume.
Secondly, the selection volume is “filled” with data valugsrbsam-
pling the source texture. It can thus be seen as an upsamgisidv
of a sub-volume, and it is accompanied by a color volume o&bcps-
olution to support voxel editing. Thirdly, the GPU volumefeaster,
which is used to render the original volume and the seleatainme
in combination, is adapted appropriately. This means, thatray-
caster not only finds the intersection points between the aayl the
selection volume but also adapts the step size within thisnve to
its resolution. In iso-surface rendering, a uniform stee $6 used to
avoid cracks at selection volume boundaries.

In Figure 6 we illustrate the use of selection volumes for-gorkel
classification, segmentation, and modeling. The leftmmosgie shows
two voxel-sized structures that have been segmented niginualse-
lection volume. Due to the increased resolution of this rwyobject
boundaries can be resolved at very high accuracy. In thelenidd
ages, structures in the interior of a volume were classifiedding a
particular color transfer function. In the right image athigsolution
selection volume was used to obtain smooth structure boiesdd he
rightmost image shows the effect of iso-surface enhancennern

map. Steps a) and c) are performed in exactly the same way-as liigh-resolution selection volume and the low-resolutiasévolume.

scribed for volume coloring, with the only difference thhetbrush
volume has to be slightly enlarged to capture all affectecis

Text was painted onto an iso-surface by manually addingitjeof-
sets into the respective source textures.

(c)

Fig. 6. The use of selection volumes is demonstrated: a) two small features are segmented at sub-voxel accuracy. b) a sub-volume at the initial
and c¢) a much higher resolution is rendered with a different transfer function than the initial volume. d) editing effects on an iso-surface in the initial

volume and a high-resolution selection volume.

4.1 Upsampling

To build a selection volume two different strategies aresped.
For direct volume rendering, voxel colors are tri-linearterpolated
in the initial color texture. For iso-surface rendering, iacewise
quadratic tensor product spline is used for resampling thece tex-
ture (see Figure 7). This results irC&-continuous quasi-interpolant
exhibiting a smooth gradient field.

Denoting initial samples witly; in voxel coordinates (i.e., rang-

resolution selection volume.

In general, selection volumes can be used to add fine stasctur
color details to a 3D volume or an iso-surface in it. Selettiol-
umes can thus be used to directly paint additional text onriacse)
which provides a general means for adding surface-aligmeta-
tions. However, as writing text on a curved surface in 3D then

cumbersome, we propose an alternative GPU method to automat

cally align 2D textures containing text or other annotagion an iso-

ing from 0 toN — 1 for N voxels), additional samples at positionsSurface. For a good description of the process to be useddmati-
x € [i —0.5,i + 0.5 are computed in two steps. First, intermediate vafcally place screen-space annotations we refer the readfgjr to

uesA := 05(vi_1,v;) and B := 0.5(v;,vi+1) are computed. Then,
a quadratic Bézier-spline with the control polygéqgv;,B is con-

5 SURFACE PARTICLES

structed using the DeCasteljau algorithm. Thusx #te associated \yg start our description by introducing GPU surface paticivhich
index i has to be computed first by rounding to the next intégefye ysed to map a 2D grid consisting of vertices and edgesebatw

i.e.j ;= |x+0.5|. The parametep; at which to evaluate the spline
is then given agji(x) := 0.5+ x—i. Observing that the interpola-
tion to computeA is collinear with the interpolation betweehand
v; (and analogously foB andv;.1), only two linearly interpolated
fetches are necessary. These fetches can be performed GpPthas
A :=lerp(vi_1,v,0.5+0.5- p) andB’ := lerp(vj, Vi, 1,0.5- p), where

lerp(a,b,c) :=a+c- (b—a). Finally, the second stage of the DeCastel

jau algorithm to yield the final valuges := lerp(A’,B', p) is computed
in a pixel shader.

[
0.5 voxel
transition

\ |
Selection Volume

Fig. 7. The piecewise quadratic spline used for upsampling a selection
volume.

