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Abstract

Multigrid finite-element solvers using the corotational formulation of finite elements provide an attractive means

for the simulation of deformable bodies exhibiting linear elastic response. The separation of rigid body motions

from the total element motions using purely geometric methods or polar decomposition of the deformation gradi-

ent, however, can introduce instabilities for large element rotations and deformations. Furthermore, the integration

of the corotational formulation into dynamic multigrid elasticity simulations requires to continually rebuild con-

sistent system matrices at different resolution levels. The computational load imposed by these updates prohibits

the use of large numbers of finite elements at rates comparable to the small-strain finite element formulation.

To overcome the first problem, we present a new method to extract the rigid body motion from total finite element

displacements based on energy minimization. This results in a very stable corotational formulation that only

slightly increases the computational overhead. We address the second problem by introducing a novel algorithm

for computing sparse products of the form RKRT, as they have to be evaluated to update the multigrid hierarchy.

By reformulating the problem into the simultaneous processing of a sequential data and control stream, cache miss

penalties are significantly reduced. Even though the algorithm increases memory requirements, it accelerates the

multigrid FE simulation by a factor of up to 4 compared to previous multigrid approaches. Due to the proposed

improvements, finite element deformable body simulations using the corotational formulation can be performed at

rates of 17 tps for up to 12k elements.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction and Related Work

Fast and reliable methods for predicting shape changes of
deformable 3D bodies under load are of major relevance
in a number of computer graphics applications like com-
puter animation and virtual surgery simulation. In the past
decades, three-dimensional finite element (FE) analysis was
performed in a number of approaches to predict the me-
chanical response of deformable materials. FE methods are
attractive because they can realistically simulate the dy-
namic behavior of such materials. Most commonly they
have been used to simulate isotropic linear elastic materi-
als based on Hooke’s law, with the inhomogeneous Young’s
modulus E being defined on a per-element basis. A thor-
ough overview of the state of the art in the field can be
found in [NMK∗05], which also discusses alternative ap-
proaches based on finite differences [TPBF87, TF88] or
mass-spring systems [LTW95, BW98, DSB99], as well as

multiresolution approaches using adaptive refinement tech-
niques [CGC∗02, DDCB01, GKS02].

FE methods for simulating elasticity effects, on the other
hand, are numerically involved and not suited in general
for usage in real-time applications. This is especially due
of the non-linear relationship between strain and displace-
ment, yielding a non-linear algebraic system to be solved
[ZC99, WDGT01, PDA01, DDCB01, ML03]. Therefore, the
linearized strain tensor, i.e. the Cauchy strain tensor, is com-
monly used in such applications [BNC96, CDA99]. While
this approximation is appropriate for small deformations, it
leads to non-realistic results if elements undergo large defor-
mations. In particular, as the Cauchy tensor is not invariant
under rotations, the strain distribution and thus the final ele-
ment displacements tend to diverge from the correct solution
(see Figure 1).

A good trade-off between the Cauchy and the full non-
linear strain tensor can be achieved by using the so-called
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Figure 1: On a desktop PC, the tetrahedral grid consisting of 67k elements (left image) was interactively deformed at 3 tps using

the corotational finite element formulation (middle image). Additionally, the same model was deformed using the small-strain

formulation at 17 tps (right image). The artificial volume increase of the mouth can easily be perceived.

corotational formulation of finite elements. It is a linear ap-
proximation just as the Cauchy strain, but it accounts for
the geometric non-linearity by respecting per-element ro-
tations in the strain computation. In the corotational for-
mulation the motion of every element is split into a rigid
body motion with respect to the element’s initial configu-
ration, and a deformational motion in the so-called coro-
tated configuration. The use of the principle of corotational
coordinates in FE analysis goes back to the early work
of Wempner [Wem69] and Belytschko and Hsieh [BH79].
The element-independent corotational formulation underly-
ing our approach, where per-element rigid body motions are
removed and added before and after the finite element analy-
sis, has been introduced by Rankin and Brogan [RB86]. For
a thorough overview on this concept we refer the reader to
the summary paper by Felippa and Haugen [FH05].

