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Abstract—In this work we present basic methodology for interactive volume editing on GPUs, and we demonstrate the use of these
methods to achieve a number of different effects. We present fast techniques to modify the appearance and structure of volumetric
scalar fields given on Cartesian grids. Similar to 2D circular brushes as used in surface painting we present 3D spherical brushes
for intuitive coloring of particular structures in such fields. This paint metaphor is extended to allow the user to change the data
itself, and the use of this functionality for interactive structure isolation, hole filling, and artefact removal is demonstrated. Building
on previous work in the field we introduce high-resolution selection volumes, which can be seen as a resolution-based focus+context
metaphor. By utilizing such volumes we present a novel approach to interactive volume editing at sub-voxel accuracy. Finally, we
introduce a fast technique to paste textures onto iso-surfaces in a 3D scalar field. Since the texture resolution is independent of the
volume resolution, this technique allows structure-aligned textures containing appearance properties or textual information to be used
for volume augmentation and annotation.

Index Terms—Volume editing, GPU, painting, carving, annotations.

1 INTRODUCTION

Interactive visual exploration of volumetric scalar fieldsis required
in many different areas ranging from medicine and engineering to
physics and biology. To support the exploration task, volume render-
ing techniques have been developed to a high degree of sophistication
over the last decade. Today, direct volume rendering of datasets as
large as 5123 and beyond is possible at fully interactive rates on com-
modity desktop systems, and especially due to the rapid advancements
in graphics hardware technology these capabilities are continually in-
creasing.

Volume rendering is a powerful means for visualizing 3D scalar
fields, and especially if used in combination with semi-automatic
transfer functions and different rendering styles does it allow for an
effective visual communication of complex structures in such fields
and relationships between them. In practical applications, however, to
improve the analysis process it is often desired to not only render the
data but also to interactively edit this data. Examples thereof include
the manual classification and segmentation of structures, the removal
of structures to uncover regions of interest and thus to isolate important
parts of the data, or the coloring of parts to emphasize relevant struc-
tures and to give extra information about them. Such mechanisms can
help to effectively reveal and communicate the relevant information in
3D scalar fields and to create images that are easy to understand even
by a non-experienced user.

Today we see, that the core functionality that is required tosup-
port the aforementioned mechanisms is available on recent graphics
processing units (GPUs). Specifically, it is now possible todirectly
write into 3D textures on the GPU, and to efficiently apply local oper-
ations on the data stored in these textures, such as filteringor gradient
computation. Thus, the time is ripe for opening a new area in volume
visualization, which is concerned with the development of techniques
for interactive volume editing. One of the research challenges here is
to develop novel algorithms that are tailored to the specificGPU func-
tionality, and which can directly be incorporated into interactive vol-
ume rendering tools to enable immediate visual feedback. This core
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methodology, if designed in a generic way without the restriction to a
particular application, then has the potential to be used ina number of
different scenarios. In particular, to support the editingprocess and to
avoid putting the burden completely on the user, optional constraints
can be integrated into these methods.

1.1 Contribution

The primary focus of this paper is the development of fast andflexi-
ble methods for user-guided volume editing, such as coloring, erasing,
pasting, segmentation, and annotation. Our long-term goalis to real-
ize a volume processing tool exhibiting similar functionality to current
image processing tools, which allow the user to interactively perform
a multitude of image adjustments and enhancements. To achieve in-
teractivity, all of the algorithms proposed in this work runentirely on
the GPU, and they have been integrated into a GPU-based volume
ray-caster to provide immediate visual feedback. We introduce some
novel ways to leverage advanced GPU functionality like geometry
shaders and the possibility to directly render into 3D textures, and we
effectively exploit computational and bandwidth capacities on recent
GPUs. Therefore, all of the editing operations demonstrated through-
out this paper were executed at frame rates of 100 fps and higher. In
combination with novel mechanisms to perform these operations at
sub-voxel accuracy, a framework for visibility-guided interactive vol-
ume editing is presented.

Some of the editing techniques we introduce can effectivelybe used
for volume illustration, where the basic goal is to enhance the percep-
tion of structures in the data and the relationships betweenthem by
emphasizing important features. In particular, we extend the work on
direct volume illustration by Bruckner and Gröller [5], inthat we pro-
vide an alternative way to annotate structures in a volume data set and
show the use of high-resolution selection volumes for sub-voxel edit-
ing effects. Even though our techniques are not restricted to volume
illustration, this particular application demonstrates the high potential
of using these techniques as basic methodology.