Since the interpolated nodes lie halfway between the sagfle
the initial volume, we introduce a transition region thah&f a voxel
wide (with respect to the initial grid). In this region, titear inter-
polation in the source texture is performed to guara@&eontinuity
between the selection volume and the source volume. In thedn
the selection volume is built by tri-quadratic quasi-ip@ation in the
source texture, and a smooth normal map is computed onytfieifih
this volume. Figure 6(d) demonstrates the fine editing tetiaat can
be achieved by applying the operations described so far agta h

them onto an iso-surface, i.e., to find a local surface patré@agon.

Our approach is similar in spirit to the one proposed by Reliet

al. [31], but, in contrast, it is performed directly in 3D ebj space,
and it operates entirely on the GPU. The 2D grid is renderetbpn
of the iso-surface as a textured polygon mesh. The textungairs

the annotation to be used, for instance, a bit-mapped textpattern
indicating a particular property.

A surface particle can be thought of as a particle moving ersthr-
face. The direction of the movement is given by an externmaation
field that is defined by the user when placing the annotatiaranly
case, to move a particle on the surface we compute its tomje{u)
in a vector fieldv, starting at an initial positio(, y, z) on the surface.
This requires to solve the ordinary differential equation:

oP
=5 = (P(W) @)

with initial condition P(0) = (x,y,z). To numerically solve this
equation we employ classical Euler integration using a fsteg size
Au. For a thorough overview of particle tracing in vector fields
us refer here to the state-of-the-art report by Laramee.et{28],
and to [21] for the efficient implementation of particle tiragon pro-
grammable GPUs.

Itis clear, that in general the numerical integration bsiagvay the
particle from the surface. Even if the vector field is evergvendefined
in the local surface tangent plane, a particle is moving afn@y the
surface in non-planar regions. To avoid this behavior,raftery in-
tegration step we trace the particle back onto the surfasellting in
the following steps that have to be performed:

e Integration From the previous particle positioR, and the ve-
locity at this positiony, the new positio®’ = P+ Au-Vis com-
puted. In the very first iteratiowis set to zero.

e Backtracing P’ is corrected by tracing the particle back onto the
selected iso-surface.

e Vector lookup The velocity vectoi at positionP’ is determined.

structure, and they are then connected to the structureanitte. In

This can be as simple as a texture lookup into a 3D vector fielgeneral, the former method has the advantage that annwagmain

or a 2D vector field if a surface parametrization exists, @ait

fixed to a structure when the user interacts with the volunmdgviree-

be a more complex computation such as a curvature estimatidioating labels have to be rearranged in screen-space td aveilap-

While it is clear how to perform particle integration and tarc
lookup, the method to trace particles back to the surfacgimes|some
further explanation. In principle, moving it back onto therface
would require to bend the line segment connecting the ctiaad
the fixed previous particle position around the surfacerethe con-
straining the bending to the plane defined by this line sed @ the
surface normal at the previous position. Since this approaquires
some exhaustive computations, we approximate it by iteigticor-
recting the current position towards the surface, theralsyming the
surface to be locally flat. Figure 8 illustrates this appneiion for a
particle that has left the surface after integration.

Back-tracing is performed by using the surface normal aptbei-
ous position, i.e. the gradient of the scalar field at thistjms scaled
by the difference between the scalar values at the previndstlze
current position. The direction of this vector determindsether the
current position is inside the surface or outside. Note tiséng the
normal at the current position is not feasible in generatesthis point
is not on the surface and the normal at this point may be affiely
noise. Given this direction, the current particle is trafredh the cur-
rent position into this direction until the difference beswn the scalar
values at the corrected position and the selected iso-dabpes below
a user-given tolerance. In this case we have reached thecsuahd
terminate the correction. If the particle crosses the igfase, which
is indicated by increasing difference between the scallrevat the
particle position and the iso-value, the step size is hahretithe trace
is restarted at the last position.

ping annotations, crossing of connecting lines, or placem®o far
away from the structure. Free-floating annotation, on thermhand,
are advantageous for pointing to small structures whichatacaver
enough space on screen to allow the user to read the anmotatiib.

Therefore, our system supports both approaches to annatataes,

and it thus allows the user to flexibly select the appropriatece.
By using surface particles we can now construct a regulat, gri

which is aligned with an iso-surface and can be textured waittar-

bitrary annotation. As the process is performed entirelyhenGPU,

the user can interactively place high-resolution annoiatin the vol-

ume. To start the process, the user first selects a texterantiotation
texture, which is to be used as annotation. Then, some additin-
formation has to be specified:

e The position on the iso-surface where the annotation is tehe
tered.

e The orientation of the annotation.