In the context of FE modeling the corotational formula-
tion was introduced to the computer graphics community
by Müller and co-workers [MDM∗02, MG04], Etzmuss et
al. [EKS03] and Hauth and Strasser [HS04], who proposed
two different approaches for extracting the rigid body mo-
tion of triangular and tetrahedral elements. While in the for-
mer approaches this motion was computed purely based on
geometric considerations, in the later approaches a polar de-
composition of the per-element deformation gradient was
employed. For large element deformations, however, both
formulations may introduce numerical instabilities. While in
the geometric approach such instabilities can be contributed
to the uncertainty in determining the corresponding rigid
body mode from a largely deformed element, numerical in-
stabilities in the computation of the deformation gradient
in largely deformed elements can become a problem other-
wise. Furthermore, an approach based on a QR decomposi-
tion has been developed [NPF05], but it introduces vertex-
ordering dependent anisotropies. To improve the robustness

of the corotational formulation, extensions have been pro-
posed that recover inverted elements [ITF04, ST08].

Another concern arises from the integration of the corota-
tional formulation in a FE solver. To account for the element
rotations, in the corotational formulation the system matrix
has to be re-built in every simulation step. Even though this
does not pose a problem from a conceptual point of view,
it considerably slows down the performance of the simula-
tion process. This problem is amplified if multigrid meth-
ods are used to speed up the solution process as proposed
in [WT04, GW05], meaning that quantities have to be com-
puted on a hierarchy of different resolution grids. In particu-
lar, to ensure a consistent calculation of quantities on differ-
ent resolution levels, the coarse grid matrices are derived by
computing sparse products of the form RK RT. Here, R and
RT are respectively the restriction and prolongation operator
used to transfer quantities between different resolution lev-
els, and K is the fine grid matrix. It is said that coarse grid
operators constructed in this way satisfy the Galerkin con-
dition, and it has been shown in previous work that such a
construction leads to an optimal convergence of the multi-
grid method [Wes82, BHM00].

In case of unstructured mesh hierarchies, the correspond-
ing matrix representations of the involved operators are
sparse and non-zero entries are randomly scattered. As we
will show in this paper, the update of the matrix hierar-
chy dominates the overall performance of dynamic multi-
grid methods, taking more than an order of magnitude longer
than the system solver. The reason therefore is that sparse
matrix products operate significantly below their theoretical
peak performance due to the bottleneck of data transfer in
the CPU memory hierarchy. A direct implication thereof is
that standard algorithms for computing sparse matrix prod-
ucts can hardly achieve real-time performance in dynamic
simulations for reasonably sized grid hierarchies.
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1.1. Contribution

To overcome the aforementioned limitations, and thus to
make FE based simulation of deformable 3D bodies stable
and fast, we propose two novel approaches. Firstly, we in-
troduce a method based on energy minimization to extract
per-element rigid motions from their current state. The ob-
jective function we aim to minimize measures the similarity
of the corotated configuration and the reference configura-
tion. We show that by using this approach in FE elasticity
simulations, large, yet stable deformations can be achieved,
making this approach also attractive for deformation model-
ing in computer animation.

Secondly, we focus on improving the memory behavior
of sparse matrix operations. We present a linear layout of
computational cores for sparse-sparse matrix multiplication,
which can effectively reduce the average memory access
time. By reformulating the problem into the simultaneous
processing of a sequential data and control stream, the lo-
cality of memory access operations can be improved, result-
ing in considerably less cache miss penalties. We include
the proposed extensions into a multigrid approach for de-
formable bodies simulation. By means of our approach, we
show an acceleration of the multigrid matrix hierarchy up-
date by a factor of 10, yielding an overall speed up of the FE
multigrid solver by a factor of up to 4.

Our paper is organized as follows: First, we shortly re-
view the theory of the corotational FE formulation. In Sec-
tion 3, we introduce the novel method to extract element
rigid motions from their element displacements based on en-
ergy minimization. In the following section, we present the
applied multigrid solver, and we describe in detail the de-
veloped data structure that accelerates the multigrid matrix
hierarchy update. In Section 5, we present a detailed analysis
of our approach, and finally we conclude with some aspects
on future developments.

2. Corotated Finite Elements

Underlying our simulation is a linear elasticity model. In
this model, we describe deformations as a mapping from
the object’s reference configuration Ω to its deformed con-
figuration {x + u(x) | x ∈ Ω} using a displacement function
u : R3 →R

3. The dynamic behavior of an object with linear
elastic response is governed by the Lagrangian equation of
motion

Mü+Cu̇+Ku = f (1)

where M, C, and K denote the mass, damping and stiffness
matrix, respectively. u is a vector built from the displacement
vectors of all vertices and f is analogously built from the per-
vertex force vectors. The stiffness matrix K is constructed by
assembling the element stiffness matrices Ke. Specifically,

we are using a tetrahedral mesh, and every tetrahedral ele-
ment has an associated element stiffness matrix with a form
that is given by the strain tensor and the material law. To
keep the matrices Ke linear with respect to u, the Cauchy
strain tensor in combination with the generalized Hooke’s
law is used. For a more thorough derivation of the governing
equations of linear elasticity let us refer to [BNC96, Bat02].