Our paper makes the following specific contributions:

• We present an efficient GPU realization of the volume painting
method proposed by Bruckner and Gröller [5], and we demon-
strate the use of this method for interactive volume coloring as
well as structure elimination and enhancement. This methodwas
used in Figures 1a and 1b, respectively, to color an iso-surface,
to erase parts of it and to add additional structures to it.

• We extend on the idea of selection volumes and present a vol-
ume editing technique that is independent of the volume reso-
lution. It edits on a high-resolution selection volume and can,
therefore, be used to apply editing effects at sub-voxel accuracy.



Fig. 1. We present basic methodology for interactive volume editing, such as coloring, carving, enhancement, and annotation at sub-voxel accuracy.

Figure 1c shows an example, where the upper text was painted
on an iso-surface in the original volume, whereas the lower text
was painted on an iso-surface in an upsampled sub-volume.

• We introducesurface particlesto compute a local iso-surface
parametrization. By using such particles, 2D textures can be
mapped onto an iso-surface. This allows generating annotations
that are aligned with an iso-surface, and which can effectively
be used to give additional information about areal structures vis-
ible in the current view. Figure 1a shows a classified iso-surface
which is enhanced by surface-aligned annotations.

• Building on the concept of surface particles, we present shape-
aligned “see-through” textures to generate windowed cutaways
on iso-surfaces in 3D scalar fields. By using such textures, oc-
clusions can effectively be reduced and important internalparts
of a volume can be exposed. This method was used in Figure 1d
to interactively generate a cutaway view of the piggy bank data
set.

The remainder of this paper is organized as follows. In Section
2 we review previous work that is related to ours. The specificvol-
ume coloring technique we use in this paper, as well as its efficient
realization on recent GPUs, is presented in Section 3. Section 3.3 is
dedicated to the use of this technique for structure removaland en-
hancement. In Section 4 we present high-resolution selection volumes
and demonstrate their use for sub-voxel accurate volume editing. Sec-
tion 5.1 introduces structure-aligned textures for volumeaugmentation
and annotation. We conclude the paper with a discussion of the advan-
tages and limitations of our work, and we present some ideas for future
work.

2 RELATED WORK

The idea to emphasize certain aspects of 3D data by using different
rendering styles in the drawing of a single image of the data is at the
core of non-photorealistic rendering techniques [9]. In the context of
volume visualization this approach has been shown very useful to ac-
centuate particular features in the data and thus to accommodate faster
and better understanding of complex structures and the relationships
between them. Over the last decade, a number of different so-called
volume illustration techniques have been proposed, many ofwhich
have been integrated into GPU-based volume rendering systems to
achieve interactive user-control.

Interrante et al. [16, 15] used curvature-directed strokesand dense
sets of integral curves to convey surface shape. A general volume il-
lustration rendering pipeline to enhance important features and regions
was proposed by Ebert and Rheingans [8]. Viola et al. [36] suggested
importance driven volume rendering to highlight interesting structures
in volume data based on user-selected object importance. Different
rendering styles including point stippling [27, 24], temporal domain
enhancement [28], 2D texture synthesis on cross-sections of a volu-
metric model [29], and volumetric halos to improve depth perception
of 3D structures [4] have been used to enhance the expressiveness of
volume visualizations. A new approach that uses the shape ofthe ob-
ject to be illustrated to control its rendering styles, and which also

allows to adapt the objects shape to a given curve skeleton, was pre-
sented in [6].

Especially if used in combination with focus+context techniques
to combine multiple aspects of the data into a single visual event
[35, 13, 2, 22, 3], illustrative volume rendering has been shown to be
very effective in communicating the essential informationin complex
volumetric data sets. An interactive system providing a toolbox of au-
tomatic illustration methods as well as focus+context mechanisms to
enable selective exploration of volume data was presented by Bruckner
et al. [5]. In particular, they introduced screen-space aligned annota-
tions to add extra information about particular structuresand selection
volumes to locally modulate the appearance of a volume. Our work
builds on these mechanisms and extends them towards a more general
use for volume illustration.

Finally it should be mentioned, that there is also ongoing research
on the user interfaces used to directly interact with volumetric data sets
in virtual environments, including aspects of 3D haptic input devices
as well as haptic rendering techniques. Even though these aspects are
important in the design of a volume editing tool, they are notaddressed
in our current work. Instead, we abstract from the input devices used
and rather focus on the editing operations triggered by the user via
these devices. Due to this reason we will not attempt to review the vast
body of literature related to these issues, however, in [1, 14, 30, 32]
some devices and interaction models are discussed and many useful
references on these subjects are given.