To specify the annotation center point the user picks a pirthe
iso-surface. The orientation of the annotation texturepecgied by
picking a second point and by interpreting the vector fromfttst to
the second point as the u-axis of the local (u,v) surfacenpetidza-
tion. In the following, we will call this vector the orientah vector.
Given this information, a set of surface particles is tratmedenerate
a grid that is aligned with the surface.

The accuracy of the proposed method depends on the loca-curv At first, two surface particles are spawned at the annotatéorer

ture of the iso-surface. The less planar the surface is,itffeehcan
be the length distortion of a line segment connecting theipus and
the current point. The reason therefore is, that we only idenghe
normal at the previous point to determine the direction imbich the
particle is corrected. This problem could be alleviated lsp &on-
sidering the curvature direction in the plane spanned bytheious
surface normal and the advection direction, but as the szepvee
use for particle integration is typically small, i.e. in tbeder of the
voxel size, in our experiments length distortions did nsuiein any
noticeable artifacts.

Normal

1sosurfac,

Backtrace ™.

Fig. 8. One particle advection step is illustrated: Firstly, the particle
is moved into the direction of the vector field (red) to an intermediate
position (green). In the next step it is traced into the direction of the
previous normal vector until it reaches the surface.

5.1 Volume Annotations

Volume annotations in the form of arrows and labels have g tis-
tory in hand-made technical and medical illustrations.tdakannota-
tions are typically used in two different ways. They are @itplaced
directly on the surface of a structure—aligning their shepthe sur-
face shape—or they are placed in screen-space close to dge iofi a

point. One of them is traced along the orientation vectat,tae other
one is traced into the inverse direction. Both particlestereed for a
number of equidistant steps and their intermediate positaye writ-
ten into a GPU render target. Both the number of steps andt¢pe s
size in voxel units can be selected by the user.

At every particle position the direction vector moving therticle
along the surface is computed from the direction vectoreptievious
position. Starting with the normalized projection of theéeatation
vector into the tangent plane at the annotation center patrevery
upcoming position the same procedure is performed with teei@us
direction vector. That is, for a particle at positi®4 we compute a
tangent frame consisting of three mutually orthonormaltaec N,
the surface normak the direction vector in the local tangent plane,
and B, the cross product betwedhandF. Initially, F is computed
from the given orientation vectod, as follows:

6><<N><6)

5 (Nx6)|

F= (5)

In the next advection ste@ is set toF, and the projection is with
respect to the current tangent plane. Surface normals anputed
by tri-linear interpolation of the gradients at adjacenkelocenters.
Finally, the particle is advected usitigand it is then traced back to
the surface as described in the previous paragraph.

Fig. 9. Surface-aligned annotations. Left: the annotation grid. Right: an
annotation texture that is mapped onto the grid.

Fig. 10. Images from a volume editing session. From left to right: the initial data set, structures are removed, surface color is applied, annotations
are added. The rightmost image is taken from the classical anatomy book “Gray’s Anatomy” by Henry Gray [11] for comparison.

After the two surface particles that were released at thetation
center point have been traced fosteps, a number ofr2t- 1 surface
points are stored in a GPU render target. If these pointsareected
they form a line on the surface, centered at the annotatiotecpoint
and oriented along the annotation direction. To expand“tinis” to
a full 2D grid, at every point we trace two additional surfapeeticles

video memory. Image generation was done at 128024 resolu-
tion. Regardless of this extreme resolution, for all modélswn we
achieve real-time performance with update rates of 50 foshégher,
including editing and rendering.

All brush-based editing effects like coloring, erasingd @uding,
as well as resulting normal map updates, were executedsritas 3

into directionB and into the inverse direction. Tracing these particlems up to a brush extend of $40xels. The times it takes to build a

for m steps results in a set ¢2m+ 1) - (2n+ 1) points, from which a
regular triangular annotation grid is built (see Figure/) grid points

are rendered into a vertex buffer, which is then used to netheegrid

using an appropriate index buffer residing in GPU memonge gtid is

textured with the selected annotation texture, and it iseesd before
ray-casting the volume to initialize the depth buffer. T@idvdepth

fighting between the iso-surface and the annotation griel gtid is

slightly shifted towards the viewer.