Since the Cauchy tensor is not invariant under rotations,
especially if large deformations are applied, it tends to pro-
duce artificial forces yielding unrealistic results. To cure this
problem, finite elements are first rotated into a configuration
that matches best the reference configuration, such that the
rigid body motions of the elements are eliminated before the
strain is computed. This approach is known as the corota-
tional FE formulation.

To consider element rotations in the finite element model,
some modification have to be introduced. For clarity, we first
focus on the element equations Ke ∈R

3m ×R
3m of one sin-

gle finite element with m supporting vertices, i.e.,

Keue = fe.

To apply an element rotation to the deformed element con-
figuration, we introduce element-dependent matrices Qe,
which are built from the respective orthogonal 3×3 element
rotation matrices Q̂e as follows:

Qe =







Q̂e

. . .

Q̂e






.

The displacement from which the strain in the corotated con-
figuration can be determined is ũe = QT

e (xe + ue)− xe. The
obtained internal forces Keũe then have to be rotated back
into the deformed configuration, yielding

Qe KeQ
T
e (xe +ue) = fe +Qe Kexe.

Thus, to handle finite elements in the corotational formula-
tion the following steps have to be performed: a) The ele-
ment matrices Ke have to be updated to K̃e = Qe KeQT

e to
account for the element rotations. b) A force correction vec-
tor f 0

e = Qe (Kexe) has to be determined to account for the
element rotations. These element-specific values have to be
assembled into the global system matrix K̃ and the global
force correction vector f 0, respectively.

Since only the calculation of the element strain is affected
by the corotational formulation, the dynamic behavior of a
deformable object is governed by the Lagrangian equation of
motion with the modified matrix K̃ and the force correction
vector f 0:

Mü+Cu̇+ K̃u = f + f
0. (2)

By using an implicit time integration scheme like Euler or
Newmark, a linear system of algebraic equations is obtained.
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3. Extracting Element Rotations

To compute the element rotations in an accurate and stable
way, we now introduce a novel approach based on energy
minimization. Therefore, we define an energy Ee for every fi-
nite element Ωe. Ee is used to measure the similarity between
the corotated element configuration—which is determined
by rotating the deformed configuration—and the reference
configuration. The energy considers the pairwise distances
between element points in the corotated configuration and
corresponding points in the reference configuration, similar
to the approach proposed in [MHTG05]. For every element
its center of mass in the deformed configuration, c, is used
as center of rotation to obtain the orientation in the corotated
configuration. To match the reference configuration, we first
translate the element such that the centers of mass coincide
(c0 denotes the center of mass in the reference configura-
tion). Then, we compute the distance d between a point in
the deformed element and its corresponding position in the
reference configuration:

d = d(x) = Q
T
e (x+u− c)− (x− c0).

The energy Ee is then derived by integrating the squared dis-
tances over the element domain:

Ee =
Z

Ωe

d
T

d dx. (3)

By minimizing this energy for every element we can deter-
mine the element rotations that minimize the average dis-
tances between positions in the reference and corotated con-
figuration.

To solve this minimization problem, we first reformulate
it by using quaternions [Sho85,LEF95]. In this formulation a
vector v is rotated by applying quaternion multiplication qvq.
Here, q is the 4 component unit quaternion describing the
rotation QT

e , and q is its conjugate. Therefore, in quaternion
space the distance is determined as

d = d(x) = q(x+u− c)q− (x− c0).