3 VOLUME COLORING

The specification of appearance properties of volume data istypically
performed via color transfer functions. Based on the seminal work by
Kindlemann and Durkin [17] on the design of feature-specifictrans-
fer functions that can be derived automatically from a data classifica-
tion using first and higher-order statistics, such approaches have now
been developed to a high degree of sophistication. Nevertheless, auto-
mated classification of volumes remains a challenging task,and semi-
automatic techniques which allow the user to interactivelyguide the
classification process often result in a more accurate assignment of ap-
pearance properties. Examples thereof include the user-guided selec-
tion of seed voxels to initialize automated region-growing[20] or more
sophisticated segmentation algorithms like the random walker [10],
the dual-domain approach of Kniss et al. [19, 18], or the machine-
learning approach by Tzeng et al. [34], where a transfer function is it-
eratively refined from user-defined segmentations in 2D volume slices.

To support semi-automatic classification and segmentationof 3D
volume data we now describe an interactive technique for voxel col-
oring. This technique works in the 3D domain, and it thus allows the
user to consider the 3D shape of the structures to be colored as well as
the spatial relationships between them. Figure 2 demonstrates the ap-
plication of this approach for the classification of a human skull. The
proposed technique has been integrated into a GPU-based volume ray-
caster, enabling the user to obtain immediate visual feedback about the
result of the issued operations. Later in the text we show howto over-
come the restriction of volume coloring to the initial volume resolution
by exploiting selection volumes for sub-voxel coloring.



3.1 3D Texture Painting

Initially, a 3D scalar field of sizeTx,Ty,Tz is loaded into a 3D texture—
the source texture—on the GPU. Scalar values are mapped to color and
opacity via a selected transfer function. If the user only wants to paint
on an iso-surface in the scalar field, a one component 3D texture is
used instead of a RGBA texture. Coloring always works on an addi-
tional 3D texture—the color texture—on the GPU, into which the user
paints with the selected color. In iso-surface coloring this texture is ini-
tialized with a constant material color, otherwise it is initialized with
the source color values. Working on such a copy allows for a special
paint mode in which the paint operation resets the color by copying re-
spective values from the source texture. In iso-surface painting, colors
are reset by zeroing.

The 3D color texture is rendered using texture-based volumeray-
casting [23], i.e., by sampling the texture along the rays ofsight and
by blending color and opacity contributions according to the selected
blend equation. In iso-surface rendering, sampling is performed in
the source texture. Once the iso-surface is hit along a ray, the surface
normal at this position is fetched from a pre-computed normal map
and a local lighting model is evaluated. In this model, the color at the
sample position in the color texture is used as material color.

Fig. 2. An iso-surface in the visible human head data set is shown.
The surface was colored to emphasize the anatomy of the human skull.
Surface-aligned annotations, described in Section 5, were added.

Upon initialization, the user starts painting the volume with a vir-
tual brush. To position the brush in 3D space we either use a simple
mouse-based interface or a six degree-of-freedom input device, i.e. a
PHANToM Desktop Device Premium 1 from Sensable Technologies.
This also allows us to give haptic feedback to the user, for instance,
if painting is on an iso-surface and force feedback indicates that the
brush touches the surface. To detect a contact between a surface and
the brush we simply test the brush center point for being in close prox-
imity to the surface, i.e. by sampling the volume at this point and test-
ing whether the value is closer to the iso-value than a given tolerance.
If this is the case, force feedback along the inverse gradient direction
at this point is issued.

In our work we use a sphere-like volume brush for painting, which
means that voxels closer to the brush center point than the selected
sphere radius are painted with the current paint color. To manipulate
the color of a voxel at positionP, indicated by ColorP, we use the paint
equation proposed in [33, 12]:

ColorP = lerp(ColorC OP ColorP,ColorP,G), (1)

The brush shapeG is set such that a spherical color falloff with
increasing distance to the brush center point is simulated:

G =

{

0, if |PC−P| > m
F (|PC−P|) else.

(2)

Here,OP is one of a number of operations like REPLACE, ADD, or
BLEND, which can be selected to modulate the initial volume color,
PC is the position of the center point, ColorC is the brush color, and
m is the support of a user-defined falloff functionF, which is used to
simulate smooth color fading.

When using a volume brush to color a volume data set, the colorof
every voxel contained in the brush volume has to be updated according
to the selected color modulation function. In principle, the color up-
date can be performed on the CPU, requiring the modulated texture to
be reloaded onto the GPU. Even if it is possible to only replace those
parts of the GPU texture that were affected by the coloring operation,
this strategy still results in significant bandwidth requirements due to
frequent data uploads to the GPU in the course of painting. Toover-
come this limitation, we propose a novel technique that runsentirely
on the GPU and minimizes CPU-GPU data transfer.