5.2 Windowed Cutaway Views

In this paragraph, we show how to efficiently create a shédigeed
windowed cutaway section on an iso-surface by exploitingramota-
tion grid as introduced before. In technical illustratipogtaways are
often used to reduce occlusions and expose important aitparts.
There is a vast body of literature related to this issue tfeatwil not
attempt to overview here, however, Diepstraten et al. [d bBhet
al. [26] discuss some of the mechanisms to automaticalleigea
cutaway views and provide many useful references on thigsub
Starting with such a surface-aligned grid, we proceed instages.
Firstly, we duplicate the mesh and displace the verticehefcopy
along the inverse surface normal direction at the centdexerThe
length of the displacement can be selected by the user toajertbin
or thick cutaway sections. Secondly, both meshes are ctathatong

selection volume at different resolutions, i.e., frofx 2)3 to (64 x
8)3, is given in Table 1. As can be seen, even at a resolution asasig

128, GPU-based resampling is still capable of achieving intira
rates.

Covered voxels
Scaling| 33 | 113 | 19® | 328 | 64
2 0.14] 0.19| 0.24| 051 2.7
4 0.16 | 0.31 | 0.76 | 2.5 | 17.9
8 0.2 | 1.0 | 429| 17.1| 134.6

Table 1. Timing statistics for tri-quadratic iso-surface and trilinear color
resampling. All times are given in milliseconds.

Finally, we measured the time it takes to construct a swédigaed
annotation grid by means of the method described in Sectidaldle
2 shows respective times for varying grid sizes. From thismgs
it can be concluded, that the proposed method is fast enaualhotv
for interactive placements of annotation textures on hagwolution
surface structures. In particular, since the renderindge$e textures
only consumes an insignificant amount of time, many of thembm
used simultaneously on a single object.

their borders to build a closed mesh. This mesh is then used as

clip geometry as proposed by Weiskopf et al. [37], and it ieatly
incorporated into the texture-based volume ray-caster.

Prior to ray-casting, we render a layered depth-buffer efrtiesh
from the current view. During volume rendering, every ragtfgam-
ples these buffers and then tests all samples along the ragifog in-
side or outside the mesh, i.e. by testing whether a sampidistiveen
a front and a back face of the cutaway mesh. Samples insidad¢kb
do not contribute to the final ray color, thus cutting away\tbkime
contained in it. Figure 1(d) demonstrates the use of a shhgeed
cutaway to expose internal parts of a volume.

6 PERFORMANCE ANALYSIS

Throughout this paper we have shown a number of differemicesf
that were generated by the proposed volume editing techgiqé
typical use of these techniques is demonstrated in Figurevhere
a human skull data set was interactively processed and anigth&o
obtain an illustrative image as shown in “Gray’s Anatomyi1]1In

the following, we investigate the performance of these riapkes in

Gridsize
112 | 212 | 412 | 812
Time(inms)| 1.6 | 20 | 3.6 | 14.7

Table 2. Timing of surface-aligned construction of annotation grids.

7 CONCLUSION AND FUTURE WORK

In this paper, we have presented a number of GPU-based te&mi
for interactive volume editing. By efficiently using novelrfiction-
ality on recent GPUs, we have developed a technique foractige
volume painting. We have further shown that this techniqueides
a powerful means to erase structures in a volume and thuslaids
features in it. In combination with high-resolution selentvolumes
these techniques can effectively be used for manual voleg@snta-
tion at sub-voxel accuracy. We have also introduced streeiligned
annotations to supplement classical free-floating aniooisthat are
placed in screen-space, and we have demonstrated howite titils

more detail. Timings were performed on a 2.4 GHz Core 2 Due prapproach to interactively create windowed cutaway viewspdrtic-
cessor and an NVIDIA 8800GTX graphics card with 768 MB localilar, as all of these operations are performed in the 3D domeéth

immediate visual feedback provided, they are very inteitvuse and
allow the user to quickly observe the relationships betwedgvant
features in the data.