We now search for a solution where the first derivative of
the energy vanishes, i.e., ∂Ee

∂q
= 0. Since the minimum has to

be found under the constraint that q is a unit quaternion, a
Lagrange multiplier λ is added to the energy functional:

Ee =
Z

Ωe

d
T

d dx+λ(qT
q−1). (4)

Then, the first derivatives become

∂Ee

∂qi
= 2

Z

Ωe

∂dT

∂qi
d dx+2λqi = 0, (5)

∂Ee

∂λ
= q

T
q−1. (6)

This system of non-linear equations is solved using a New-
ton solver, which iteratively determines the zero crossings of
the set of equations (5) and (6). For this solver to work, the

components of the Hessian matrix of Ee are computed as

∂2Ee

∂q j∂qi
= 2

Z

Ωe

∂dT

∂qi

∂d

∂q j
+

∂2dT

∂q j∂qi
d dx+2λs(i, j), (7)

∂2Ee

∂λ∂qi
= 2qi. (8)

Here, s(i, j) is a function returning 1 if i equals j and 0 oth-
erwise. The unit quaternion describing the rotation that min-
imizes Ee is computed by starting with an initial state vector
q̃k = (qk,λk), and by iteratively updating this vector with re-
spect to the following scheme:

q̃
k+1 = q̃

k −

(

∂2Ee

(∂q̃)2

)−1

∇Ee.

Both the gradient of Ee and its Hessian have to be computed
in the current deformed configuration. Therefore, we first
compute the center of mass c (c0 is constant for each ele-
ment), from which we derive the partial derivatives in equa-
tions (5) to (8) and finally the gradient and the Hessian via
numerical integration.

4. Multigrid Solver

In this section, we describe an optimization technique to
efficiently integrate finite elements using the corotational
formulation into a multigrid FE solver. The solver we use
to solve the linear system of equations Ku = f employs
geometry-specific operators to transfer quantities between
different levels in a tetrahedral grid hierarchy [GW05].
Specifically, Rh and RT

h are the restriction and the prolonga-
tion operators, respectively, which are used to transfer quan-
tities to and from a particular level h.

In case of an unstructured mesh hierarchy, the correspond-
ing matrix representations of these operators are sparse and
non-zero entries are randomly scattered. The operators are
used to construct the coarse grid system matrices Kh+1 from
a given fine grid system matrix Kh, where K0 = K. To en-
sure a consistent calculation of quantities on different reso-
lution levels, for all but the finest hierarchy level the coarse
grid operators are obtained by solving products of the form
RhKhRT

h . It is said that coarse grid operators constructed
in this way satisfy the Galerkin condition, and it has been
shown in previous work that such a construction is the natu-
ral choice for defining the coarse grid operators [Wes82].

Since in our application the matrix K0 has to be re-built
in every simulation step to account for the corotational for-
mulation, the entire matrix hierarchy has to be adapted ac-
cordingly. As we will show in Section 5, this update oper-
ation dominates the overall performance of multigrid meth-
ods, taking about a factor of 10 longer than the system solver.
The reason therefore is that sparse matrix products oper-
ate significantly below their theoretical peak performance
due to the bottleneck of data transfer in the CPU memory
hierarchy. A direct implication thereof is that standard al-
gorithms for computing sparse matrix products can hardly
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achieve real-time performance in dynamic simulations for
reasonably sized grid hierarchies. To overcome this limita-
tion, we focus on improving the memory behavior of sparse
matrix operations in this paper. We present a linear layout of
computational cores for sparse matrix multiplication, which
can effectively reduce the average memory access time. By
reformulating the problem into the simultaneous processing
of sequential streams, the locality of memory access opera-
tions can be improved, yielding considerably less cache miss
penalties.

4.1. Matrix Data Structure

To store the matrices involved in the simulation, we apply
a row-compressed format (Yale format) [EGSS82]. To store
a sparse matrix K, we encode the non-zero entries and their
respective column indices in two separate arrays, row after
row. Additionally, an index is stored for every row, which
references the first non-zero entry in that row (see Figure 2).
The set of column indices stored for each row i is denoted
by SK

i in the following.

Figure 2: Row-compressed matrix format.

In the underlying implementation, we extend the row-
compressed (RC) matrix format. Instead of just one single
value, a non-empty block of entries is associated with each
row and column index. This format is beneficial, because the
stiffness matrix, in general, consists of 3× 3 blocks of non-
zero entries associated with each 3D vertex of the simulation
mesh. Therefore, the memory overhead to store column in-
dices can be reduced significantly, and the matrix entries can
be updated more efficiently. In the following, we will refer to
this format as block-row-compressed (BRC) matrix format.