3.2 GPU Implementation
To efficiently update 3D texture elements that are affected by a color-
ing operation, we exploit novel features of current Direct3D 10 class
graphics hardware. Specifically, we use the geometry shaderto create
geometry on the GPU, we employ new functionality to update slices
of a 3D texture directly on the GPU, and we utilize instanced render
calls to reduce the number of calls that have to be issued fromthe ap-
plication program. In Figure 3 an overview of the pipeline setup for
rendering into a 3D texture is shown.

DrawInstanced(1, n_z, 0,0);
CPU GPU

Input Assembler

Vertex Shader

0 1 2 n_z-1

Geometry Shader

Rasterizer

Pixel Shader

Fig. 3. Illustration of the pipeline setup for painting into a 3D texture
on the GPU. A single vertex is issued by the application program, and
it is duplicated by the input assembler. In the geometry shader, every
point is amplified to one quadrilateral, which in turn is sent to the ras-
terizer. The rasterizer uses slice IDs to route generated fragments into
corresponding 3D texture slices. In the pixel shader the fragments are
colored with respect to the selected modulation function.

Before the painting process is started, the user selects thespecific
brush parameters including the cutoff radiusm used in Equation 2.
From this radius the extend of the brush bounding box in localtexture
coordinate space is computed, yielding the sizenx × ny × nz of the
sub-volume that is affected by the coloring operation. These values
are computed on the CPU and sent to the GPU as constant shader
variables. To compute the position of the brush center pointP in local
texture coordinates in the range [0,1], we either use the coordinate
returned by the 3D input device, or, if painting is on an iso-surface,
it can also be determined from the fragments depth under the mouse
cursor.

The application program then renders into a viewport of sizeTx,Ty.
A single vertex—with a coordinate equal toP scaled byTx,Ty,Tz—
is sent to the GPU, where it is rendered as instanced geometrywith
instance countnz. This causes the GPU to generate a stream ofnz
vertices, all of which carry the positionP and aninstance IDrunning



from 0 tonz−1. These vertices are passed through the vertex shader
to the geometry shader, which, for each incoming vertex, spawns a
quadrilateral centered atPx,Py and coveringnx×ny pixels. The ID of
the 3D texture slice into which this quadrilateral is to be rendered is
computed as

SID= Pz−
nz

2
+ IID , (3)

where IID is the instance ID of every vertex. This slice ID is used
by the rasterizer to direct the fragment into the corresponding z-slice
of the 3D texture. In the pixel shader, for every fragment itsdistance
to the brush center is computed and Equations 1 and 2 are evaluated.
Updated color values are then written into the respective position of
the 3D color texture slice, and the updated texture can immediately be
used in the rendering pass.

3.3 Structure Removal and Enhancement
The method proposed in the previous section can efficiently be used
to paint color into a volume. Moreover, it provides a means tointer-
actively erase parts from the volume and to add new structures to it.
Erasing is performed by painting voxels with zero opacity, thus mak-
ing structures completely transparent. Even though the erasing opera-
tion is conceptually simple, it does provide a very powerfulmeans to
interactively create cutaway views. In particular it can beused when
traditional volume cutaway techniques have difficulties, e.g., when oc-
cluded and occluding structures are close together and havesimilar
material properties. Figure 4 shows such a case and a cutawayview
that was generated by our method. Without using a data segmentation
or a highly detailed clip geometry that can accurately separate struc-
tures from each other, in such scenarios the automated generation of a
cutaway view remains a challenging task.

Fig. 4. Parts of bone iso-surface in a MRI data set were removed man-
ually to reveal interior brain structures.

In the current implementation, new structures can only be added
to iso-surfaces in the scalar field, i.e., if iso-surface rendering is per-
formed. This operation is realized by a slight change of the color mod-
ulation function. Instead of replacing or modulating the colors stored
in the 3D color texture, a density offset is painted into the source vol-
ume. By adding offsets of different strength and different size and
shape, a number of editing effects can be achieved (see Figure 5).

When erasing or adding iso-surface structures, surface normals
have to be updated accordingly. This is accomplished by a) finding
all voxels in the pre-computed normal map that are containedin the
brush volume, b) re-computing the normals using central differences
in the source volume, and c) writing updated normals into thenormal
map. Steps a) and c) are performed in exactly the same way as de-
scribed for volume coloring, with the only difference that the brush
volume has to be slightly enlarged to capture all affected voxels.

Fig. 5. Interactive volume editing was used to manually remove struc-
tures from an iso-surface and to add structures to it.