(20]

In the future we will further extend some of the proposed tech?t]

niques: Firstly, we will develop semi-automatic volumersegtation

techniques by combining manual segmentation as proposbdawi

tomatic techniques on the GPU, like the random walker amprod/e

believe that such a combination can considerably improved¢gmen-
tation process, both with respect to accuracy and speedn8lgcwe

are aware that the construction of structure-aligned atioots as de-
scribed in this work can produce distortions and even fatdsighly

curved regions. In the future we will investigate the usemfstraint
mass-spring systems on the GPU to avoid such artifactsdihive

will pursue research on the integration of focus+contexiragches
into direct volume editing techniques. In this way, additibvisual

cues can be provided to the user, resulting in an improvednstahd-
ing of complex structural relationships in 3D.

REFERENCES
(1]

R. S. Avilaand L. M. Sobierajski. A haptic interaction thed for volume

[22]

(23]
[24]

(25]

(26]

[27]

visualization. InIEEE VIS '96: Proceedings of the 7th conference or{28]

Visualization '96 pages 197-205., 1996.

S. Bruckner, S. Grimm, A. Kanitsar, and E. Groller. #tative contet-
preserving volume rendering. EuroVis pages 69-76, 2005.

S. Bruckner, S. Grimm, A. Kanitsar, and M. E. Groller. lufitrative
context-preserving exploration of volume datdEEE Transactions on
Visualization and Computer Graphic2(6):1559-1569, 2006.

S. Bruckner and E. Grller. Enhancing depth-perceptidih flexible vol-

[2]
(3]

(4]

[29]

(30]

umetric halos|EEE Transactions on Visualization and Computer Graph-

ics, 13(6), 2007.
S. Bruckner and M. E. Groller. Volumeshop: An interaetisystem for

5]

direct volume illustration. IrProceedings of IEEE Visualization 2005

pages 671-678, Oct. 2005.
W. Chen, A. Lu, and D. S. Ebert. Shape-aware volume ilat&in. Com-
puter Graphics Forum (Proceedings of Eurographics 2Q0@6Y7):705—
714, 2007.

J. Diepstraten, D. Weiskopf, and T. Ertl.

(6]

[7]

Interactivetaay illustra-

tions. Computer Graphics Forum (Proceedings of Eurographics 2003
[34

22(3):523-532, 2003.
D. Ebert and P. Rheingans. Volume illustration: Non-ainealistic ren-

(8]

dering of volume models. ItEEE Visualization 2000 (Conference Pro-

ceedings)pages 195-202, 2000.

B. Gooch and A. GoochNon-Photorealistic RenderindAK Peters Ltd.,
2001.

L. Grady, T. Schiwietz, S. Aharon, and R. Westermannnd®an walks
for interactive organ segmentation in two and three dinmessi Imple-
mentation and validation. IRMICCAI, 2005.

H. Gray. Gray’s anatomy Running Press, 1901.

P. Hanrahan and P. Haeberli. Direct wysiwyg painting gxturing on
3d shapesSIGGRAPH Comput. Grapi4(4):215-223, 1990.

H. Hauser, L. Mroz, G. I. Bischi, and M. E. Groller. Twevel volume

9]
(10]
[11]
(12]

(13]

(31]

(32]

(33]

(35]

(36]

(37

rendering.|[EEE Transactions on Visualization and Computer Graphics

7(3):242-252, 2001.

M. Ikits, J. D. Brederson, C. D. Hansen, and C. R. Johngotonstraint-
based technique for haptic volume exploration.VI§ '03: Proceedings
of the 14th IEEE Visualization 2003 (VIS'Q®)age 35, 2003.

V. Interrante. lllustrating surface shape in volumeadsaia principal
direction-driven 3D line integral convolution. RCM SIGGRAPHpages
109-116, 1997.

V. Interrante, H. Fuchs, and S. Pizer. lllustratingisparent surfaces with
curvature-directed strokes. IREE Vis pages 211-218, 1996.

G. Kindlmann and J. W. Durkin. Semi-automatic generatf transfer
functions for direct volume rendering. MVS '98: Proceedings of the
1998 IEEE symposium on Volume visualizatipages 79-86, 1998.