4.2. Matrix Assembly

In the corotational formulation, in every simulation time-
step the element stiffness matrices have to be updated before
they get assembled into the global stiffness matrix. By stor-
ing the element matrices Ke of every finite element, matri-
ces are updated as K̃e = Qe KeQT

e once the element rotations
are available. Since K̃e consists of 3× 3 blocks of non-zero
values for each pair of element vertices, these blocks can di-
rectly be written into the block-row-compressed global stiff-
ness matrix K. To determine the respective destination block
in K from the global vertex indices, one has to find the col-
umn index in the respective row. Although this can be done

by a binary search if the column indices are sorted, it re-
quires the entire set of column indices to be available in the
CPU caches. To reduce this memory transfer in the assembly
process, for each pair of vertices of an element we directly
store a reference to the respective block in the global matrix.
The memory overhead introduced by this approach is not
significant, since it adds only 4 bytes to a dense 3×3 block
of double precision floating point numbers in the block-row-
compressed matrix format. Overall, this results in a memory
increase by a factor of 1.05.

4.3. Sparse Matrix Products

Before we are going to present a specialized algorithm to ef-
ficiently calculate sparse-sparse matrix products of the form
E = RK RT, let us first outline the naïve approach for do-
ing so. To simplify things, we assume in this discussion, as
well as in all upcoming discussions, a row-compressed ma-
trix format. It should become clear from the text, however,
that the extension to the block-row-compressed matrix for-
mat is straight-forward.

A particular entry in the matrix E is computed as

Ei j = ∑
l∈SR

i

Ril



 ∑
k∈SK

l ∩SR
j

KlkR jk



 . (9)

The outer sum only considers the non-zero entries in the i-th
row of R, denoted by the index set SR

i . The inner sum can
be optimized in such a way that it only accounts for indices
in the intersection of the index sets SK

l and SR
j , since both

rows of K and R are sparse. If the intersection is empty, the
resulting term is zero. The expansion of the product has to
be carefully designed such that all matrix data structures are
accessed in a row-wise order.

The performance of the naïve approach is mainly limited
due to the following properties: Firstly, to determine the in-
tersections SK

l ∩SR
j the entire (ordered) sets SK

l and SR
j have

to be processed even though their intersection is typically
very small or even empty. Secondly, the indices l and j them-
selves are determined by processing sparse index sets. Note,
that the entries Ei j are processed as they are stored in the
sparse matrix format, and therefore—once the structure of
E has been determined— j is obtained from a sparse index
set, too. Accessing these sets, namely SK

l and SR
j , produces

scattered read operations that can most likely not be served
from cache.

4.3.1. Stream Acceleration

To overcome the aforementioned limitations of the naïve ap-
proach for computing matrix products of the form RK RT,
we now introduce a cache-efficient algorithm to perform
such operations. Specifically, we construct a data and con-

trol stream that is aligned with the data structure of the ma-
trix K.
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The data stream contains values of R and respective in-
dices into E. The indices are used to scatter the multiplied
entries from K and R into the destination matrix E. Note
that because R and RT do not change over time, their contri-
butions to the product can be encoded into the stream. The
control stream is used to encode how many pairs of data val-
ues and indices have to be processed for each non-zero entry
of the matrix K. A single byte of the control stream is in-
terpreted as follows: The first bit indicates whether the next
non-zero entry of the matrix K should be fetched or the pre-
vious entry of K is used in the current calculations. The re-
maining seven bits indicate the number of data value/index
pairs from the data stream that have to be processed. Note
that at most 127 pairs can be encoded in one single byte. If
an entry of K is scattered into the result matrix more than
127 times, an additional control byte has to be used with the
first bit set to 0.

Due to this particular layout, scattered memory read op-
erations to access pre-computed intersections SK

l ∩ SR
j can

be avoided and only the final write operation accesses the
memory randomly. An overview of the streaming approach
is given in Figure 3.

The respective control and data streams are constructed as
listed in Algorithm 1. The algorithm essentially performs the
operations given in Equation 9. Since the streams are aligned
to the matrix data structure of K rather than to that of E,
the ordering of the sums in Equation 9 has to be changed,
such that we immediately obtain all terms for each entry of
K. This entries can then directly be encoded into the data
stream.

In the pseudo code, the method E.getIndex(i, j) deter-
mines the index of an element (i, j) in the linearized data ar-
ray of E. This index allows to quickly access the respective
element of E in the stream processing stage. The stream’s
push() operation is used to encode the required information
into the control and data stream. Besides storing the given
value/index pair in the data stream, it also increments the
number stored in the last control byte. If the maximum value
of 127 is exceeded, a new control byte with the first bit set to

Figure 3: Overview of the stream acceleration data struc-

ture.