4 SELECTION VOLUMES

The volume coloring method as described so far restricts theaccuracy
of the coloring process to the resolution of the given volumedata set.
This allows one to assign voxel properties on a per-voxel basis, but the
method is not capable of assigning such properties at sub-voxel accu-
racy. On the other hand, in particular if color painting is used to man-
ually segment objects in the data, sub-voxel accuracy is required to
determine correct segment boundaries. Similar to surface-based seg-
mentation methods, where the mesh is not constrained to lie on voxel
boundaries, our goal is to provide a much higher spatial resolution in
regions where the user expects voxel-based classification to fail.

For this purpose we use selection volumes as introduced by
Gröller [5], who stated, that “A selection volume specifiesa partic-
ular structure of interest in a corresponding data volume. It stores real
values in the range [0,1] where zero means not selected and one means
fully selected.”. A selection volume has the same spatial resolution as
the original volume and its voxel values are used to modulatethe initial
data values. To make selection volumes applicable for data segmen-
tation, we extend them in several ways: Firstly, in additionto extent
and position the user can select the resolution of the selection volume.
Secondly, the selection volume is “filled” with data values by resam-
pling the source texture. It can thus be seen as an upsampled version
of a sub-volume, and it is accompanied by a color volume of equal res-
olution to support voxel editing. Thirdly, the GPU volume ray-caster,
which is used to render the original volume and the selectionvolume
in combination, is adapted appropriately. This means, thatthe ray-
caster not only finds the intersection points between the rays and the
selection volume but also adapts the step size within this volume to
its resolution. In iso-surface rendering, a uniform step size is used to
avoid cracks at selection volume boundaries.

In Figure 6 we illustrate the use of selection volumes for sub-voxel
classification, segmentation, and modeling. The leftmost image shows
two voxel-sized structures that have been segmented manually in a se-
lection volume. Due to the increased resolution of this volume, object
boundaries can be resolved at very high accuracy. In the middle im-
ages, structures in the interior of a volume were classified by using a
particular color transfer function. In the right image a high-resolution
selection volume was used to obtain smooth structure boundaries. The
rightmost image shows the effect of iso-surface enhancement in a
high-resolution selection volume and the low-resolution base volume.
Text was painted onto an iso-surface by manually adding density off-
sets into the respective source textures.



Fig. 6. The use of selection volumes is demonstrated: a) two small features are segmented at sub-voxel accuracy. b) a sub-volume at the initial
and c) a much higher resolution is rendered with a different transfer function than the initial volume. d) editing effects on an iso-surface in the initial
volume and a high-resolution selection volume.

4.1 Upsampling
To build a selection volume two different strategies are pursued.
For direct volume rendering, voxel colors are tri-linearlyinterpolated
in the initial color texture. For iso-surface rendering, a piecewise
quadratic tensor product spline is used for resampling the source tex-
ture (see Figure 7). This results in aC1-continuous quasi-interpolant
exhibiting a smooth gradient field.

Denoting initial samples withvi in voxel coordinates (i.e., rang-
ing from 0 to N − 1 for N voxels), additional samples at positions
x∈ [i−0.5, i +0.5[ are computed in two steps. First, intermediate val-
ues A := 0.5(vi−1,vi) and B := 0.5(vi ,vi+1) are computed. Then,
a quadratic Bézier-spline with the control polygonA,vi ,B is con-
structed using the DeCasteljau algorithm. Thus, atx the associated
index i has to be computed first by rounding to the next integer,
i.e.,i := ⌊x+ 0.5⌋. The parameterpi at which to evaluate the spline
is then given aspi(x) := 0.5+ x− i. Observing that the interpola-
tion to computeA is collinear with the interpolation betweenA and
vi (and analogously forB and vi+1), only two linearly interpolated
fetches are necessary. These fetches can be performed by theGPU as
A′ := lerp(vi−1,vi ,0.5+0.5· p) andB′ := lerp(vi ,vi+1,0.5· p), where
lerp(a,b,c) := a+c·(b−a). Finally, the second stage of the DeCastel-
jau algorithm to yield the final valuevres := lerp(A′,B′, p) is computed
in a pixel shader.

i+1

i

i+1

i

p   =0 p   =1

Selection Volume

0.5 voxel
transition 0.5 voxel

transition

p =0 p =1

i+1

i−1

i−2

i

i+2

Fig. 7. The piecewise quadratic spline used for upsampling a selection
volume.