J. Kniss, G. Kindlmann, and C. Hansen. Multidimensidnansfer func-
tions for interactive volume renderindEEE Transactions on Visualiza-
tion and Computer Graphi¢$(3):270-285, 2002.

J. Kniss, P. McCormick, A. McPherson, J. Ahrens, J. RaijrA. Keahey,
and C. Hansen. Interactive texture-based volume rendésirigrge data
sets.|IEEE Computer Graphics and Applicatigrizl(4):52—61, 2001.

(14]

(15]

[16]

(17]

(18]

(19]

K. Kreeger and A. Kaufman. Interactive volume segmgomawith the
pavlov architecture. IRPVGS '99: Proceedings of the 1999 IEEE sympo-
sium on Parallel visualization and graphigsages 61-68, 1999.

J. Kruger, P. Kipfer, P. Kondratieva, and R. WestermaA particle sys-
tem for interactive visualization of 3D flowdEEE Transactions on Vi-
sualization and Computer Graphic¥1(6):744-756, 2005.

J. Kruiger, J. Schneider, and R. Westermann. ClearVigwinteractive
context preserving hotspot visualization techniqUEEE Transactions
on Visualization and Computer Graphics (Proceedings \ligadon / In-
formation Visualization 2006)12(5), September-October 2006.

J. Kriiger and R. Westermann. Acceleration Technidoe&PU-based
Volume Rendering. IfProceedings IEEE Visualization 2003003.

J. Kriiger and R. Westermann. Efficient stipple renagrin Proceedings
of IADIS Computer Graphics and Visualizatjd@2007.

R. Laramee, H. Hauser, H. Doleisch, F. Post, B. Vrobjikd D. Weiskopf.
The state of the art in flow visualization: Dense and texhased tech-
niques.

W. Li, L. Ritter, M. Agrawala, B. Curless, and D. SalesInteractive cut-
away illustrations of complex 3d model&CM Trans. Graph.26(3):31—
40, 2007.

A. Lu, C. Morris, D. Ebert, P. Rheingans, and C. Hansen.onN
photorealistic volume rendering using stippling techegulnlEEE Vis
pages 211-218, 2002.

E. Lumand K. Ma. Hardware-accelerated parallel nontptealistic vol-
ume rendering. Innternational Symposium on Non-photorealistic Ren-
dering and Animation (NPARJune 2002.

S. Owada, F. Nielsen, M. Okabe, and T. Igarashi. \oluiméllustra-
tion: designing 3d models with internal textureACM Trans. Graph.
23(3):322-328, 2004.

A. Prior. "on-the-fly” voxelization for 6 degrees-ofefedom haptic virtual
sculpting. InVRCIA '06: Proceedings of the 2006 ACM international
conference on Virtual reality continuum and its applicasppages 263—
270, 2006.

T. Ropinski, J.-S. Prani, J. Roters, and K. H. Hinrichgternal labels as
shape cues for medical illustration. Rroceedings of the 12th Interna-
tional Fall Workshop on Vision, Modeling, and Visualizati¢vMV07)
pages 203-212, 2007.

I. Russell M. Taylor. Haptics for scientific visualizat. In SIGGRAPH
'05: ACM SIGGRAPH 2005 Coursgsage 174, 2005.

A. R. Smith. Paint. Technical Memo 7, Computer Graphiad, New
York Institute of Technology, July 1978.

] F.-Y.Tzeng, E. B. Lum, and K.-L. Ma. An intelligent sgsh approach to

higher-dimensional classification of volume dalBEE Transactions on
Visualization and Computer Graphic1(3):273-284, 2005.

I. Viola, E. Groller, M. Hadwiger, K. Bhler, B. Preim, Msousa, D. Ebert,
and D. Stredney. lllustrative visualization. IEEE Vis 200btorial #4.

I. Viola, A. Kanitsar, and E. Groller. Importance-geh volume render-
ing. In IEEE Visualization 2004 (Conference Proceedingsges 139—
145, 2004.

D. Weiskopf, K. Engel, and T. Ertl. Volume clipping vieepfragment
operations in texture-based volume visualization|HERE Visualization
2002 (Conference Proceedingppges 93-100, 2002.