Algorithm 1 Stream Construction (In-Place)

Require: Matrices K,RT, structure of matrix E

Ensure: E = RKRT

for i = 1 to E.numRows do

for j ∈ SE
i do

Ei j = 0;
end for

end for

for l = 0 to K.numRows do

for k ∈ SK
l do

for i ∈ SRT

l do

for j ∈ SE
i ∩SRT

k do

Ei j = Ei j + Klk ·RT
li ·RT

k j;

stream.push(RT
li ·RT

k j,E.getIndex(i, j));
end for

end for

stream.setNext();
end for

end for

0 is appended to the stream. The stream’s setNext() opera-
tion appends a new control byte to the stream. Since the first
bit is set to 1, it refers to the next non-zero element of K.

Computing the destination matrix E is performed by se-
quentially traversing the entire stream and repeating the fol-
lowing two steps for each control byte (l and k denote the
row/column index of the current non-zero entry of K, and
they are initialized to index the first non-zero entry of K):

Step 1: If the first bit of the current control byte equals 1,
the index k is advanced to the next non-zero entry of K in
the row l. If such an entry is not available, the row index
l is incremented to the next non-empty row, and k is set
to the first non-zero column index of that row. Then, the
value Klk is stored in a temporary register t. The last 7 bits
of the control byte encode the number p of weight/index
pairs that have to be processed.

Step 2: Do p times:
Read a data value w and an index value i from the data
stream, determine the product w · t and add it to the en-
try E(i) of the destination matrix (E(i) addresses the i-th
position in the linearized representation of E).

5. Results

In this section, we analyze the performance of the Multigrid
finite element solver using the proposed corotational for-
mulation of finite elements in combination with the cache-
efficient sparse matrix representations. All benchmarks were
run on a standard desktop PC with an Intel CoreTM 2 Duo
6600 2.4 GHz processor equipped with 2 GB RAM.

Table 1 shows the performance of the proposed multigrid
solver at different FE model resolutions. We use one Gauss-
Seidel step both for pre- and post-smoothing in the multigrid
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Figure 4: Comparison of different approaches to estimate per-element rotations. Left: novel approach based on energy min-

imization. Middle: polar decomposition of the deformation gradient. Elements start fluttering due to large stretching. Right:

spatial smoothing of element rotations. Fluttering is reduced but still noticeable.

V-cycle. In the first column we list the used model (see Ta-
ble 2 for a more detailed model analysis). Next, we give the
times required to compute per-element rotations based on
energy minimization. The third column presents the compu-
tation times for re-assembling the system matrix (including
the rotation of the element stiffness matrices). Then, we an-
alyze the performance of the procedure used to update the
multigrid matrix hierarchy, which already exploits the novel
stream acceleration data structure. In the next column, the
time that is required for solving the system Ku = f is given.
Finally, we show the performance of the multigrid solver in
time steps per second (tps).

The most striking performance gain results from using the
stream acceleration structure to update the multigrid hierar-
chy. Typically, the Galerkin update of the coarse level ma-
trices is performed by successively performing the naïve ap-
proach (see Equation 9). The time required for this naïve
approach is given in Table 1 in brackets for our models. Due
to the proposed acceleration structure, the same operation
is now about 10 times faster. It is especially interesting to
note that this performance gain is achieved despite the addi-
tional memory that is required to store the data and control
streams (between 15 MB and 132 MB in the current exam-
ples). This result clearly indicates that the performance of
sparse matrix operations is vastly dominated by cache-miss
penalties, which can be reduced significantly by the stream-
ing approach presented in this paper.

Summarizing, we achieve a performance of the advanced

Calculation times [ms] Total
Model Rotate Assemble Update Solve [tps]
Bunny 21 18 11 (108) 10 17
Horse 67 58 39 (354) 26 5.2

Dragon 112 103 94 (1183) 51 2.8

Table 1: Timing statistics for the multigrid FE solver using

the corotational finite element formulation. Per-element ro-

tations are computed by energy minimization as introduced

in Section 3. In the Update column, times in brackets denote

the multigrid update operation using standard operations in-

stead of the novel stream acceleration approach.

finite element multigrid solver that is about some orders
of magnitudes faster than current FE approaches. The ap-
proach of Wicke et al. [WBG07] is roughly a factor of 20
slower for an equal number of degrees of freedom to be
solved. Even for the most recent FE approach by Kaufmann
et al. [KMBG08]—running on the same hardware as our
implementation—, we observe a speedup of a factor of more
than 10.