Since the interpolated nodes lie halfway between the samples of
the initial volume, we introduce a transition region that ishalf a voxel
wide (with respect to the initial grid). In this region, tri-linear inter-
polation in the source texture is performed to guaranteeC0 continuity
between the selection volume and the source volume. In the interior,
the selection volume is built by tri-quadratic quasi-interpolation in the
source texture, and a smooth normal map is computed on-the-fly from
this volume. Figure 6(d) demonstrates the fine editing details that can
be achieved by applying the operations described so far on a high-

resolution selection volume.
In general, selection volumes can be used to add fine structures or

color details to a 3D volume or an iso-surface in it. Selection vol-
umes can thus be used to directly paint additional text on a surface,
which provides a general means for adding surface-aligned annota-
tions. However, as writing text on a curved surface in 3D is rather
cumbersome, we propose an alternative GPU method to automati-
cally align 2D textures containing text or other annotations on an iso-
surface. For a good description of the process to be used to automati-
cally place screen-space annotations we refer the reader to[5].

5 SURFACE PARTICLES

We start our description by introducing GPU surface particles, which
are used to map a 2D grid consisting of vertices and edges between
them onto an iso-surface, i.e., to find a local surface parametrization.
Our approach is similar in spirit to the one proposed by Ropinski et
al. [31], but, in contrast, it is performed directly in 3D object space,
and it operates entirely on the GPU. The 2D grid is rendered ontop
of the iso-surface as a textured polygon mesh. The texture contains
the annotation to be used, for instance, a bit-mapped text ora pattern
indicating a particular property.

A surface particle can be thought of as a particle moving on the sur-
face. The direction of the movement is given by an external direction
field that is defined by the user when placing the annotation. In any
case, to move a particle on the surface we compute its trajectory P(u)
in a vector field~v, starting at an initial position(x,y,z) on the surface.
This requires to solve the ordinary differential equation:

∂P
∂u

=~v(P(u)) (4)

with initial condition P(0) = (x,y,z). To numerically solve this
equation we employ classical Euler integration using a fixedstep size
∆u. For a thorough overview of particle tracing in vector fieldslet
us refer here to the state-of-the-art report by Laramee et al. [25],
and to [21] for the efficient implementation of particle tracing on pro-
grammable GPUs.

It is clear, that in general the numerical integration brings away the
particle from the surface. Even if the vector field is everywhere defined
in the local surface tangent plane, a particle is moving awayfrom the
surface in non-planar regions. To avoid this behavior, after every in-
tegration step we trace the particle back onto the surface, resulting in
the following steps that have to be performed:

• Integration From the previous particle position,P, and the ve-
locity at this position,~v, the new positionP′ = P+∆u·~v is com-
puted. In the very first iteration~v is set to zero.

• Backtracing P′ is corrected by tracing the particle back onto the
selected iso-surface.



• Vector lookup The velocity vector~v at positionP′ is determined.
This can be as simple as a texture lookup into a 3D vector field,
or a 2D vector field if a surface parametrization exists, or itcan
be a more complex computation such as a curvature estimation.

While it is clear how to perform particle integration and vector
lookup, the method to trace particles back to the surface requires some
further explanation. In principle, moving it back onto the surface
would require to bend the line segment connecting the current and
the fixed previous particle position around the surface, thereby con-
straining the bending to the plane defined by this line segment and the
surface normal at the previous position. Since this approach requires
some exhaustive computations, we approximate it by iteratively cor-
recting the current position towards the surface, thereby assuming the
surface to be locally flat. Figure 8 illustrates this approximation for a
particle that has left the surface after integration.

Back-tracing is performed by using the surface normal at theprevi-
ous position, i.e. the gradient of the scalar field at this position, scaled
by the difference between the scalar values at the previous and the
current position. The direction of this vector determines whether the
current position is inside the surface or outside. Note thatusing the
normal at the current position is not feasible in general, since this point
is not on the surface and the normal at this point may be affected by
noise. Given this direction, the current particle is tracedfrom the cur-
rent position into this direction until the difference between the scalar
values at the corrected position and the selected iso-valuedrops below
a user-given tolerance. In this case we have reached the surface and
terminate the correction. If the particle crosses the iso-surface, which
is indicated by increasing difference between the scalar value at the
particle position and the iso-value, the step size is halvedand the trace
is restarted at the last position.

The accuracy of the proposed method depends on the local curva-
ture of the iso-surface. The less planar the surface is, the higher can
be the length distortion of a line segment connecting the previous and
the current point. The reason therefore is, that we only consider the
normal at the previous point to determine the direction intowhich the
particle is corrected. This problem could be alleviated by also con-
sidering the curvature direction in the plane spanned by theprevious
surface normal and the advection direction, but as the step size we
use for particle integration is typically small, i.e. in theorder of the
voxel size, in our experiments length distortions did not result in any
noticeable artifacts.