To further validate our method against previous ap-
proaches, we have also integrated the polar decomposition
of the deformation gradient [HS04] into the multigrid solver.
Due to the aforementioned limitations of this approach re-
garding stability, we apply a spatial smoothing of the com-
puted rotation field on the tetrahedral grid. The smoothing
is performed in quaternion space, meaning that we compute
quaternion averages in R

4 and re-normalize the weighted
quaternion to place it on the unit sphere S3. The centroid
is computed as ∑i wiqi/‖∑i wiqi‖, where qi are unit quater-
nions on S3 and wi are the respective weights. Even though
this kind of re-normalization can cause undesirable effects,
in the current examples it could significantly improve the
stability of the approach.

Per-element rotations are first transformed into corre-
sponding quaternions. Spatial smoothing is then performed
by gathering quaternions from the 1-ring neighborhood of
each element, and by computing quaternion averages as de-
scribed. Weights are chosen according to the volume of aver-
aged elements. As can be seen from Figure 4, which provides
a visual comparison between the different methods used to
extract per-element rotations, even though spatial smoothing

Model # Elements # Vertices # Levels Total [tps]
Bunny 11241 2918 3 31
Horse 33689 8632 4 10.1

Dragon 67309 16943 4 5.0

Table 2: Model and timing statistics for the multigrid FE

solver using the corotational finite element formulation. Per-

element rotations are computed by a polar decomposition

of the deformation gradient and a spatial smoothing of the

rotation field.
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Figure 5: Large-scale deformations using the FE model based on the corotational formulation. Energy minimization is used to

extract per-element rigid motions.

weakens the limitations of the polar decomposition it cannot
achieve the same stability as the energy minimization. Fur-
thermore, since energy minimization is only about a factor of
two slower than spatial smoothing (see Table 2), it positions
itself as an effective and efficient means for FE simulations
using the corotational formulation of finite elements.

Figure 5 demonstrates the stability of the proposed FE
model using the corotational formulation. For the horse
model, we show two deformations. In the middle image,
the horse is modeled with heterogeneous material parame-
ters (stiff legs and soft knees), and it is fixed on the hooves
of the hind legs. This allows bringing the model into the pre-
sented pose by pulling the shoulders to the top and folding
the fore legs. It is worth noting that all applied forces are
accumulated to keep the deformed body in its pose. In the
right image, the horse is modeled with homogeneous mate-
rial parameters, while the fixation is unchanged. The horse
is then largely stretched to demonstrate the stability of en-
ergy minimization for the determination of per-element ro-
tations. When using geometric methods or polar decomposi-
tion of the deformation gradient to estimate these rotations,
the model starts fluttering and becomes increasingly unsta-
ble. However, since our energy minimization extracts rota-
tions only locally, spatial consistency cannot always be en-
sured.

6. Conclusion

In this paper, we have presented novel algorithms to improve
the simulation of deformable bodies based on the corota-
tional formulation of finite elements. Firstly, we have in-
troduced a new method to extract the rigid body motion
from total finite element displacements based on energy min-
imization. This formulation greatly improves the stability of
corotated finite elements, and it only leads to a slight in-
crease of the computational load compared to previous ap-
proaches. Secondly, we have presented a cache-efficient data
structure to significantly accelerate the matrix update proce-

dure in Galerkin multigrid approaches. By reformulating the
sparse matrix product into the simultaneous processing of a
data and a control stream, cache-miss penalties can be effec-
tively reduced. The new approach accelerates the update of
the multigrid matrix hierarchy by a factor of 10 compared to
previous multigrid approaches, which yields an overall ac-
celeration of the simulation by a factor of up to 4.

In the future we will go into three different research direc-
tions: a) we will analyze whether the energy minimization
approach can be efficiently incorporated into a global min-
imization problem thereby accounting for further improved
spatial consistency of the rotations. b) we will investigate
the parallelization of the multigrid solver on multi-core sys-
tems like the Intel Larrabee visual computing architecture.
This will allow us to considerably speed up physics-based
FE simulations, at the same time enabling the handling of
very large data sets. c) we will try to integrate cutting mecha-
nisms into the multigrid FE simulation. In particular we will
explore the integration of finite polyhedral cells [WBG07]
into the multigrid setting, and we will investigate techniques
to efficiently handle local topology changes in this setting.
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