Isosurface

Normal

Force

Backtrace

Fig. 8. One particle advection step is illustrated: Firstly, the particle
is moved into the direction of the vector field (red) to an intermediate
position (green). In the next step it is traced into the direction of the
previous normal vector until it reaches the surface.

5.1 Volume Annotations
Volume annotations in the form of arrows and labels have a long his-
tory in hand-made technical and medical illustrations. Textual annota-
tions are typically used in two different ways. They are either placed
directly on the surface of a structure—aligning their shapeto the sur-
face shape—or they are placed in screen-space close to the image of a

structure, and they are then connected to the structure witha line. In
general, the former method has the advantage that annotations remain
fixed to a structure when the user interacts with the volume, while free-
floating labels have to be rearranged in screen-space to avoid overlap-
ping annotations, crossing of connecting lines, or placements too far
away from the structure. Free-floating annotation, on the other hand,
are advantageous for pointing to small structures which do not cover
enough space on screen to allow the user to read the annotation on it.
Therefore, our system supports both approaches to annotatevolumes,
and it thus allows the user to flexibly select the appropriatechoice.

By using surface particles we can now construct a regular grid,
which is aligned with an iso-surface and can be textured withan ar-
bitrary annotation. As the process is performed entirely onthe GPU,
the user can interactively place high-resolution annotations in the vol-
ume. To start the process, the user first selects a texture, the annotation
texture, which is to be used as annotation. Then, some additional in-
formation has to be specified:

• The position on the iso-surface where the annotation is to becen-
tered.

• The orientation of the annotation.

To specify the annotation center point the user picks a pointon the
iso-surface. The orientation of the annotation texture is specified by
picking a second point and by interpreting the vector from the first to
the second point as the u-axis of the local (u,v) surface parametriza-
tion. In the following, we will call this vector the orientation vector.
Given this information, a set of surface particles is tracedto generate
a grid that is aligned with the surface.

At first, two surface particles are spawned at the annotationcenter
point. One of them is traced along the orientation vector, and the other
one is traced into the inverse direction. Both particles aretraced for a
number of equidistant steps and their intermediate positions are writ-
ten into a GPU render target. Both the number of steps and the step
size in voxel units can be selected by the user.

At every particle position the direction vector moving the particle
along the surface is computed from the direction vector at the previous
position. Starting with the normalized projection of the orientation
vector into the tangent plane at the annotation center point, at every
upcoming position the same procedure is performed with the previous
direction vector. That is, for a particle at positionPu we compute a
tangent frame consisting of three mutually orthonormal vectors: ~N,
the surface normal,~F the direction vector in the local tangent plane,
and~B, the cross product between~N and~F . Initially, ~F is computed
from the given orientation vector,~O, as follows:

~F =

~O×
(

~N× ~O
)

|~O×
(

~N× ~O
)

|
(5)

In the next advection step,~O is set to~F, and the projection is with
respect to the current tangent plane. Surface normals are computed
by tri-linear interpolation of the gradients at adjacent voxel centers.
Finally, the particle is advected using~F and it is then traced back to
the surface as described in the previous paragraph.

Fig. 9. Surface-aligned annotations. Left: the annotation grid. Right: an
annotation texture that is mapped onto the grid.



Fig. 10. Images from a volume editing session. From left to right: the initial data set, structures are removed, surface color is applied, annotations
are added. The rightmost image is taken from the classical anatomy book “Gray’s Anatomy” by Henry Gray [11] for comparison.

After the two surface particles that were released at the annotation
center point have been traced forn steps, a number of 2n+ 1 surface
points are stored in a GPU render target. If these points are connected
they form a line on the surface, centered at the annotation center point
and oriented along the annotation direction. To expand this“line” to
a full 2D grid, at every point we trace two additional surfaceparticles
into directionB and into the inverse direction. Tracing these particles
for m steps results in a set of(2m+1) · (2n+1) points, from which a
regular triangular annotation grid is built (see Figure 9).All grid points
are rendered into a vertex buffer, which is then used to render the grid
using an appropriate index buffer residing in GPU memory. The grid is
textured with the selected annotation texture, and it is rendered before
ray-casting the volume to initialize the depth buffer. To avoid depth
fighting between the iso-surface and the annotation grid, the grid is
slightly shifted towards the viewer.

5.2 Windowed Cutaway Views
In this paragraph, we show how to efficiently create a shape-aligned
windowed cutaway section on an iso-surface by exploiting anannota-
tion grid as introduced before. In technical illustrations, cutaways are
often used to reduce occlusions and expose important internal parts.
There is a vast body of literature related to this issue that we will not
attempt to overview here, however, Diepstraten et al. [7] and Li et
al. [26] discuss some of the mechanisms to automatically generate
cutaway views and provide many useful references on this subject.

Starting with such a surface-aligned grid, we proceed in twostages.
Firstly, we duplicate the mesh and displace the vertices of the copy
along the inverse surface normal direction at the center vertex. The
length of the displacement can be selected by the user to generate thin
or thick cutaway sections. Secondly, both meshes are connected along
their borders to build a closed mesh. This mesh is then used asa
clip geometry as proposed by Weiskopf et al. [37], and it is directly
incorporated into the texture-based volume ray-caster.

Prior to ray-casting, we render a layered depth-buffer of the mesh
from the current view. During volume rendering, every ray first sam-
ples these buffers and then tests all samples along the ray for being in-
side or outside the mesh, i.e. by testing whether a sample is in-between
a front and a back face of the cutaway mesh. Samples inside themesh
do not contribute to the final ray color, thus cutting away thevolume
contained in it. Figure 1(d) demonstrates the use of a shape-aligned
cutaway to expose internal parts of a volume.

6 PERFORMANCE ANALYSIS

Throughout this paper we have shown a number of different effects
that were generated by the proposed volume editing techniques. A
typical use of these techniques is demonstrated in Figure 10, where
a human skull data set was interactively processed and augmented to
obtain an illustrative image as shown in “Gray’s Anatomy” [11]. In
the following, we investigate the performance of these techniques in
more detail. Timings were performed on a 2.4 GHz Core 2 Duo pro-
cessor and an NVIDIA 8800GTX graphics card with 768 MB local

video memory. Image generation was done at 1280× 1024 resolu-
tion. Regardless of this extreme resolution, for all modelsshown we
achieve real-time performance with update rates of 50 fps and higher,
including editing and rendering.

All brush-based editing effects like coloring, erasing, and adding,
as well as resulting normal map updates, were executed in less than 3
ms up to a brush extend of 643 voxels. The times it takes to build a
selection volume at different resolutions, i.e., from(3×2)3 to (64×
8)3, is given in Table 1. As can be seen, even at a resolution as high as
1283, GPU-based resampling is still capable of achieving interactive
rates.

Covered voxels
Scaling 33 113 193 323 643

2 0.14 0.19 0.24 0.51 2.7
4 0.16 0.31 0.76 2.5 17.9
8 0.2 1.0 4.29 17.1 134.6

Table 1. Timing statistics for tri-quadratic iso-surface and trilinear color
resampling. All times are given in milliseconds.

Finally, we measured the time it takes to construct a surface-aligned
annotation grid by means of the method described in Section 5. Table
2 shows respective times for varying grid sizes. From these timings
it can be concluded, that the proposed method is fast enough to allow
for interactive placements of annotation textures on high-resolution
surface structures. In particular, since the rendering of these textures
only consumes an insignificant amount of time, many of them can be
used simultaneously on a single object.

Gridsize
112 212 412 812

Time (in ms) 1.6 2.0 3.6 14.7

Table 2. Timing of surface-aligned construction of annotation grids.

7 CONCLUSION AND FUTURE WORK

In this paper, we have presented a number of GPU-based techniques
for interactive volume editing. By efficiently using novel function-
ality on recent GPUs, we have developed a technique for interactive
volume painting. We have further shown that this technique provides
a powerful means to erase structures in a volume and thus to isolate
features in it. In combination with high-resolution selection volumes
these techniques can effectively be used for manual volume segmenta-
tion at sub-voxel accuracy. We have also introduced structure-aligned
annotations to supplement classical free-floating annotations that are
placed in screen-space, and we have demonstrated how to utilize this
approach to interactively create windowed cutaway views. In partic-
ular, as all of these operations are performed in the 3D domain, with



immediate visual feedback provided, they are very intuitive to use and
allow the user to quickly observe the relationships betweenrelevant
features in the data.

In the future we will further extend some of the proposed tech-
niques: Firstly, we will develop semi-automatic volume segmentation
techniques by combining manual segmentation as proposed with au-
tomatic techniques on the GPU, like the random walker approach. We
believe that such a combination can considerably improve the segmen-
tation process, both with respect to accuracy and speed. Secondly, we
are aware that the construction of structure-aligned annotations as de-
scribed in this work can produce distortions and even folds in highly
curved regions. In the future we will investigate the use of constraint
mass-spring systems on the GPU to avoid such artifacts. Thirdly, we
will pursue research on the integration of focus+context approaches
into direct volume editing techniques. In this way, additional visual
cues can be provided to the user, resulting in an improved understand-
ing of complex structural relationships in 3D.
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